Targeting of acute myeloid leukemia by five-gene engineered T cells expressing transgenic T-cell receptor specific to WT1, chimeric antigenic receptor specific to GM-CSF receptor, bispecific T-cell engager specific to CD33, and tEGFR suicide gene system
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
40735486
PubMed Central
PMC12306182
DOI
10.1093/immadv/ltaf022
PII: ltaf022
Knihovny.cz E-resources
- Keywords
- WT1, acute myeloid leukemia, chimeric antigen receptor, piggyBac transposon, transgenic T-cell receptor,
- Publication type
- Journal Article MeSH
BACKGROUND: Cancer immunotherapy with transgenic T-cell receptor-engineered T cells (TCR-T) enables the targeting of intracellular tumor-specific antigens; in contrast, chimeric antigen receptor-modified T cells (CAR-T) mediate tumor cell killing via the recognition of surface antigens. In the case of acute myeloid leukemia, the lack of leukemia-specific surface antigens limits the efficacy of CAR-T cells; therefore, TCR-T cells may represent a more targeted immunotherapy approach. However, the tumor immunosuppressive environment eliminates the best-functioning, high-avidity TCR-T cells, thus creating a need for novel, enhanced TCR-T cells. METHODS: The piggyBac transposon vector used for gene modification of T cells expresses a T-cell receptor specific to the WT1 tumour antigen, an NFAT promoter-regulated CAR specific to GM-CSF receptor, a CD3xCD33 bispecific T-cell engager, and a truncated EGFR suicide gene system. The transgenic T cells were generated by electroporation using a single expression vector, and the efficiency of these engineered TCR-T cells was evaluated using models that utilized AML cell lines and primary AML cells. RESULTS: The NFAT-driven GM-CSF CAR significantly enhances the antileukemic activity of WT1-specific TCR-T cells, which importantly maintain specificity for their HLA/peptide antigenic complex. Next, by inserting the CD3xCD33 bispecific T-cell engager into the transposon vector, both TCR-T cells and recruited non-transfected bystander T cells can efficiently target the CD33 antigen, providing more robust antileukemic effects. CONCLUSION: The presented strategy, utilizing a single piggyBac transposon vector, enables the complex redirection of T-cell specificity against acute myeloid leukemia by inserting TCR, CAR, BiTE constructs, along with a tEGFR gene suicide system.
Faculty of Natural Sciences Charles University Prague Czechia
Institute of Hematology and Blood Transfusion Department of Immunotherapy Prague Czechia
See more in PubMed
Daver N, Alotaibi AS, Bücklein V. et al. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia 2021; 35(7):1843–63. https://doi.org/ 10.1038/s41375-021-01253-x PubMed DOI PMC
Zhong S, Malecek K, Johnson LA. et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc Natl Acad Sci U S A 2013; 110(17):6973–78. https://doi.org/ 10.1073/pnas.1221609110 PubMed DOI PMC
Janicki CN, Jenkinson SR, Williams NA. et al. Loss of CTL function among high-avidity tumor-specific CD8+ T cells following tumor infiltration. Cancer Res 2008; 68(8):2993–3000. https://doi.org/ 10.1158/0008-5472.CAN-07-5008 PubMed DOI
Gros A, Parkhurst MR, Tran E. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 2016; 22(4):433–8. https://doi.org/ 10.1038/nm.4051 PubMed DOI PMC
Oliveira G, Stromhaug K, Klaeger S. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 2021; 596(7870):119–25. https://doi.org/ 10.1038/s41586-021-03704-y PubMed DOI PMC
Zhao X, Kolawole EM, Chan W. et al. Tuning T cell receptor sensitivity through catch bond engineering. Science (1979) 2022; 376(6589):142–55. https://doi.org/ 10.1126/science.abl5282 PubMed DOI PMC
Chapuis AG, Egan DN, Bar M. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat Med 2019; 25:1064–72. https://doi.org/ 10.1038/s41591-019-0472-9 PubMed DOI PMC
Chapuis AG, Thompson JA, Margolin KA. et al. Transferred melanoma-specific CD8 + T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc Natl Acad Sci U S A 2012; 109:4592–7. https://doi.org/ 10.1073/pnas.1113748109 PubMed DOI PMC
Keilholz U, Menssen HD, Gaiger A. et al. Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia 2005; 19(8):1318–25. PubMed
Wachsmann TLA, Meeuwsen MH, Remst DFG. et al. Combining BCMA-targeting CAR T cells with TCR-engineered T-cell therapy to prevent immune escape of multiple myeloma. Blood Adv 2023; 7(20):6178–83. https://doi.org/ 10.1182/bloodadvances.2023010410 PubMed DOI PMC
Teppert K, Yonezawa Ogusuku IE, Brandes C. et al. CAR’TCR-T cells co-expressing CD33-CAR and dNPM1-TCR as superior dual-targeting approach for AML treatment. Mol Ther Oncol 2024; 32(2):200797. https://doi.org/ 10.1016/j.omton.2024.200797 PubMed DOI PMC
Omer B, Cardenas MG, Pfeiffer T. et al. A costimulatory CAR improves TCR-based cancer immunotherapy. Cancer Immunol Res 2022; 10(4):512–24. https://doi.org/ 10.1158/2326-6066.CIR-21-0307 PubMed DOI PMC
Maus MV, Plotkin J, Jakka G. et al. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Mol Ther Oncolytics 2016; 3:1–9. https://doi.org/ 10.1038/mto.2016.23 PubMed DOI PMC
Thakur A, Scholler J, Schalk DL. et al. Enhanced cytotoxicity against solid tumors by bispecific antibody-armed CD19 CAR T cells: a proof-of-concept study. J Cancer Res Clin Oncol 2020; 146(8):2007–16. https://doi.org/ 10.1007/s00432-020-03260-4 PubMed DOI PMC
Fandrei D, Seiffert S, Rade M. et al. Bispecific antibodies as bridging to BCMA CAR-T cell therapy for relapsed/refractory multiple myeloma. Blood Cancer Discov 2025; 6(1):38–54. https://doi.org/ 10.1158/2643-3230.BCD-24-0118 PubMed DOI PMC
Ptáčková P, Musil J, Štach M. et al. A new approach to CAR T-cell gene engineering and cultivation using piggyBac transposon in the presence of IL-4, IL-7 and IL-21. Cytotherapy 2018; 20(4):507–20. https://doi.org/ 10.1016/j.jcyt.2017.10.001 PubMed DOI
Mestermann K, Giavridis T, Weber J. et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med 2019; 11(499):eaau5907. https://doi.org/ 10.1126/scitranslmed.aau5907 PubMed DOI PMC
Robinson J, Halliwell JA, Hayhurst JD. et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res 2015; 43(D1):D423–31. https://doi.org/ 10.1093/nar/gku1161 PubMed DOI PMC
Shafer P, Kelly LM, Hoyos V.. Cancer therapy with TCR-engineered T cells: current strategies, challenges, and prospects. Front Immunol 2022; 13. PubMed PMC
Friedrich M, Henn A, Raum T. et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther 2014; 13(6):1549–57. https://doi.org/ 10.1158/1535-7163.MCT-13-0956 PubMed DOI
Choi BD, Yu X, Castano AP. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 2019; 37(9):1049–58. https://doi.org/ 10.1038/s41587-019-0192-1 PubMed DOI
Willier S, Rothämel P, Hastreiter M. et al. CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy. Blood 2021; 137(8):1037–49. https://doi.org/ 10.1182/blood.2020006921 PubMed DOI
Zhang W, Stevens BM, Budde EE. et al. Anti-CD123 CAR T-cell therapy for the treatment of myelodysplastic syndrome. Blood 2017; 130(Supplement 1):1917.
Sauter CT, Chien CD, Shen F. et al. Evaluating on-target toxicity of hematopoietic-targeting cars demonstrates target-nonspecific suppression of marrow progenitors. Blood 2016; 128(22):3357–3357. https://doi.org/ 10.1182/blood.v128.22.3357.3357 DOI
Kim MY, Yu KR, Kenderian SS. et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 2018; 173(6):1439–53.e19. https://doi.org/ 10.1016/j.cell.2018.05.013 PubMed DOI PMC
Perna F, Berman S, Soni RK. et al. Systematic combinatorial chimeric antigen receptor therapies to AML. Blood 2017; 130(Suppl_1):856–856. https://doi.org/ 10.1182/blood.v130.suppl_1.856.856 DOI
Jones S, Peng PD, Yang S. et al. Lentiviral vector design for optimal T cell receptor gene expression in the transduction of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Hum Gene Ther 2009; 20(6):630–40. https://doi.org/ 10.1089/hum.2008.048 PubMed DOI PMC
Jitschin R, Saul D, Braun M. et al. CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells 11 Medical and Health Sciences 1107 Immunology. J ImmunoTher Cancer 2018; 6(1):116. https://doi.org/ 10.1186/s40425-018-0432-9 PubMed DOI PMC
Linette GP, Stadtmauer EA, Maus MV. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 2013; 122(6):863–71. https://doi.org/ 10.1182/blood-2013-03-490565 PubMed DOI PMC
Cameron BJ, Gerry AB, Dukes J. et al. Identification of a titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med 2013; 5(197):197ra103. https://doi.org/ 10.1126/scitranslmed.3006034 PubMed DOI PMC
Van Den Berg JH, Gomez-Eerland R, Van De Wiel B. et al. Case report of a fatal serious adverse event upon administration of T cells transduced with a MART-1-specific T-cell receptor. Mol Ther 2015; 23(9):1541–50. https://doi.org/ 10.1038/mt.2015.60 PubMed DOI PMC
Parkhurst MR, Yang JC, Langan RC. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19(3):620–6. https://doi.org/ 10.1038/mt.2010.272 PubMed DOI PMC
Rossi M, Breman E.. Engineering strategies to safely drive CAR T-cells into the future. Front Immunol 2024; 15:1411393. https://doi.org/ 10.3389/fimmu.2024.1411393 PubMed DOI PMC
Urnov FD. CRISPR–Cas9 can cause chromothripsis. Nat Genet 2021; 53(6):768–9. https://doi.org/ 10.1038/s41588-021-00881-4 PubMed DOI
Leibowitz ML, Papathanasiou S, Doerfler PA. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat Genet 2021; 53(6):895–905. https://doi.org/ 10.1038/s41588-021-00838-7 PubMed DOI PMC
Boutin J, Rosier J, Cappellen D. et al. CRISPR-Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells. Nat Commun 2021; 12(1):4922. https://doi.org/ 10.1038/s41467-021-25190-6 PubMed DOI PMC
Cullot G, Boutin J, Toutain J. et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 2019; 10(1):1136. https://doi.org/ 10.1038/s41467-019-09006-2 PubMed DOI PMC
Rapoport AP, Stadtmauer EA, Binder-Scholl GK. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 2015; 21:914–21. https://doi.org/ 10.1038/nm.3910 PubMed DOI PMC
Micklethwaite KP, Gowrishankar K, Gloss BS. et al. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood 2021; 138(16):1391–405. https://doi.org/ 10.1182/blood.2021010858 PubMed DOI PMC
Bishop DC, Clancy LE, Simms R. et al. Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with piggyBac-modified CD19 CAR T cells. Blood 2021; 138(16):1504–9. https://doi.org/ 10.1182/blood.2021010813 PubMed DOI
Kamiya T, Wong D, Png YT. et al. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells. Blood Adv 2018; 2(5):517–28. https://doi.org/ 10.1182/bloodadvances.2017012823 PubMed DOI PMC
Almosailleakh M, Schwaller J.. Murine models of acute myeloid leukaemia. Int J Mol Sci 2019; 20(2):453. https://doi.org/ 10.3390/ijms20020453 PubMed DOI PMC
Yusa K, Zhou L, Li MA. et al. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A 2011; 108(4):1531–6. https://doi.org/ 10.1073/pnas.1008322108 PubMed DOI PMC
Štach M, Ptáčková P, Mucha M. et al. Inducible secretion of IL-21 augments anti-tumor activity of piggyBac-manufactured chimeric antigen receptor T cells. Cytotherapy 2020; 22:744–54. https://doi.org/ 10.1016/j.jcyt.2020.08.005 PubMed DOI