Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for Bmal2 in the liver

. 2013 ; 8 (9) : e75690. [epub] 20130925

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24086613

The mammalian timekeeping system generates circadian oscillations that rhythmically drive various functions in the body, including metabolic processes. In the liver, circadian clocks may respond both to actual feeding conditions and to the metabolic state. The temporal restriction of food availability to improper times of day (restricted feeding, RF) leads to the development of food anticipatory activity (FAA) and resets the hepatic clock accordingly. The aim of this study was to assess this response in a rat strain exhibiting complex pathophysiological symptoms involving spontaneous hypertension, an abnormal metabolic state and changes in the circadian system, i.e., in spontaneously hypertensive rats (SHR). The results revealed that SHR were more sensitive to RF compared with control rats, developing earlier and more pronounced FAA. Whereas in control rats, the RF only redistributed the activity profiles into two bouts (one corresponding to FAA and the other corresponding to the dark phase), in SHR the RF completely phase-advanced the locomotor activity according to the time of food presentation. The higher behavioral sensitivity to RF was correlated with larger phase advances of the hepatic clock in response to RF in SHR. Moreover, in contrast to the controls, RF did not suppress the amplitude of the hepatic clock oscillation in SHR. In the colon, no significant differences in response to RF between the two rat strains were detected. The results suggested the possible involvement of the Bmal2 gene in the higher sensitivity of the hepatic clock to RF in SHR because, in contrast to the Wistar rats, the rhythm of Bmal2 expression was advanced similarly to that of Bmal1 under RF. Altogether, the data demonstrate a higher behavioral and circadian responsiveness to RF in the rat strain with a cardiovascular and metabolic pathology and suggest a likely functional role for the Bmal2 gene within the circadian clock.

Zobrazit více v PubMed

Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975-978. doi:10.1126/science.2305266. PubMed: 2305266. PubMed DOI

Drucker-Colín R, Aguilar-Roblero R, García-Hernández F, Fernández-Cancino F, Rattoni Bermudez F (1984) Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats. Brain Res 311: 353-357. doi:10.1016/0006-8993(84)90099-4. PubMed: 6541955. PubMed DOI

Morin LP, Allen CN (2006) The circadian visual system, 2005. Brain. Res Rev 51: 1-60. doi:10.1016/j.brainresrev.2005.08.003. PubMed DOI

Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72: 517-549. doi:10.1146/annurev-physiol-021909-135821. PubMed: 20148687. PubMed DOI

Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9: 764-775. doi:10.1038/nrg2430. PubMed: 18802415. PubMed DOI PMC

Ikeda M, Yu W, Hirai M, Ebisawa T, Honma S et al. (2000) cDNA cloning of a novel bHLH-PAS transcription factor superfamily gene, BMAL2: its mRNA expression, subcellular distribution, and chromosomal localization. Biochem Biophys Res Commun 275: 493-502. doi:10.1006/bbrc.2000.3248. PubMed: 10964693. PubMed DOI

Shi S, Hida A, McGuinness OP, Wasserman DH, Yamazaki S et al. (2010) Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol 20: 316-321. doi:10.1016/j.cub.2010.02.018. PubMed: 20153195. PubMed DOI PMC

Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447: 477-481. doi:10.1038/nature05767. PubMed: 17476214. PubMed DOI

Ohno T, Onishi Y, Ishida N (2007) A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res 35: 648-655. PubMed: 17182630. PubMed PMC

Ueda HR, Hayashi S, Chen W, Sano M, Machida M et al. (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37: 187-192. doi:10.1038/ng1504. PubMed: 15665827. PubMed DOI

Masri S, Zocchi L, Katada S, Mora E, Sassone-Corsi P (2012) The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Ann N Y Acad Sci 1264: 103-109. doi:10.1111/j.1749-6632.2012.06649.x. PubMed: 22834651. PubMed DOI PMC

Bozek K, Relógio A, Kielbasa SM, Heine M, Dame C et al. (2009) Regulation of clock-controlled genes in mammals. PLOS ONE 4: e4882. doi:10.1371/journal.pone.0004882. PubMed: 19287494. PubMed DOI PMC

Challet E, Pévet P, Vivien-Roels B, Malan A (1997) Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime. J Biol Rhythms 12: 65-79. doi:10.1177/074873049701200108. PubMed: 9104691. PubMed DOI

Honma K, von Goetz C, Aschoff J (1983) Effects of restricted daily feeding on freerunning circadian rhythms in rats. Physiol Behav 30: 905-913. doi:10.1016/0031-9384(83)90256-1. PubMed: 6611695. PubMed DOI

Escobar C, Díaz-Muñoz M, Encinas F, Aguilar-Roblero R (1998) Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am J Physiol 274: R1309-R1316. PubMed: 9644044. PubMed

Stephan FK, Swann JM, Sisk CL (1979) Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav Neural Biol 25: 346-363. doi:10.1016/S0163-1047(79)90415-1. PubMed: 464979. PubMed DOI

Davidson AJ (2009) Lesion studies targeting food-anticipatory activity. Eur J Neurosci 30: 1658-1664. doi:10.1111/j.1460-9568.2009.06961.x. PubMed: 19863659. PubMed DOI

Storch KF, Weitz CJ (2009) Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci U S A 106: 6808-6813. doi:10.1073/pnas.0902063106. PubMed: 19366674. PubMed DOI PMC

Pendergast JS, Nakamura W, Friday RC, Hatanaka F, Takumi T et al. (2009) Robust food anticipatory activity in BMAL1-deficient mice. PLOS ONE 4: e4860. doi:10.1371/journal.pone.0004860. PubMed: 19300505. PubMed DOI PMC

Coleman GJ, Harper S, Clarke JD, Armstrong S (1982) Evidence for a separate meal-associated oscillator in the rat. Physiol Behav 29: 107-115. doi:10.1016/0031-9384(82)90373-0. PubMed: 7122716. PubMed DOI

Bolles RC, De Lorge J (1962) The rat’s adjustment to a-diurnal feeding cycles. J Comp Physiol Psychol 55: 760-762. doi:10.1037/h0046716. PubMed: 13968622. PubMed DOI

Stephan FK (1989) Forced dissociation of activity entrained to T cycles of food access in rats with suprachiasmatic lesions. J Biol Rhythms 4: 467-479. doi:10.1177/074873048900400406. PubMed: 2519607. PubMed DOI

Mistlberger RE, Marchant EG (1995) Computational and entrainment models of circadian food-anticipatory activity: evidence from non-24-hr feeding schedules. Behav Neurosci 109: 790-798. doi:10.1037/0735-7044.109.4.790. PubMed: 7576223. PubMed DOI

Takasu NN, Kurosawa G, Tokuda IT, Mochizuki A, Todo T et al. (2012) Circadian regulation of food-anticipatory activity in molecular clock-deficient mice. PLOS ONE 7: e48892. doi:10.1371/journal.pone.0048892. PubMed: 23145013. PubMed DOI PMC

Mistlberger RE (2009) Food-anticipatory circadian rhythms: concepts and methods. Eur J Neurosci 30: 1718-1729. doi:10.1111/j.1460-9568.2009.06965.x. PubMed: 19878279. PubMed DOI

Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F et al. (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14: 2950-2961. doi:10.1101/gad.183500. PubMed: 11114885. PubMed DOI PMC

Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291: 490-493. doi:10.1126/science.291.5503.490. PubMed: 11161204. PubMed DOI

Hara R, Wan K, Wakamatsu H, Aida R, Moriya T et al. (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6: 269-278. doi:10.1046/j.1365-2443.2001.00419.x. PubMed: 11260270. PubMed DOI

Sládek M, Rybová M, Jindráková Z, Zemanová Z, Polidarová L et al. (2007) Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 133: 1240-1249. doi:10.1053/j.gastro.2007.05.053. PubMed: 17675004. PubMed DOI

Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB et al. (2007) Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133: 1250-1260. doi:10.1053/j.gastro.2007.07.009. PubMed: 17919497. PubMed DOI

Sládek M, Polidarová L, Nováková M, Parkanová D, Sumová A (2012) Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLOS ONE 7: e46951. doi:10.1371/journal.pone.0046951. PubMed: 23056539. PubMed DOI PMC

Swislocki A, Tsuzuki A (1993) Insulin resistance and hypertension: glucose intolerance, hyperinsulinemia, and elevated free fatty acids in the lean spontaneously hypertensive rat. Am J Med Sci 306: 282-286. doi:10.1097/00000441-199311000-00002. PubMed: 8238081. PubMed DOI

Pravenec M, Kazdova L, Landa V, Zidek V, Mlejnek P et al. (2008) Identification of mutated Srebf1 as a QTL influencing risk for hepatic steatosis in the spontaneously hypertensive rat. Hypertension 51: 148-153. doi:10.1161/HYPERTENSIONAHA.107.100743. PubMed: 18071061. PubMed DOI

Woon PY, Kaisaki PJ, Bragança J, Bihoreau MT, Levy JC et al. (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci U S A 104: 14412-14417. doi:10.1073/pnas.0703247104. PubMed: 17728404. PubMed DOI PMC

Cui H, Kohsaka A, Waki H, Bhuiyan ME, Gouraud SS et al. (2011) Metabolic cycles are linked to the cardiovascular diurnal rhythm in rats with essential hypertension. PLOS ONE 6: e17339. doi:10.1371/journal.pone.0017339. PubMed: 21364960. PubMed DOI PMC

Dolinsky VW, Morton JS, Oka T, Robillard-Frayne I, Bagdan M et al. (2010) Calorie restriction prevents hypertension and cardiac hypertrophy in the spontaneously hypertensive rat. Hypertension 56: 412-421. doi:10.1161/HYPERTENSIONAHA.110.154732. PubMed: 20696994. PubMed DOI

Sládek M, Sumová A, Kováciková Z, Bendová Z, Laurinová K et al. (2004) Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci U S A 101: 6231-6236. doi:10.1073/pnas.0401149101. PubMed: 15069203. PubMed DOI PMC

Sládek M, Jindráková Z, Bendová Z, Sumová A (2007) Postnatal ontogenesis of the circadian clock within the rat liver. Am J Physiol Regul Integr Comp Physiol 292: R1224-R1229. PubMed: 17095653. PubMed

Nagai K, Nishio T, Nakagawa H, Nakamura S, Fukuda Y (1978) Effect of Bilateral Lesions of Suprachiasmatic Nuclei on Circadian-Rhythm of Food-Intake. Brain Res 142: 384-389. doi:10.1016/0006-8993(78)90648-0. PubMed: 630395. PubMed DOI

Carneiro BS, Araujo JF (2012) Food entrainment: major and recent findings. Front Behav Neuroscience 6. PubMed PMC

Silver R, Balsam P (2010) Oscillators entrained by food and the emergence of anticipatory timing behaviors. Sleep Biol Rhythms 8: 120-136. doi:10.1111/j.1479-8425.2010.00438.x. PubMed: 21544255. PubMed DOI PMC

Li ZF, Guo ZF, Cao J, Hu JQ, Zhao XX et al. (2010) Plasma ghrelin and obestatin levels are increased in spontaneously hypertensive rats. Peptides 31: 297-300. doi:10.1016/j.peptides.2009.11.018. PubMed: 19944125. PubMed DOI

Lee YH, Dai YW, Huang SC, Li TL, Hwang LL (2013) Blockade of Central Orexin 2 Receptors Reduces Arterial Pressure in Spontaneously Hypertensive Rats. Exp Physiol, 98: 1145–55. PubMed: 23525245. PubMed

Sasaki M, Yoshitane H, Du NH, Okano T, Fukada Y (2009) Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription. J Biol Chem 284: 25149-25159. doi:10.1074/jbc.M109.040758. PubMed: 19605937. PubMed DOI PMC

Dardente H, Fortier EE, Martineau V, Cermakian N (2007) Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression. Biochem J 402: 525-536. doi:10.1042/BJ20060827. PubMed: 17115977. PubMed DOI PMC

Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I et al. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288: 1013-1019. doi:10.1126/science.288.5468.1013. PubMed: 10807566. PubMed DOI

Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH (2013) Circadian disruption leads to insulin resistance and obesity. Curr Biol 23: 372-381. doi:10.1016/j.cub.2013.01.048. PubMed: 23434278. PubMed DOI PMC

Hung MS, Avner P, Rogner UC (2006) Identification of the transcription factor ARNTL2 as a candidate gene for the type 1 diabetes locus Idd6. Hum Mol Genet 15: 2732-2742. doi:10.1093/hmg/ddl209. PubMed: 16893914. PubMed DOI

Schoenhard JA, Eren M, Johnson CA, Vaughan DE (2002) Alternative splicing yields novel BMAL2 variants: tissue distribution and functional characterization. Am J Physiol Cell Physiol 283: C103-C114. doi:10.1152/ajpcell.00541.2001. PubMed: 12055078. PubMed DOI

Maemura K, de la Monte SM, Chin MT, Layne MD, Hsieh CM et al. (2000) CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem 275: 36847-36851. doi:10.1074/jbc.C000629200. PubMed: 11018023. PubMed DOI

Alessi MC, Juhan-Vague I (2006) PAI-1 and the metabolic syndrome: links, causes, and consequences. Arterioscler Thromb Vasc Biol 26: 2200-2207. doi:10.1161/01.ATV.0000242905.41404.68. PubMed: 16931789. PubMed DOI

Svoboda DS, Kawaja MD (2012) Changes in hepatic protein expression in spontaneously hypertensive rats suggest early stages of non-alcoholic fatty liver disease. J Proteomics 75: 1752-1763. doi:10.1016/j.jprot.2011.12.011. PubMed: 22240297. PubMed DOI

Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F et al. (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302: 255-259. doi:10.1126/science.1086271. PubMed: 12934012. PubMed DOI

Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38: 369-374. doi:10.1038/ng1738. PubMed: 16474407. PubMed DOI

Gachon F, Olela FF, Schaad O, Descombes P, Schibler U (2006) The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4: 25-36. doi:10.1016/j.cmet.2006.04.015. PubMed: 16814730. PubMed DOI

Murakami Y, Higashi Y, Matsunaga N, Koyanagi S, Ohdo S (2008) Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology 135: 1636-1644. doi:10.1053/j.gastro.2008.07.073. PubMed: 18773899. PubMed DOI

Tong X, Muchnik M, Chen Z, Patel M, Wu N et al. (2010) Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem 285: 36401-36409. doi:10.1074/jbc.M110.172866. PubMed: 20851878. PubMed DOI PMC

Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y et al. (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324: 651-654. doi:10.1126/science.1171641. PubMed: 19299583. PubMed DOI PMC

Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324: 654-657. doi:10.1126/science.1170803. PubMed: 19286518. PubMed DOI PMC

Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG et al. (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326: 437-440. doi:10.1126/science.1172156. PubMed: 19833968. PubMed DOI PMC

Gachon F, Leuenberger N, Claudel T, Gos P, Jouffe C et al. (2011) Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor alpha (PPARalpha) activity. Proc Natl Acad Sci U S A 108: 4794-4799. doi:10.1073/pnas.1002862108. PubMed: 21383142. PubMed DOI PMC

Kawai M, Green CB, Lecka-Czernik B, Douris N, Gilbert MR et al. (2010) A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-gamma nuclear translocation. Proc Natl Acad Sci U S A 107: 10508-10513. doi:10.1073/pnas.1000788107. PubMed: 20498072. PubMed DOI PMC

Kawai M, Rosen CJ (2010) PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat Rev Endocrinol 6: 629-636. doi:10.1038/nrendo.2010.155. PubMed: 20820194. PubMed DOI PMC

Alenghat T, Meyers K, Mullican SE, Leitner K, Adeniji-Adele A et al. (2008) Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456: 997-1000. doi:10.1038/nature07541. PubMed: 19037247. PubMed DOI PMC

Feng D, Liu T, Sun Z, Bugge A, Mullican SE et al. (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331: 1315-1319. doi:10.1126/science.1198125. PubMed: 21393543. PubMed DOI PMC

Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8: 705-713. doi:10.1038/nrc2468. PubMed: 19143055. PubMed DOI

Lee HM, Chen R, Kim H, Etchegaray JP, Weaver DR et al. (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci U S A 108: 16451-16456. doi:10.1073/pnas.1107178108. PubMed: 21930935. PubMed DOI PMC

Schmutz I, Wendt S, Schnell A, Kramer A, Mansuy IM et al. (2011) Protein phosphatase 1 (PP1) is a post-translational regulator of the mammalian circadian clock. PLOS ONE 6: e21325. doi:10.1371/journal.pone.0021325. PubMed: 21712997. PubMed DOI PMC

Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y et al. (2007) Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45: 1478-1488. doi:10.1002/hep.21571. PubMed: 17538967. PubMed DOI

Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20: 7128-7136. doi:10.1093/emboj/20.24.7128. PubMed: 11742989. PubMed DOI PMC

Imaki T, Naruse M, Harada S, Chikada N, Nakajima K et al. (1998) Stress-induced changes of gene expression in the paraventricular nucleus are enhanced in spontaneously hypertensive rats. J Neuroendocrinol 10: 635-643. PubMed: 9725716. PubMed

Djordjevic J, Vuckovic T, Jasnic N, Cvijic G (2007) Effect of various stressors on the blood ACTH and corticosterone concentration in normotensive Wistar and spontaneously hypertensive Wistar-Kyoto rats. Gen Comp Endocrinol 153: 217-220. doi:10.1016/j.ygcen.2007.02.004. PubMed: 17383653. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chronodisruption that dampens output of the central clock abolishes rhythms in metabolome profiles and elevates acylcarnitine levels in the liver of female rats

. 2025 Feb ; 241 (2) : e14278.

Circadian Disruption as a Risk Factor for Development of Cardiovascular and Metabolic Disorders - From Animal Models to Human Population

. 2024 Apr 18 ; 73 (Suppl 1) : S321-S334. [epub] 20240418

Misaligned feeding schedule elicits divergent circadian reorganizations in endo- and exocrine pancreas clocks

. 2022 May 27 ; 79 (6) : 318. [epub] 20220527

Nicotinic Acetylcholine Receptors Expressed by Striatal Interneurons Inhibit Striatal Activity and Control Striatal-Dependent Behaviors

. 2022 Mar 30 ; 42 (13) : 2786-2803. [epub] 20220214

Circadian alignment in a foster mother improves the offspring's pathological phenotype

. 2018 Dec ; 596 (23) : 5757-5775. [epub] 20180510

The McGill Transgenic Rat Model of Alzheimer's Disease Displays Cognitive and Motor Impairments, Changes in Anxiety and Social Behavior, and Altered Circadian Activity

. 2018 ; 10 () : 250. [epub] 20180828

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace