• This record comes from PubMed

Targeting of acute myeloid leukemia by five-gene engineered T cells expressing transgenic T-cell receptor specific to WT1, chimeric antigenic receptor specific to GM-CSF receptor, bispecific T-cell engager specific to CD33, and tEGFR suicide gene system

. 2025 ; 5 (1) : ltaf022. [epub] 20250611

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

BACKGROUND: Cancer immunotherapy with transgenic T-cell receptor-engineered T cells (TCR-T) enables the targeting of intracellular tumor-specific antigens; in contrast, chimeric antigen receptor-modified T cells (CAR-T) mediate tumor cell killing via the recognition of surface antigens. In the case of acute myeloid leukemia, the lack of leukemia-specific surface antigens limits the efficacy of CAR-T cells; therefore, TCR-T cells may represent a more targeted immunotherapy approach. However, the tumor immunosuppressive environment eliminates the best-functioning, high-avidity TCR-T cells, thus creating a need for novel, enhanced TCR-T cells. METHODS: The piggyBac transposon vector used for gene modification of T cells expresses a T-cell receptor specific to the WT1 tumour antigen, an NFAT promoter-regulated CAR specific to GM-CSF receptor, a CD3xCD33 bispecific T-cell engager, and a truncated EGFR suicide gene system. The transgenic T cells were generated by electroporation using a single expression vector, and the efficiency of these engineered TCR-T cells was evaluated using models that utilized AML cell lines and primary AML cells. RESULTS: The NFAT-driven GM-CSF CAR significantly enhances the antileukemic activity of WT1-specific TCR-T cells, which importantly maintain specificity for their HLA/peptide antigenic complex. Next, by inserting the CD3xCD33 bispecific T-cell engager into the transposon vector, both TCR-T cells and recruited non-transfected bystander T cells can efficiently target the CD33 antigen, providing more robust antileukemic effects. CONCLUSION: The presented strategy, utilizing a single piggyBac transposon vector, enables the complex redirection of T-cell specificity against acute myeloid leukemia by inserting TCR, CAR, BiTE constructs, along with a tEGFR gene suicide system.

See more in PubMed

Daver N, Alotaibi AS, Bücklein V. et al. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia 2021; 35(7):1843–63. https://doi.org/ 10.1038/s41375-021-01253-x PubMed DOI PMC

Zhong S, Malecek K, Johnson LA. et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc Natl Acad Sci U S A 2013; 110(17):6973–78. https://doi.org/ 10.1073/pnas.1221609110 PubMed DOI PMC

Janicki CN, Jenkinson SR, Williams NA. et al. Loss of CTL function among high-avidity tumor-specific CD8+ T cells following tumor infiltration. Cancer Res 2008; 68(8):2993–3000. https://doi.org/ 10.1158/0008-5472.CAN-07-5008 PubMed DOI

Gros A, Parkhurst MR, Tran E. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 2016; 22(4):433–8. https://doi.org/ 10.1038/nm.4051 PubMed DOI PMC

Oliveira G, Stromhaug K, Klaeger S. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 2021; 596(7870):119–25. https://doi.org/ 10.1038/s41586-021-03704-y PubMed DOI PMC

Zhao X, Kolawole EM, Chan W. et al. Tuning T cell receptor sensitivity through catch bond engineering. Science (1979) 2022; 376(6589):142–55. https://doi.org/ 10.1126/science.abl5282 PubMed DOI PMC

Chapuis AG, Egan DN, Bar M. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat Med 2019; 25:1064–72. https://doi.org/ 10.1038/s41591-019-0472-9 PubMed DOI PMC

Chapuis AG, Thompson JA, Margolin KA. et al. Transferred melanoma-specific CD8 + T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc Natl Acad Sci U S A 2012; 109:4592–7. https://doi.org/ 10.1073/pnas.1113748109 PubMed DOI PMC

Keilholz U, Menssen HD, Gaiger A. et al. Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia 2005; 19(8):1318–25. PubMed

Wachsmann TLA, Meeuwsen MH, Remst DFG. et al. Combining BCMA-targeting CAR T cells with TCR-engineered T-cell therapy to prevent immune escape of multiple myeloma. Blood Adv 2023; 7(20):6178–83. https://doi.org/ 10.1182/bloodadvances.2023010410 PubMed DOI PMC

Teppert K, Yonezawa Ogusuku IE, Brandes C. et al. CAR’TCR-T cells co-expressing CD33-CAR and dNPM1-TCR as superior dual-targeting approach for AML treatment. Mol Ther Oncol 2024; 32(2):200797. https://doi.org/ 10.1016/j.omton.2024.200797 PubMed DOI PMC

Omer B, Cardenas MG, Pfeiffer T. et al. A costimulatory CAR improves TCR-based cancer immunotherapy. Cancer Immunol Res 2022; 10(4):512–24. https://doi.org/ 10.1158/2326-6066.CIR-21-0307 PubMed DOI PMC

Maus MV, Plotkin J, Jakka G. et al. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Mol Ther Oncolytics 2016; 3:1–9. https://doi.org/ 10.1038/mto.2016.23 PubMed DOI PMC

Thakur A, Scholler J, Schalk DL. et al. Enhanced cytotoxicity against solid tumors by bispecific antibody-armed CD19 CAR T cells: a proof-of-concept study. J Cancer Res Clin Oncol 2020; 146(8):2007–16. https://doi.org/ 10.1007/s00432-020-03260-4 PubMed DOI PMC

Fandrei D, Seiffert S, Rade M. et al. Bispecific antibodies as bridging to BCMA CAR-T cell therapy for relapsed/refractory multiple myeloma. Blood Cancer Discov 2025; 6(1):38–54. https://doi.org/ 10.1158/2643-3230.BCD-24-0118 PubMed DOI PMC

Ptáčková P, Musil J, Štach M. et al. A new approach to CAR T-cell gene engineering and cultivation using piggyBac transposon in the presence of IL-4, IL-7 and IL-21. Cytotherapy 2018; 20(4):507–20. https://doi.org/ 10.1016/j.jcyt.2017.10.001 PubMed DOI

Mestermann K, Giavridis T, Weber J. et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med 2019; 11(499):eaau5907. https://doi.org/ 10.1126/scitranslmed.aau5907 PubMed DOI PMC

Robinson J, Halliwell JA, Hayhurst JD. et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res 2015; 43(D1):D423–31. https://doi.org/ 10.1093/nar/gku1161 PubMed DOI PMC

Shafer P, Kelly LM, Hoyos V.. Cancer therapy with TCR-engineered T cells: current strategies, challenges, and prospects. Front Immunol 2022; 13. PubMed PMC

Friedrich M, Henn A, Raum T. et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther 2014; 13(6):1549–57. https://doi.org/ 10.1158/1535-7163.MCT-13-0956 PubMed DOI

Choi BD, Yu X, Castano AP. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 2019; 37(9):1049–58. https://doi.org/ 10.1038/s41587-019-0192-1 PubMed DOI

Willier S, Rothämel P, Hastreiter M. et al. CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy. Blood 2021; 137(8):1037–49. https://doi.org/ 10.1182/blood.2020006921 PubMed DOI

Zhang W, Stevens BM, Budde EE. et al. Anti-CD123 CAR T-cell therapy for the treatment of myelodysplastic syndrome. Blood 2017; 130(Supplement 1):1917.

Sauter CT, Chien CD, Shen F. et al. Evaluating on-target toxicity of hematopoietic-targeting cars demonstrates target-nonspecific suppression of marrow progenitors. Blood 2016; 128(22):3357–3357. https://doi.org/ 10.1182/blood.v128.22.3357.3357 DOI

Kim MY, Yu KR, Kenderian SS. et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 2018; 173(6):1439–53.e19. https://doi.org/ 10.1016/j.cell.2018.05.013 PubMed DOI PMC

Perna F, Berman S, Soni RK. et al. Systematic combinatorial chimeric antigen receptor therapies to AML. Blood 2017; 130(Suppl_1):856–856. https://doi.org/ 10.1182/blood.v130.suppl_1.856.856 DOI

Jones S, Peng PD, Yang S. et al. Lentiviral vector design for optimal T cell receptor gene expression in the transduction of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Hum Gene Ther 2009; 20(6):630–40. https://doi.org/ 10.1089/hum.2008.048 PubMed DOI PMC

Jitschin R, Saul D, Braun M. et al. CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells 11 Medical and Health Sciences 1107 Immunology. J ImmunoTher Cancer 2018; 6(1):116. https://doi.org/ 10.1186/s40425-018-0432-9 PubMed DOI PMC

Linette GP, Stadtmauer EA, Maus MV. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 2013; 122(6):863–71. https://doi.org/ 10.1182/blood-2013-03-490565 PubMed DOI PMC

Cameron BJ, Gerry AB, Dukes J. et al. Identification of a titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med 2013; 5(197):197ra103. https://doi.org/ 10.1126/scitranslmed.3006034 PubMed DOI PMC

Van Den Berg JH, Gomez-Eerland R, Van De Wiel B. et al. Case report of a fatal serious adverse event upon administration of T cells transduced with a MART-1-specific T-cell receptor. Mol Ther 2015; 23(9):1541–50. https://doi.org/ 10.1038/mt.2015.60 PubMed DOI PMC

Parkhurst MR, Yang JC, Langan RC. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19(3):620–6. https://doi.org/ 10.1038/mt.2010.272 PubMed DOI PMC

Rossi M, Breman E.. Engineering strategies to safely drive CAR T-cells into the future. Front Immunol 2024; 15:1411393. https://doi.org/ 10.3389/fimmu.2024.1411393 PubMed DOI PMC

Urnov FD. CRISPR–Cas9 can cause chromothripsis. Nat Genet 2021; 53(6):768–9. https://doi.org/ 10.1038/s41588-021-00881-4 PubMed DOI

Leibowitz ML, Papathanasiou S, Doerfler PA. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat Genet 2021; 53(6):895–905. https://doi.org/ 10.1038/s41588-021-00838-7 PubMed DOI PMC

Boutin J, Rosier J, Cappellen D. et al. CRISPR-Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells. Nat Commun 2021; 12(1):4922. https://doi.org/ 10.1038/s41467-021-25190-6 PubMed DOI PMC

Cullot G, Boutin J, Toutain J. et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 2019; 10(1):1136. https://doi.org/ 10.1038/s41467-019-09006-2 PubMed DOI PMC

Rapoport AP, Stadtmauer EA, Binder-Scholl GK. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 2015; 21:914–21. https://doi.org/ 10.1038/nm.3910 PubMed DOI PMC

Micklethwaite KP, Gowrishankar K, Gloss BS. et al. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood 2021; 138(16):1391–405. https://doi.org/ 10.1182/blood.2021010858 PubMed DOI PMC

Bishop DC, Clancy LE, Simms R. et al. Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with piggyBac-modified CD19 CAR T cells. Blood 2021; 138(16):1504–9. https://doi.org/ 10.1182/blood.2021010813 PubMed DOI

Kamiya T, Wong D, Png YT. et al. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells. Blood Adv 2018; 2(5):517–28. https://doi.org/ 10.1182/bloodadvances.2017012823 PubMed DOI PMC

Almosailleakh M, Schwaller J.. Murine models of acute myeloid leukaemia. Int J Mol Sci 2019; 20(2):453. https://doi.org/ 10.3390/ijms20020453 PubMed DOI PMC

Yusa K, Zhou L, Li MA. et al. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A 2011; 108(4):1531–6. https://doi.org/ 10.1073/pnas.1008322108 PubMed DOI PMC

Štach M, Ptáčková P, Mucha M. et al. Inducible secretion of IL-21 augments anti-tumor activity of piggyBac-manufactured chimeric antigen receptor T cells. Cytotherapy 2020; 22:744–54. https://doi.org/ 10.1016/j.jcyt.2020.08.005 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...