Circadian ontogenetic metabolomics atlas: an interactive resource with insights from rat plasma, tissues, and feces
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
40580317
PubMed Central
PMC12206216
DOI
10.1007/s00018-025-05783-w
PII: 10.1007/s00018-025-05783-w
Knihovny.cz E-resources
- Keywords
- Atlas, Circadian rhythm, Lipidomics, Metabolomics, Resource,
- MeSH
- Chromatography, Liquid MeSH
- Circadian Rhythm * physiology MeSH
- Feces * chemistry MeSH
- Liver metabolism MeSH
- Rats MeSH
- Metabolome * MeSH
- Metabolomics * methods MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Circadian rhythms regulate key physiological processes through clock genes in central and peripheral tissues. While circadian gene expression during development has been well studied, the temporal dynamics of metabolism across tissues remain less understood. Here, we present the Circadian Ontogenetic Metabolomics Atlas (COMA), which maps circadian metabolic rhythms across 16 rat anatomical structures. The brain (suprachiasmatic nuclei, medial prefrontal cortex) and periphery (liver, plasma) span developmental stages from embryonic E19 to postnatal P2, P10, P20, and P28. Fecal samples include all four postnatal stages, while additional peripheral tissues were analyzed at P20 and P28. Using a multiplatform liquid chromatography-mass spectrometry approach, we annotated 851 metabolites from 1610 samples. We identified distinct circadian shifts, particularly during the transition from nursing to solid food intake (P10-P20), with an average of 24% of metabolites exhibiting circadian oscillations across sample types, as determined by JTK_CYCLE. Our study also underscores the importance of standardized sampling, as metabolite intensities fluctuate with both circadian rhythms and development. COMA serves as an open-access resource ( https://coma.metabolomics.fgu.cas.cz ) for exploring circadian metabolic regulation and its role in developmental biology.
Institute of Physiology of the Czech Academy of Sciences Videnska 1083 Prague 14200 Czech Republic
University of California Davis 451 Health Sciences Drive Davis CA 95616 USA
See more in PubMed
Bhadra U, Thakkar N, Das P, Bhadra MP (2017) Evolution of circadian rhythms: from bacteria to human. Sleep Med 35:49–61. 10.1016/j.sleep.2017.04.008 PubMed
Panda S, Hogenesch JB, Kay SA (2002) Circadian rhythms from flies to human. Nature 417:329–335. 10.1038/417329a PubMed
Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol 106:223–252. 10.1007/Bf01417856
Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the Suprachiasmatic nucleus. Nat Rev Neurosci 19:453–469. 10.1038/s41583-018-0026-z PubMed
Patke A, Young MW, Axelrod S (2020) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21:67–84. 10.1038/s41580-019-0179-2 PubMed
Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted Suprachiasmatic nucleus determines circadian period. Science 247:975–978. 10.1126/science.2305266 PubMed
Reppert SM, Schwartz WJ (1983) Maternal coordination of the fetal biological clock in utero. Science 220:969–971. 10.1126/science.6844923 PubMed
Moore RY (1991) Development of the Suprachiasmatic nucleus. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 197–216
Bedont JL, Blackshaw S (2015) Constructing the suprachiasmatic nucleus: a watchmaker’s perspective on the central clockworks. Front Syst Neurosci 9. 10.3389/Fnsys.2015.00074 PubMed PMC
Landgraf D, Koch CE, Oster H (2014) Embryonic development of circadian clocks in the mammalian Suprachiasmatic nuclei. Front Neuroanat 8. 10.3389/Fnana.2014.00143 PubMed PMC
Sumova A, Sladek M, Polidarova L, Novakova M, Houdek P (2012) Circadian system from conception till adulthood. Prog Brain Res 199:83–103. 10.1016/B978-0-444-59427-3.00005-8 PubMed
Comas M, De Pietri Tonelli D, Berdondini L, Astiz M (2024) Ontogeny of the circadian system: a multiscale process throughout development. Trends Neurosci 47:36–46. 10.1016/j.tins.2023.11.004 PubMed
Carmona-Alcocer V, Abel JH, Sun TC, Petzold LR, Doyle FJ 3rd, Simms CL et al (2018) Ontogeny of circadian rhythms and synchrony in the Suprachiasmatic nucleus. J Neurosci 38:1326–1334. 10.1523/JNEUROSCI.2006-17.2017 PubMed PMC
Shibata S, Moore RY (1987) Development of neuronal activity in the rat Suprachiasmatic nucleus. Brain Res 431:311–315. 10.1016/0165-3806(87)90220-3 PubMed
Landgraf D, Achten C, Dallmann F, Oster H (2014) Embryonic development and maternal regulation of murine circadian clock function. Chronobiol Int 1–12. 10.3109/07420528.2014.986576 PubMed
Sukumaran S, Almon RR, DuBois DC, Jusko WJ (2010) Circadian rhythms in gene expression: relationship to physiology, disease, drug disposition and drug action. Adv Drug Deliver Rev 62:904–917. 10.1016/j.addr.2010.05.009 PubMed PMC
Sakamoto K, Oishi K, Nagase T, Miyazaki K, Ishida N (2002) Circadian expression of clock genes during ontogeny in the rat heart. NeuroReport 13:1239–1242. 10.1097/00001756-200207190-00003 PubMed
Sladek M, Jindrakova Z, Bendova Z, Sumova A (2007) Postnatal ontogenesis of the circadian clock within the rat liver. Am J Physiol-Reg I 292:R1224–R1229. 10.1152/ajpregu.00184.2006 PubMed
Brown SA (2016) Circadian metabolism: from mechanisms to metabolomics and aedicine. Trends Endocrin Met 27:415–426. 10.1016/j.tem.2016.03.015 PubMed
Gooley JJ, Chua ECP (2014) Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J Genet Genomics 41:231–250. 10.1016/j.jgg.2014.04.001 PubMed
Ch R, Chevallier O, Elliott CT (2020) Metabolomics reveal circadian control of cellular metabolism. TrAC-Trend Anal Chem 130:115986. 10.1016/J.Trac.2020.115986
Shen BY, Ma CX, Wu GL, Liu HB, Chen LH, Yang GR (2023) Effects of exercise on circadian rhythms in humans. Front Pharmacol 14:1282357. 10.3389/Fphar.2023.1282357 PubMed PMC
Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP et al (2014) Effect of sleep deprivation on the human metabolome. P Natl Acad Sci USA 111:10761–10766. 10.1073/pnas.1402663111 PubMed PMC
Kasukawa T, Sugimoto M, Hida A, Minami Y, Mori M, Honma S et al (2012) Human blood metabolite timetable indicates internal body time. P Natl Acad Sci USA 109:15036–15041. 10.1073/pnas.1207768109 PubMed PMC
Jeppe K, Ftouni S, Nijagal B, Grant LK, Lockley SW, Rajaratnam SMW et al (2024) Accurate detection of acute sleep deprivation using a metabolomic biomarker-A machine learning approach. Sci Adv 10:eadj6834. 10.1126/sciadv.adj6834 PubMed PMC
Minami Y, Kasukawa T, Kakazu Y, Iigo M, Sugimoto M, Ikeda S et al (2009) Measurement of internal body time by blood metabolomics. P Natl Acad Sci USA 106:9890–9895. 10.1073/pnas.0900617106 PubMed PMC
Li Q, Wang B, Qiu HY, Yan XJ, Cheng L, Wang QQ et al (2021) Chronic jet lag exacerbates lejunal and colonic microenvironment in mice. Front Cell Infect Mi 11:648175. 10.3389/Fcimb.2021.648175 PubMed PMC
Sato S, Dyar KA, Treebak JT, Jepsen SL, Ehrlich AM, Ashcroft SP et al (2022) Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metab 34:329–345. 10.1016/j.cmet.2021.12.016 PubMed
Savikj M, Stocks B, Sato S, Caidahl K, Krook A, Deshmukh AS et al (2022) Exercise timing influences multi-tissue metabolome and skeletal muscle proteome profiles in type 2 diabetic patients - A randomized crossover trial. Metabolism 135:155268. 10.1016/j.metabol.2022.155268 PubMed
Krishnaiah SY, Wu G, Altman BJ, Growe J, Rhoades SD, Coldren F et al (2017) Clock regulation of metabolites reveals coupling between transcription and metabolism. Cell Metab 25:961–974. 10.1016/j.cmet.2017.03.019 PubMed PMC
Loizides-Mangold U, Perrin L, Vandereycken B, Betts JA, Walhin JP, Templeman I et al (2017) Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. P Natl Acad Sci USA 114:E8565–E8574. 10.1073/pnas.1705821114 PubMed PMC
Buijink MR, van Weeghel M, Gulersonmez MC, Harms AC, Rohling JHT, Meijer JH et al (2018) The influence of neuronal electrical activity on the mammalian central clock metabolome. Metabolomics 14:122. 10.1007/S11306-018-1423-Z PubMed PMC
Rahman SA, Gathungu RM, Marur VR, Hilaire MSA, Scheuermaier K, Belenky M et al (2023) Age-related changes in circadian regulation of the human plasma lipidome. Commun Biol 6:756. 10.1038/s42003-023-05102-8 PubMed PMC
Held NM, Buijink MR, Elfrink HL, Kooijman S, Janssens GE, Luyf ACM et al (2021) Aging selectively dampens Oscillation of lipid abundance in white and brown adipose tissue. Sci Rep 11:5932. 10.1038/S41598-021-85455-4 PubMed PMC
Liu XY, Tian XY, Shi QH, Sun HD, Li J, Tang XY et al (2022) Characterization of LC-MS based urine metabolomics in healthy children and adults. Peerj 10:e13545. 10.7717/peerj.13545 PubMed PMC
Lu XY, Solmonson A, Lodi A, Nowinski SM, Sentandreu E, Riley CL et al (2017) The early metabolomic response of adipose tissue during acute cold exposure in mice. Sci Rep 7. 10.1038/S41598-017-03108-X PubMed PMC
Zhang ZD, Cheng L, Ma JX, Wang XM, Zhao YY (2022) Chronic cold exposure leads to daytime preference in the circadian expression of hepatic metabolic genes. Front Physiol 13:865627. 10.3389/Fphys.2022.865627 PubMed PMC
Dyar KA, Lutter D, Artati A, Ceglia NJ, Liu Y, Armenta D et al (2018) Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell 174:1571–1585. 10.1016/j.cell.2018.08.042 PubMed PMC
Tognini P, Samad M, Kinouchi K, Liu Y, Helbling JC, Moisan MP et al (2020) Reshaping circadian metabolism in the Suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. P Natl Acad Sci USA 117:29904–29913. 10.1073/pnas.2016589117 PubMed PMC
Sprenger RR, Hermansson M, Neess D, Becciolini LS, Sorensen SB, Fagerberg R et al (2021) Lipid molecular timeline profiling reveals diurnal crosstalk between the liver and circulation. Cell Rep 34:108710. 10.1016/J.Celrep.2021.108710 PubMed
Abbondante S, Eckel-Mahan KL, Ceglia NJ, Baldi P, Sassone-Corsi P (2016) Comparative circadian metabolomics reveal differential effects of nutritional challenge in the serum and liver. J Biol Chem 291:2812–2828. 10.1074/jbc.M115.681130 PubMed PMC
Sugimoto M, Ikeda S, Niigata K, Tomita M, Sato H, Soga T (2012) MMMDB: mouse multiple tissue metabolome database. Nucleic Acids Res 40:D809–D814. 10.1093/nar/gkr1170 PubMed PMC
Jain M, Ngoy S, Sheth SA, Swanson RA, Rhee EP, Liao R et al (2014) A systematic survey of lipids across mouse tissues. Am J Physiol-Endoc M 306:E854–E868. 10.1152/ajpendo.00371.2013 PubMed PMC
Rakusanova S, Fiehn O, Cajka T (2023) Toward Building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. TrAC-Trend Anal Chem 158:116825. 10.1016/j.trac.2022.116825
Houdek P, Sumova A (2014) In vivo initiation of clock gene expression rhythmicity in fetal rat Suprachiasmatic nuclei. PLoS ONE 9:e107360. 10.1371/journal.pone.0107360 PubMed PMC
Hricko J, Kulhava LR, Paucova M, Novakova M, Kuda O, Fiehn O et al (2023) Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxidants 12:986. 10.3390/Antiox12050986 PubMed PMC
Cajka T, Hricko J, Rudl Kulhava L, Paucova M, Novakova M, Kuda O (2023) Optimization of mobile phase modifiers for fast LC-MS-based untargeted metabolomics and lipidomics. Int J Mol Sci 24:1987. 10.3390/ijms24031987 PubMed PMC
Shrestha TC, Suchmanova K, Houdek P, Sumova A, Ralph MR (2018) Implicit time-place conditioning alters Per2 mRNA expression selectively in striatum without shifting its circadian clocks. Sci Rep 8:15547. 10.1038/S41598-018-33637-Y PubMed PMC
Greiner P, Houdek P, Sládek M, Sumová A (2022) Early rhythmicity in the fetal Suprachiasmatic nuclei in response to maternal signals detected by omics approach. Plos Biol 20:e3001637. 10.1371/journal.pbio.3001637 PubMed PMC
Sládek M, Houdek P, Sumová A (2019) Circadian profiling reveals distinct regulation of endocannabinoid system in the rat plasma, liver and adrenal glands by light-dark and feeding cycles. BBA-Mol Cell Biol L 1864:158533. 10.1016/J.Bbalip.2019.158533 PubMed
Hughes ME, Hogenesch JB, Kornacker K (2010) JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythm 25:372–380. 10.1177/0748730410379711 PubMed PMC
Weger BD, Gobet C, David FPA, Atger F, Martin E, Phillips NE et al (2021) Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms. P Natl Acad Sci USA 118:e2015803118. 10.1073/pnas.2015803118 PubMed PMC
Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H et al (2020) A lipidome atlas in MS-DIAL 4. Nat Biotechnol 38:1159–1163. 10.1038/s41587-020-0531-2 PubMed
Pang ZQ, Chong J, Zhou GY, Morais DAD, Chang L, Barrette M et al (2021) MetaboAnalyst 5.0: narrowing the gap between Raw spectra and functional insights. Nucleic Acids Res 49:W388–W396. 10.1093/nar/gkab382 PubMed PMC
Schwämmle V, Jensen ON (2018) VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics 34:2965–2972. 10.1093/bioinformatics/bty224 PubMed
Hickey DS, Kirkland JL, Lucas SB, Lye M (1984) Analysis of Circadian-Rhythms by fitting a Least-Squares sine curve. Comput Biol Med 14:217–223. 10.1016/0010-4825(84)90008-8 PubMed
Vondrackova M, Kopczynski D, Hoffmann N, Kuda O (2023) LORA, lipid Over-Representation analysis based on structural information. Anal Chem 95:12600–12604. 10.1021/acs.analchem.3c02039 PubMed PMC
Kováciková Z, Sládek M, Bendová Z, Illnerová H, Sumová A (2006) Expression of clock and clock-driven genes in the rat Suprachiasmatic nucleus during late fetal and early postnatal development. J Biol Rhythm 21:140–148. 10.1177/0748730405285876 PubMed
Sládek M, Sumová A, Kováciková Z, Bendová Z, Laurinová K, Illnerová H (2004) Insight into molecular core clock mechanism of embryonic and early postnatal rat Suprachiasmatic nucleus. P Natl Acad Sci USA 101:6231–6236. 10.1073/pnas.0401149101 PubMed PMC
de Jonge NF, Mildau K, Meijer D, Louwen JJR, Bueschl C, Huber F et al (2022) Good practices and recommendations for using and benchmarking computational metabolomics metabolite annotation tools. Metabolomics 18:103. 10.1007/s11306-022-01963-y PubMed PMC
Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T et al (2016) Hydrogen rearrangement rules: computational MS/MS fragmentation and structure Elucidation using MS-FINDER software. Anal Chem 88:7946–7958. 10.1021/acs.analchem.6b00770 PubMed PMC
Cajka T, Hricko J, Rakusanova S, Brejchova K, Novakova M, Rudl Kulhava L et al (2024) Hydrophilic interaction liquid chromatography–hydrogen/deuterium exchange–mass spectrometry (HILIC-HDX-MS) for untargeted metabolomics. Int J Mol Sci 25:2899. 10.3390/ijms25052899 PubMed PMC
Ferrell JM, Chiang JYL (2015) Circadian rhythms in liver metabolism and disease. Acta Pharm Sin B 5:113–122. 10.1016/j.apsb.2015.01.003 PubMed PMC
Segers A, Depoortere I (2021) Circadian clocks in the digestive system. Nat Rev Gastro Hepat 18:239–251. 10.1038/s41575-020-00401-5 PubMed
Richards J, Gumz ML (2012) Advances in Understanding the peripheral circadian clocks. Faseb J 26:3602–3613. 10.1096/fj.12-203554 PubMed PMC
Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179. 10.1038/nrg.2016.150 PubMed PMC
Panda S (2016) Circadian physiology of metabolism. 354:1008–1015. 10.1126/science.aah4967 PubMed PMC
Firsov D, Bonny O (2018) Circadian rhythms and the kidney. Nat Rev Nephrol 14:626–635. 10.1038/s41581-018-0048-9 PubMed
Chen LH, Yang GR (2015) Recent advances in circadian rhythms in cardiovascular system. Front Pharmacol 6:71. 10.3389/Fphar.2015.00071 PubMed PMC
Scheving LA (2000) Biological clocks and the digestive system. Gastroenterology 119:536–549. 10.1053/gast.2000.9305 PubMed
Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. 302:255–259. 10.1126/science.1086271 PubMed
Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD et al (2009) A circadian clock in macrophages controls inflammatory immune responses. P Natl Acad Sci USA 106:21407–21412. 10.1073/pnas.0906361106 PubMed PMC
Sundar IK, Yao HW, Sellix MT, Rahman I (2015) Circadian molecular clock in lung pathophysiology. Am J Physiol-Lung C 309:L1056–L1075. 10.1152/ajplung.00152.2015 PubMed PMC
Chatterjee S, Ma K (2016) Circadian clock regulation of skeletal muscle growth and repair. F1000Res 5:1549. 10.12688/f1000research.9076.1 PubMed PMC
Froy O, Garaulet M (2018) The circadian clock in white and brown adipose tissue: mechanistic, endocrine, and alinical aspects. Endocr Rev 39:261–273. 10.1210/er.2017-00193 PubMed PMC
Olejnikova L, Polidarova L, Behuliak M, Sladek M, Sumova A (2018) Circadian alignment in a foster mother improves the offspring’s pathological phenotype. J Physiol-London 596:5757–5775. 10.1113/JP275585 PubMed PMC
Koldovsky O, Hahn P, Hromadova M, Krecek J, Macho L (1995) Late effects of early nutritional manipulations. Physiol Res 44:357–360 PubMed
Deota S, Pendergast JS, Kolthur-Seetharam U, Esser KA, Gachon F, Asher G et al (2025) The time is now: accounting for time-of-day effects to improve reproducibility and translation of metabolism research. Nat Metab 7:454–468. 10.1038/s42255-025-01237-6 PubMed
Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–860. 10.1016/j.cmet.2012.04.019 PubMed PMC
Hsu PY, Harmer SL (2014) Global profiling of the circadian transcriptome using microarrays. Methods Mol Biol 1158:45–56. 10.1007/978-1-4939-0700-7_3 PubMed PMC
Brejchova K, Paluchova V, Brezinova M, Cajka T, Balas L, Durand T et al (2022) Triacylglycerols containing branched palmitic acid ester of hydroxystearic acid (PAHSA) are present in the breast milk and hydrolyzed by carboxyl ester lipase. Food Chem 388:132983. 10.1016/j.foodchem.2022.132983 PubMed
Marsac R, Pinson B, Saint-Marc C, Olmedo M, Artal-Sanz M, Daignan-Fornier B et al (2019) Purine homeostasis is necessary for developmental timing, germline maintenance and muscle integrity in Caenorhabditis elegans. Genetics 211:1297–1313. 10.1534/genetics.118.301062 PubMed PMC
Jackman N, Ishii A, Bansal R (2009) Oligodendrocyte development and Myelin biogenesis: parsing out the roles of glycosphingolipids. Physiology 24:290–297. 10.1152/physiol.00016.2009 PubMed PMC
Morris AI, Little JM, Lester R (1983) Development of the bile acid pool in rats from neonatal life through puberty to maturity. Digestion 28:216–224. 10.1159/000198991 PubMed
Allen LH (2012) B vitamins in breast milk: relative importance of maternal status and intake, and effects on infant status and function. Adv Nutr 3:362–369. 10.3945/an.111.001172 PubMed PMC
Ceglia N, Liu Y, Chen SW, Agostinelli F, Eckel-Mahan K, Sassone-Corsi P et al (2018) CircadiOmics: circadian omic web portal. Nucleic Acids Res 46:W157–W162. 10.1093/nar/gky441 PubMed PMC
Rakusanova S, Cajka T (2024) Tips and tricks for LC-MS-based metabolomics and lipidomics analysis. TrAC-Trend Anal Chem 180:117940. 10.1016/J.Trac.2024.117940
Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A et al (2016) Comment: the FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018. 10.1038/Sdata.2016.18 PubMed PMC
Kind T, Tsugawa H, Cajka T, Ma Y, Lai ZJ, Mehta SS et al (2018) Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev 37:513–532. 10.1002/mas.21535 PubMed PMC