Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for Bmal2 in the liver
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24086613
PubMed Central
PMC3783415
DOI
10.1371/journal.pone.0075690
PII: PONE-D-13-20631
Knihovny.cz E-zdroje
- MeSH
- cirkadiánní hodiny genetika fyziologie MeSH
- cirkadiánní rytmus genetika fyziologie MeSH
- exprese genu genetika MeSH
- játra metabolismus fyziologie MeSH
- kolon metabolismus fyziologie MeSH
- krysa rodu Rattus MeSH
- pohybová aktivita genetika fyziologie MeSH
- potkani inbrední SHR MeSH
- potkani Wistar MeSH
- potraviny MeSH
- proteiny CLOCK genetika metabolismus MeSH
- stravovací zvyklosti fyziologie MeSH
- transkripční faktory ARNTL genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Arntl2 protein, rat MeSH Prohlížeč
- proteiny CLOCK MeSH
- transkripční faktory ARNTL MeSH
The mammalian timekeeping system generates circadian oscillations that rhythmically drive various functions in the body, including metabolic processes. In the liver, circadian clocks may respond both to actual feeding conditions and to the metabolic state. The temporal restriction of food availability to improper times of day (restricted feeding, RF) leads to the development of food anticipatory activity (FAA) and resets the hepatic clock accordingly. The aim of this study was to assess this response in a rat strain exhibiting complex pathophysiological symptoms involving spontaneous hypertension, an abnormal metabolic state and changes in the circadian system, i.e., in spontaneously hypertensive rats (SHR). The results revealed that SHR were more sensitive to RF compared with control rats, developing earlier and more pronounced FAA. Whereas in control rats, the RF only redistributed the activity profiles into two bouts (one corresponding to FAA and the other corresponding to the dark phase), in SHR the RF completely phase-advanced the locomotor activity according to the time of food presentation. The higher behavioral sensitivity to RF was correlated with larger phase advances of the hepatic clock in response to RF in SHR. Moreover, in contrast to the controls, RF did not suppress the amplitude of the hepatic clock oscillation in SHR. In the colon, no significant differences in response to RF between the two rat strains were detected. The results suggested the possible involvement of the Bmal2 gene in the higher sensitivity of the hepatic clock to RF in SHR because, in contrast to the Wistar rats, the rhythm of Bmal2 expression was advanced similarly to that of Bmal1 under RF. Altogether, the data demonstrate a higher behavioral and circadian responsiveness to RF in the rat strain with a cardiovascular and metabolic pathology and suggest a likely functional role for the Bmal2 gene within the circadian clock.
Zobrazit více v PubMed
Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975-978. doi:10.1126/science.2305266. PubMed: 2305266. PubMed DOI
Drucker-Colín R, Aguilar-Roblero R, García-Hernández F, Fernández-Cancino F, Rattoni Bermudez F (1984) Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats. Brain Res 311: 353-357. doi:10.1016/0006-8993(84)90099-4. PubMed: 6541955. PubMed DOI
Morin LP, Allen CN (2006) The circadian visual system, 2005. Brain. Res Rev 51: 1-60. doi:10.1016/j.brainresrev.2005.08.003. PubMed DOI
Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72: 517-549. doi:10.1146/annurev-physiol-021909-135821. PubMed: 20148687. PubMed DOI
Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9: 764-775. doi:10.1038/nrg2430. PubMed: 18802415. PubMed DOI PMC
Ikeda M, Yu W, Hirai M, Ebisawa T, Honma S et al. (2000) cDNA cloning of a novel bHLH-PAS transcription factor superfamily gene, BMAL2: its mRNA expression, subcellular distribution, and chromosomal localization. Biochem Biophys Res Commun 275: 493-502. doi:10.1006/bbrc.2000.3248. PubMed: 10964693. PubMed DOI
Shi S, Hida A, McGuinness OP, Wasserman DH, Yamazaki S et al. (2010) Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol 20: 316-321. doi:10.1016/j.cub.2010.02.018. PubMed: 20153195. PubMed DOI PMC
Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447: 477-481. doi:10.1038/nature05767. PubMed: 17476214. PubMed DOI
Ohno T, Onishi Y, Ishida N (2007) A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res 35: 648-655. PubMed: 17182630. PubMed PMC
Ueda HR, Hayashi S, Chen W, Sano M, Machida M et al. (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37: 187-192. doi:10.1038/ng1504. PubMed: 15665827. PubMed DOI
Masri S, Zocchi L, Katada S, Mora E, Sassone-Corsi P (2012) The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Ann N Y Acad Sci 1264: 103-109. doi:10.1111/j.1749-6632.2012.06649.x. PubMed: 22834651. PubMed DOI PMC
Bozek K, Relógio A, Kielbasa SM, Heine M, Dame C et al. (2009) Regulation of clock-controlled genes in mammals. PLOS ONE 4: e4882. doi:10.1371/journal.pone.0004882. PubMed: 19287494. PubMed DOI PMC
Challet E, Pévet P, Vivien-Roels B, Malan A (1997) Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime. J Biol Rhythms 12: 65-79. doi:10.1177/074873049701200108. PubMed: 9104691. PubMed DOI
Honma K, von Goetz C, Aschoff J (1983) Effects of restricted daily feeding on freerunning circadian rhythms in rats. Physiol Behav 30: 905-913. doi:10.1016/0031-9384(83)90256-1. PubMed: 6611695. PubMed DOI
Escobar C, Díaz-Muñoz M, Encinas F, Aguilar-Roblero R (1998) Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am J Physiol 274: R1309-R1316. PubMed: 9644044. PubMed
Stephan FK, Swann JM, Sisk CL (1979) Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav Neural Biol 25: 346-363. doi:10.1016/S0163-1047(79)90415-1. PubMed: 464979. PubMed DOI
Davidson AJ (2009) Lesion studies targeting food-anticipatory activity. Eur J Neurosci 30: 1658-1664. doi:10.1111/j.1460-9568.2009.06961.x. PubMed: 19863659. PubMed DOI
Storch KF, Weitz CJ (2009) Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci U S A 106: 6808-6813. doi:10.1073/pnas.0902063106. PubMed: 19366674. PubMed DOI PMC
Pendergast JS, Nakamura W, Friday RC, Hatanaka F, Takumi T et al. (2009) Robust food anticipatory activity in BMAL1-deficient mice. PLOS ONE 4: e4860. doi:10.1371/journal.pone.0004860. PubMed: 19300505. PubMed DOI PMC
Coleman GJ, Harper S, Clarke JD, Armstrong S (1982) Evidence for a separate meal-associated oscillator in the rat. Physiol Behav 29: 107-115. doi:10.1016/0031-9384(82)90373-0. PubMed: 7122716. PubMed DOI
Bolles RC, De Lorge J (1962) The rat’s adjustment to a-diurnal feeding cycles. J Comp Physiol Psychol 55: 760-762. doi:10.1037/h0046716. PubMed: 13968622. PubMed DOI
Stephan FK (1989) Forced dissociation of activity entrained to T cycles of food access in rats with suprachiasmatic lesions. J Biol Rhythms 4: 467-479. doi:10.1177/074873048900400406. PubMed: 2519607. PubMed DOI
Mistlberger RE, Marchant EG (1995) Computational and entrainment models of circadian food-anticipatory activity: evidence from non-24-hr feeding schedules. Behav Neurosci 109: 790-798. doi:10.1037/0735-7044.109.4.790. PubMed: 7576223. PubMed DOI
Takasu NN, Kurosawa G, Tokuda IT, Mochizuki A, Todo T et al. (2012) Circadian regulation of food-anticipatory activity in molecular clock-deficient mice. PLOS ONE 7: e48892. doi:10.1371/journal.pone.0048892. PubMed: 23145013. PubMed DOI PMC
Mistlberger RE (2009) Food-anticipatory circadian rhythms: concepts and methods. Eur J Neurosci 30: 1718-1729. doi:10.1111/j.1460-9568.2009.06965.x. PubMed: 19878279. PubMed DOI
Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F et al. (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14: 2950-2961. doi:10.1101/gad.183500. PubMed: 11114885. PubMed DOI PMC
Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291: 490-493. doi:10.1126/science.291.5503.490. PubMed: 11161204. PubMed DOI
Hara R, Wan K, Wakamatsu H, Aida R, Moriya T et al. (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6: 269-278. doi:10.1046/j.1365-2443.2001.00419.x. PubMed: 11260270. PubMed DOI
Sládek M, Rybová M, Jindráková Z, Zemanová Z, Polidarová L et al. (2007) Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 133: 1240-1249. doi:10.1053/j.gastro.2007.05.053. PubMed: 17675004. PubMed DOI
Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB et al. (2007) Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133: 1250-1260. doi:10.1053/j.gastro.2007.07.009. PubMed: 17919497. PubMed DOI
Sládek M, Polidarová L, Nováková M, Parkanová D, Sumová A (2012) Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLOS ONE 7: e46951. doi:10.1371/journal.pone.0046951. PubMed: 23056539. PubMed DOI PMC
Swislocki A, Tsuzuki A (1993) Insulin resistance and hypertension: glucose intolerance, hyperinsulinemia, and elevated free fatty acids in the lean spontaneously hypertensive rat. Am J Med Sci 306: 282-286. doi:10.1097/00000441-199311000-00002. PubMed: 8238081. PubMed DOI
Pravenec M, Kazdova L, Landa V, Zidek V, Mlejnek P et al. (2008) Identification of mutated Srebf1 as a QTL influencing risk for hepatic steatosis in the spontaneously hypertensive rat. Hypertension 51: 148-153. doi:10.1161/HYPERTENSIONAHA.107.100743. PubMed: 18071061. PubMed DOI
Woon PY, Kaisaki PJ, Bragança J, Bihoreau MT, Levy JC et al. (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci U S A 104: 14412-14417. doi:10.1073/pnas.0703247104. PubMed: 17728404. PubMed DOI PMC
Cui H, Kohsaka A, Waki H, Bhuiyan ME, Gouraud SS et al. (2011) Metabolic cycles are linked to the cardiovascular diurnal rhythm in rats with essential hypertension. PLOS ONE 6: e17339. doi:10.1371/journal.pone.0017339. PubMed: 21364960. PubMed DOI PMC
Dolinsky VW, Morton JS, Oka T, Robillard-Frayne I, Bagdan M et al. (2010) Calorie restriction prevents hypertension and cardiac hypertrophy in the spontaneously hypertensive rat. Hypertension 56: 412-421. doi:10.1161/HYPERTENSIONAHA.110.154732. PubMed: 20696994. PubMed DOI
Sládek M, Sumová A, Kováciková Z, Bendová Z, Laurinová K et al. (2004) Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci U S A 101: 6231-6236. doi:10.1073/pnas.0401149101. PubMed: 15069203. PubMed DOI PMC
Sládek M, Jindráková Z, Bendová Z, Sumová A (2007) Postnatal ontogenesis of the circadian clock within the rat liver. Am J Physiol Regul Integr Comp Physiol 292: R1224-R1229. PubMed: 17095653. PubMed
Nagai K, Nishio T, Nakagawa H, Nakamura S, Fukuda Y (1978) Effect of Bilateral Lesions of Suprachiasmatic Nuclei on Circadian-Rhythm of Food-Intake. Brain Res 142: 384-389. doi:10.1016/0006-8993(78)90648-0. PubMed: 630395. PubMed DOI
Carneiro BS, Araujo JF (2012) Food entrainment: major and recent findings. Front Behav Neuroscience 6. PubMed PMC
Silver R, Balsam P (2010) Oscillators entrained by food and the emergence of anticipatory timing behaviors. Sleep Biol Rhythms 8: 120-136. doi:10.1111/j.1479-8425.2010.00438.x. PubMed: 21544255. PubMed DOI PMC
Li ZF, Guo ZF, Cao J, Hu JQ, Zhao XX et al. (2010) Plasma ghrelin and obestatin levels are increased in spontaneously hypertensive rats. Peptides 31: 297-300. doi:10.1016/j.peptides.2009.11.018. PubMed: 19944125. PubMed DOI
Lee YH, Dai YW, Huang SC, Li TL, Hwang LL (2013) Blockade of Central Orexin 2 Receptors Reduces Arterial Pressure in Spontaneously Hypertensive Rats. Exp Physiol, 98: 1145–55. PubMed: 23525245. PubMed
Sasaki M, Yoshitane H, Du NH, Okano T, Fukada Y (2009) Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription. J Biol Chem 284: 25149-25159. doi:10.1074/jbc.M109.040758. PubMed: 19605937. PubMed DOI PMC
Dardente H, Fortier EE, Martineau V, Cermakian N (2007) Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression. Biochem J 402: 525-536. doi:10.1042/BJ20060827. PubMed: 17115977. PubMed DOI PMC
Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I et al. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288: 1013-1019. doi:10.1126/science.288.5468.1013. PubMed: 10807566. PubMed DOI
Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH (2013) Circadian disruption leads to insulin resistance and obesity. Curr Biol 23: 372-381. doi:10.1016/j.cub.2013.01.048. PubMed: 23434278. PubMed DOI PMC
Hung MS, Avner P, Rogner UC (2006) Identification of the transcription factor ARNTL2 as a candidate gene for the type 1 diabetes locus Idd6. Hum Mol Genet 15: 2732-2742. doi:10.1093/hmg/ddl209. PubMed: 16893914. PubMed DOI
Schoenhard JA, Eren M, Johnson CA, Vaughan DE (2002) Alternative splicing yields novel BMAL2 variants: tissue distribution and functional characterization. Am J Physiol Cell Physiol 283: C103-C114. doi:10.1152/ajpcell.00541.2001. PubMed: 12055078. PubMed DOI
Maemura K, de la Monte SM, Chin MT, Layne MD, Hsieh CM et al. (2000) CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem 275: 36847-36851. doi:10.1074/jbc.C000629200. PubMed: 11018023. PubMed DOI
Alessi MC, Juhan-Vague I (2006) PAI-1 and the metabolic syndrome: links, causes, and consequences. Arterioscler Thromb Vasc Biol 26: 2200-2207. doi:10.1161/01.ATV.0000242905.41404.68. PubMed: 16931789. PubMed DOI
Svoboda DS, Kawaja MD (2012) Changes in hepatic protein expression in spontaneously hypertensive rats suggest early stages of non-alcoholic fatty liver disease. J Proteomics 75: 1752-1763. doi:10.1016/j.jprot.2011.12.011. PubMed: 22240297. PubMed DOI
Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F et al. (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302: 255-259. doi:10.1126/science.1086271. PubMed: 12934012. PubMed DOI
Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38: 369-374. doi:10.1038/ng1738. PubMed: 16474407. PubMed DOI
Gachon F, Olela FF, Schaad O, Descombes P, Schibler U (2006) The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4: 25-36. doi:10.1016/j.cmet.2006.04.015. PubMed: 16814730. PubMed DOI
Murakami Y, Higashi Y, Matsunaga N, Koyanagi S, Ohdo S (2008) Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology 135: 1636-1644. doi:10.1053/j.gastro.2008.07.073. PubMed: 18773899. PubMed DOI
Tong X, Muchnik M, Chen Z, Patel M, Wu N et al. (2010) Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem 285: 36401-36409. doi:10.1074/jbc.M110.172866. PubMed: 20851878. PubMed DOI PMC
Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y et al. (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324: 651-654. doi:10.1126/science.1171641. PubMed: 19299583. PubMed DOI PMC
Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324: 654-657. doi:10.1126/science.1170803. PubMed: 19286518. PubMed DOI PMC
Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG et al. (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326: 437-440. doi:10.1126/science.1172156. PubMed: 19833968. PubMed DOI PMC
Gachon F, Leuenberger N, Claudel T, Gos P, Jouffe C et al. (2011) Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor alpha (PPARalpha) activity. Proc Natl Acad Sci U S A 108: 4794-4799. doi:10.1073/pnas.1002862108. PubMed: 21383142. PubMed DOI PMC
Kawai M, Green CB, Lecka-Czernik B, Douris N, Gilbert MR et al. (2010) A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-gamma nuclear translocation. Proc Natl Acad Sci U S A 107: 10508-10513. doi:10.1073/pnas.1000788107. PubMed: 20498072. PubMed DOI PMC
Kawai M, Rosen CJ (2010) PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat Rev Endocrinol 6: 629-636. doi:10.1038/nrendo.2010.155. PubMed: 20820194. PubMed DOI PMC
Alenghat T, Meyers K, Mullican SE, Leitner K, Adeniji-Adele A et al. (2008) Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456: 997-1000. doi:10.1038/nature07541. PubMed: 19037247. PubMed DOI PMC
Feng D, Liu T, Sun Z, Bugge A, Mullican SE et al. (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331: 1315-1319. doi:10.1126/science.1198125. PubMed: 21393543. PubMed DOI PMC
Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8: 705-713. doi:10.1038/nrc2468. PubMed: 19143055. PubMed DOI
Lee HM, Chen R, Kim H, Etchegaray JP, Weaver DR et al. (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci U S A 108: 16451-16456. doi:10.1073/pnas.1107178108. PubMed: 21930935. PubMed DOI PMC
Schmutz I, Wendt S, Schnell A, Kramer A, Mansuy IM et al. (2011) Protein phosphatase 1 (PP1) is a post-translational regulator of the mammalian circadian clock. PLOS ONE 6: e21325. doi:10.1371/journal.pone.0021325. PubMed: 21712997. PubMed DOI PMC
Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y et al. (2007) Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45: 1478-1488. doi:10.1002/hep.21571. PubMed: 17538967. PubMed DOI
Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20: 7128-7136. doi:10.1093/emboj/20.24.7128. PubMed: 11742989. PubMed DOI PMC
Imaki T, Naruse M, Harada S, Chikada N, Nakajima K et al. (1998) Stress-induced changes of gene expression in the paraventricular nucleus are enhanced in spontaneously hypertensive rats. J Neuroendocrinol 10: 635-643. PubMed: 9725716. PubMed
Djordjevic J, Vuckovic T, Jasnic N, Cvijic G (2007) Effect of various stressors on the blood ACTH and corticosterone concentration in normotensive Wistar and spontaneously hypertensive Wistar-Kyoto rats. Gen Comp Endocrinol 153: 217-220. doi:10.1016/j.ygcen.2007.02.004. PubMed: 17383653. PubMed DOI
Circadian alignment in a foster mother improves the offspring's pathological phenotype