Circadian Disruption as a Risk Factor for Development of Cardiovascular and Metabolic Disorders - From Animal Models to Human Population
Language English Country Czech Republic Media print-electronic
Document type Journal Article, Review
PubMed
38634651
PubMed Central
PMC11412342
DOI
10.33549/physiolres.935304
PII: 935304
Knihovny.cz E-resources
- MeSH
- Chronobiology Disorders physiopathology metabolism complications MeSH
- Circadian Clocks physiology MeSH
- Circadian Rhythm * physiology MeSH
- Cardiovascular Diseases * metabolism etiology epidemiology physiopathology MeSH
- Humans MeSH
- Metabolic Diseases * metabolism epidemiology physiopathology etiology MeSH
- Disease Models, Animal MeSH
- Risk Factors MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The lifestyle of human society is drifting apart from the natural environmental cycles that have influenced it since its inception. These cycles were fundamental in structuring the daily lives of people in the pre-industrial era, whether they were seasonal or daily. Factors that disrupt the regularity of human behaviour and its alignment with solar cycles, such as late night activities accompanied with food intake, greatly disturb the internal temporal organization in the body. This is believed to contribute to the rise of the so-called diseases of civilization. In this review, we discuss the connection between misalignment in daily (circadian) regulation and its impact on health, with a focus on cardiovascular and metabolic disorders. Our aim is to review selected relevant research findings from laboratory and human studies to assess the extent of evidence for causality between circadian clock disruption and pathology. Keywords: Circadian clock, Chronodisruption, Metabolism, Cardiovascular disorders, Spontaneously hypertensive rat, Human, Social jetlag, Chronotype.
See more in PubMed
Pittendrigh CS. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol. 1960;25:159–184. doi: 10.1101/SQB.1960.025.01.015. PubMed DOI
Aschoff J, Fatransk M, Giedke H, Doerr P, Stamm D, Wisser H. Human circadian rhythms in continuous darkness - entrainment by social cues. Science. 1971;171:213–215. doi: 10.1126/science.171.3967.213. PubMed DOI
Pittendrigh CS. Circadian systems: Entrainment. In: Aschoff J, editor. Handbook of Behavioural Neurobiology, vol 4, Biological Rhythms. New York: Plenum; 1981. pp. 95–124. DOI
Ruby NF, Dark J, Heller HC, Zucker I. Ablation of suprachiasmatic nucleus alters timing of hibernation in ground squirrels. Proc Natl Acad Sci U S A. 1996;93:9864–9868. doi: 10.1073/pnas.93.18.9864. PubMed DOI PMC
Menaker M, Vogelbaum MA. Mutant circadian period as a marker of suprachiasmatic nucleus function. J Biol Rhythms. 1993;8(Suppl):S93–98. PubMed
Reierth E, Stokkan KA. Biological rhythms in arctic animals. In: Kumar V, editor. Biological Rhythms. Berlin, Heidelberg: Springer Berlin Heidelberg; 2002. pp. 216–223. DOI
Beale A, Guibal C, Tamai TK, Klotz L, Cowen S, Peyric E, Reynoso VH, et al. Circadian rhythms in Mexican blind cavefish Astyanax mexicanus in the lab and in the field. Nat Commun. 2013;4:2769. doi: 10.1038/ncomms3769. PubMed DOI
Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 2006;20:1868–1873. doi: 10.1101/gad.1432206. PubMed DOI PMC
DeCoursey PJ, Krulas JR, Mele G, Holley DC. Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol Behav. 1997;62:1099–1108. doi: 10.1016/S0031-9384(97)00263-1. PubMed DOI
Spoelstra K, Wikelski M, Daan S, Loudon AS, Hau M. Natural selection against a circadian clock gene mutation in mice. Proc Natl Acad Sci U S A. 2016;113:686–691. doi: 10.1073/pnas.1516442113. PubMed DOI PMC
Park N, Cheon S, Son GH, Cho S, Kim K. Chronic circadian disturbance by a shortened light-dark cycle increases mortality. Neurobiol Aging. 2012;33:1122 e1111–1122. doi: 10.1016/j.neurobiolaging.2011.11.005. PubMed DOI
Klein DC, Moore RY, Reppert SM. Suprachiasmatic nucleus : the mind's clock. Oxford University Press; New York: 1991.
Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018;19:453–469. doi: 10.1038/s41583-018-0026-z. PubMed DOI
Menaker M, Murphy ZC, Sellix MT. Central control of peripheral circadian oscillators. Curr Opin Neurobiol. 2013;23:741–746. doi: 10.1016/j.conb.2013.03.003. PubMed DOI
Mohawk JA, Takahashi JS. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 2011;34:349–358. doi: 10.1016/j.tins.2011.05.003. PubMed DOI PMC
Panda S. Circadian physiology of metabolism. Science. 2016;354:1008–1015. doi: 10.1126/science.aah4967. PubMed DOI PMC
Begemann K, Neumann AM, Oster H. Regulation and function of extra-SCN circadian oscillators in the brain. Acta Physiol (Oxf) 2020:e13446. doi: 10.1111/apha.13446. PubMed DOI
Jha PK, Bouaouda H, Kalsbeek A, Challet E. Distinct feedback actions of behavioural arousal to the master circadian clock in nocturnal and diurnal mammals. Neurosci Biobehav Rev. 2021;123:48–60. doi: 10.1016/j.neubiorev.2020.12.011. PubMed DOI
Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–549. doi: 10.1146/annurev-physiol-021909-135821. PubMed DOI
Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000;288:682–685. doi: 10.1126/science.288.5466.682. PubMed DOI
Polidarova L, Sladek M, Sotak M, Pacha J, Sumova A. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol Int. 2011;28:204–215. doi: 10.3109/07420528.2010.548615. PubMed DOI
Dickmeis T. Glucocorticoids and the circadian clock. J Endocrinol. 2009;200:3–22. doi: 10.1677/JOE-08-0415. PubMed DOI
Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–206. doi: 10.1016/0006-8993(72)90054-6. PubMed DOI
Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, Tsujimoto G, et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2005;2:297–307. doi: 10.1016/j.cmet.2005.09.009. PubMed DOI
Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14:2950–2961. doi: 10.1101/gad.183500. PubMed DOI PMC
Liska K, Sladek M, Cecmanova V, Sumova A. Glucocorticoids reset circadian clock in choroid plexus via period genes. J Endocrinol. 2021;248:155–166. doi: 10.1530/JOE-20-0526. PubMed DOI
Liska K, Sladek M, Houdek P, Shrestha N, Luzna V, Ralph MR, Sumova A. High sensitivity of circadian clock in the hippocampal dentate gyrus to glucocorticoid- and GSK3beta-dependent signals. Neuroendocrinology. 2021;112:384–398. doi: 10.1159/000517689. PubMed DOI
So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci U S A. 2009;106:17582–17587. doi: 10.1073/pnas.0909733106. PubMed DOI PMC
Sotak M, Bryndova J, Ergang P, Vagnerova K, Kvapilova P, Vodicka M, Pacha J, et al. Peripheral circadian clocks are diversely affected by adrenalectomy. Chronobiol Int. 2016;33:520–529. doi: 10.3109/07420528.2016.1161643. PubMed DOI
Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells. 2001;6:269–278. doi: 10.1046/j.1365-2443.2001.00419.x. PubMed DOI
Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A. 2009;106:21453–21458. doi: 10.1073/pnas.0909591106. PubMed DOI PMC
Sladek M, Sumova A. Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles. PLoS One. 2013;8:e77010. doi: 10.1371/journal.pone.0077010. PubMed DOI PMC
Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010;330:379–385. doi: 10.1126/science.1195262. PubMed DOI PMC
Riganello F, Prada V, Soddu A, di Perri C, Sannita WG. Circadian Rhythms and Measures of CNS/Autonomic Interaction. Int J Environ Res Public Health. 2019;16:2336. doi: 10.3390/ijerph16132336. PubMed DOI PMC
Cox KH, Takahashi JS. Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol. 2019;63:R93–R102. doi: 10.1530/JME-19-0153. PubMed DOI PMC
Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21:67–84. doi: 10.1038/s41580-019-0179-2. PubMed DOI
Reppert SM, Weaver DR. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol. 2001;63:647–676. doi: 10.1146/annurev.physiol.63.1.647. PubMed DOI
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18:164–179. doi: 10.1038/nrg.2016.150. PubMed DOI PMC
Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol. 2019;20:227–241. doi: 10.1038/s41580-018-0096-9. PubMed DOI
Ramos CA, Ouyang C, Qi Y, Chung Y, Cheng CT, LaBarge MA, Seewaldt VL, et al. A Non-canonical Function of BMAL1 Metabolically Limits Obesity-Promoted Triple-Negative Breast Cancer. iScience. 2020;23:100839. doi: 10.1016/j.isci.2020.100839. PubMed DOI PMC
McKee CA, Polino AJ, King MW, Musiek ES. Circadian clock protein BMAL1 broadly influences autophagy and endolysosomal function in astrocytes. Proc Natl Acad Sci U S A. 2023;120:e2220551120. doi: 10.1073/pnas.2220551120. PubMed DOI PMC
Griffin P, Dimitry JM, Sheehan PW, Lananna BV, Guo C, Robinette ML, Hayes ME, et al. Circadian clock protein Rev-erbalpha regulates neuroinflammation. Proc Natl Acad Sci U S A. 2019;116:5102–5107. doi: 10.1073/pnas.1812405116. PubMed DOI PMC
Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012;485:459–464. doi: 10.1038/nature11088. PubMed DOI PMC
O'Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature. 2011;469:498–503. doi: 10.1038/nature09702. PubMed DOI PMC
Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995;14:697–706. doi: 10.1016/0896-6273(95)90214-7. PubMed DOI
Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science. 2003;302:1408–1412. doi: 10.1126/science.1089287. PubMed DOI
Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci. 2005;8:476–483. doi: 10.1038/nn1419. PubMed DOI PMC
Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, et al. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell. 2002;109:497–508. doi: 10.1016/S0092-8674(02)00736-5. PubMed DOI
Patton AP, Edwards MD, Smyllie NJ, Hamnett R, Chesham JE, Brancaccio M, Maywood ES, et al. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit. Nat Commun. 2020;11:3394. doi: 10.1038/s41467-020-17110-x. PubMed DOI PMC
Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, Hastings MH. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science. 2019;363:187–192. doi: 10.1126/science.aat4104. PubMed DOI PMC
Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling. Neuron. 2017;93:1420–1435 e1425. doi: 10.1016/j.neuron.2017.02.030. PubMed DOI PMC
Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. Astrocytes Regulate Daily Rhythms in the Suprachiasmatic Nucleus and Behavior. Curr Biol. 2017;27:1055–1061. doi: 10.1016/j.cub.2017.02.037. PubMed DOI PMC
Tu HQ, Li S, Xu YL, Zhang YC, Li PY, Liang LY, Song GP, et al. Rhythmic cilia changes support SCN neuron coherence in circadian clock. Science. 2023;380:972–979. doi: 10.1126/science.abm1962. PubMed DOI
Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101:5339–5346. doi: 10.1073/pnas.0308709101. PubMed DOI PMC
Sinturel F, Gos P, Petrenko V, Hagedorn C, Kreppel F, Storch KF, Knutti D, et al. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev. 2021;35:329–334. doi: 10.1101/gad.346460.120. PubMed DOI PMC
Golombek DA, Casiraghi LP, Agostino PV, Paladino N, Duhart JM, Plano SA, Chiesa JJ. The times they're a-changing: effects of circadian desynchronization on physiology and disease. J Physiol Paris. 2013;107:310–322. doi: 10.1016/j.jphysparis.2013.03.007. PubMed DOI
West AC, Smith L, Ray DW, Loudon ASI, Brown TM, Bechtold DA. Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nat Commun. 2017;8:417. doi: 10.1038/s41467-017-00462-2. PubMed DOI PMC
Evans JA, Davidson AJ. Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci. 2013;119:283–323. doi: 10.1016/B978-0-12-396971-2.00010-5. PubMed DOI
Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019;20:49–65. doi: 10.1038/s41583-018-0088-y. PubMed DOI PMC
Roenneberg T, Wirz-Justice A, Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms. 2003;18:80–90. doi: 10.1177/0748730402239679. PubMed DOI
Horne JA, Ostberg O. Individual differences in human circadian rhythms. Biol Psychol. 1977;5:179–190. doi: 10.1016/0301-0511(77)90001-1. PubMed DOI
Roenneberg T, Pilz LK, Zerbini G, Winnebeck EC. Chronotype and Social Jetlag: A (Self-) Critical Review. Biology (Basel) 2019;8:54. doi: 10.3390/biology8030054. PubMed DOI PMC
Sladek M, Kudrnacova Roschova M, Adamkova V, Hamplova D, Sumova A. Chronotype assessment via a large scale socio-demographic survey favours yearlong Standard time over Daylight Saving Time in central Europe. Sci Rep. 2020;10:1419. doi: 10.1038/s41598-020-58413-9. PubMed DOI PMC
Wright KP, Jr, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED. Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol. 2013;23:1554–1558. doi: 10.1016/j.cub.2013.06.039. PubMed DOI PMC
Sack RL. Clinical practice. Jet lag. N Engl J Med. 2010;362:440–447. doi: 10.1056/NEJMcp0909838. PubMed DOI
Waterhouse J, Reilly T, Atkinson G, Edwards BJ. et lag: trends and coping strategies. Lancet. 2007;369:1117–1129. doi: 10.1016/S0140-6736(07)60529-7. PubMed DOI
Cisse YM, Peng J, Nelson RJ. Dim light at night prior to adolescence increases adult anxiety-like behaviors. Chronobiol Int. 2016;33:1473–1480. doi: 10.1080/07420528.2016.1221418. PubMed DOI PMC
Tsang AH, Astiz M, Leinweber B, Oster H. Rodent Models for the Analysis of Tissue Clock Function in Metabolic Rhythms Research. Front Endocrinol (Lausanne) 2017;8:27. doi: 10.3389/fendo.2017.00027. PubMed DOI PMC
Fishbein AB, Knutson KL, Zee PC. Circadian disruption and human health. J Clin Invest. 2021;131:e148286. doi: 10.1172/JCI148286. PubMed DOI PMC
Penev PD, Kolker DE, Zee PC, Turek FW. Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol. 1998;275:H2334–2337. doi: 10.1152/ajpheart.1998.275.6.H2334. PubMed DOI
Casiraghi LP, Oda GA, Chiesa JJ, Friesen WO, Golombek DA. Forced desynchronization of activity rhythms in a model of chronic jet lag in mice. J Biol Rhythms. 2012;27:59–69. doi: 10.1177/0748730411429447. PubMed DOI
Archer SN, Laing EE, Moller-Levet CS, van der Veen DR, Bucca G, Lazar AS, Santhi N, et al. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A. 2014;111:E682–691. doi: 10.1073/pnas.1316335111. PubMed DOI PMC
Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009;106:4453–4458. doi: 10.1073/pnas.0808180106. PubMed DOI PMC
Honzlova P, Novosadova Z, Houdek P, Sladek M, Sumova A. Misaligned feeding schedule elicits divergent circadian reorganizations in endo- and exocrine pancreas clocks. Cell Mol Life Sci. 2022;79:318. doi: 10.1007/s00018-022-04354-7. PubMed DOI PMC
Lu W, Meng QJ, Tyler NJ, Stokkan KA, Loudon AS. A circadian clock is not required in an arctic mammal. Curr Biol. 2010;20:533–537. doi: 10.1016/j.cub.2010.01.042. PubMed DOI
Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247:975–978. doi: 10.1126/science.2305266. PubMed DOI
Hurd MW, Ralph MR. The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms. 1998;13:430–436. doi: 10.1177/074873098129000255. PubMed DOI
Martino TA, Oudit GY, Herzenberg AM, Tata N, Koletar MM, Kabir GM, Belsham DD, et al. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol. 2008;294: R1675–1683. doi: 10.1152/ajpregu.00829.2007. PubMed DOI
Turek FW. Staying off the dance floor: when no rhythm is better than bad rhythm. Am J Physiol Regul Integr Comp Physiol. 2008;294: R1672–1674. doi: 10.1152/ajpregu.00160.2008. PubMed DOI
Sladek M, Polidarova L, Novakova M, Parkanova D, Sumova A. Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLoS One. 2012;7:e46951. doi: 10.1371/journal.pone.0046951. PubMed DOI PMC
Polidarova L, Sladek M, Novakova M, Parkanova D, Sumova A. Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for Bmal2 in the liver. PLoS One. 2013;8:e75690. doi: 10.1371/journal.pone.0075690. PubMed DOI PMC
Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–293. doi: 10.1253/jcj.27.282. PubMed DOI
Sagvolden T, Johansen EB, Woien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby O, et al. The spontaneously hypertensive rat model of ADHD--the importance of selecting the appropriate reference strain. Neuropharmacology. 2009;57:619–626. doi: 10.1016/j.neuropharm.2009.08.004. PubMed DOI PMC
Pravenec M, Zidek V, Landa V, Simakova M, Mlejnek P, Kazdova L, Bila V, et al. Genetic analysis of "metabolic syndrome" in the spontaneously hypertensive rat. Physiol Res. 2004;53(Suppl 1):S15–22. doi: 10.33549/physiolres.930000.53.S15. PubMed DOI
Lemmer B, Mattes A, Bohm M, Ganten D. Circadian blood pressure variation in transgenic hypertensive rats. Hypertension. 1993;22:97–101. doi: 10.1161/01.HYP.22.1.97. PubMed DOI
Carley DW, Trbovic S, Radulovacki M. Sleep apnea in normal and REM sleep-deprived normotensive Wistar-Kyoto and spontaneously hypertensive (SHR) rats. Physiol Behav. 1996;59:827–831. doi: 10.1016/0031-9384(95)02205-8. PubMed DOI
Peters RV, Zoeller RT, Hennessey AC, Stopa EG, Anderson G, Albers HE. The control of circadian rhythms and the levels of vasoactive intestinal peptide mRNA in the suprachiasmatic nucleus are altered in spontaneously hypertensive rats. Brain Res. 1994;639:217–227. doi: 10.1016/0006-8993(94)91733-7. PubMed DOI
Yilmaz A, Li P, Kalsbeek A, Buijs RM, Hu K. Differential fractal and circadian patterns in motor activity in spontaneously hypertensive rats at the stage of prehypertension. Adv Biol (Weinh) 2023;7:e2200324. doi: 10.1002/adbi.202200324. PubMed DOI
Naito Y, Tsujino T, Kawasaki D, Okumura T, Morimoto S, Masai M, Sakoda T, et al. Circadian gene expression of clock genes and plasminogen activator inhibitor-1 in heart and aorta of spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens. 2003;21:1107–1115. doi: 10.1097/00004872-200306000-00010. PubMed DOI
Woon PY, Kaisaki PJ, Braganca J, Bihoreau MT, Levy JC, Farrall M, Gauguier D. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci U S A. 2007;104:14412–14417. doi: 10.1073/pnas.0703247104. PubMed DOI PMC
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev. 2020;41:707–732. doi: 10.1210/endrev/bnaa014. PubMed DOI PMC
Cui H, Kohsaka A, Waki H, Bhuiyan ME, Gouraud SS, Maeda M. Metabolic cycles are linked to the cardiovascular diurnal rhythm in rats with essential hypertension. PLoS One. 2011;6:e17339. doi: 10.1371/journal.pone.0017339. PubMed DOI PMC
Dolinsky VW, Morton JS, Oka T, Robillard-Frayne I, Bagdan M, Lopaschuk GD, Des Rosiers C, et al. Calorie restriction prevents hypertension and cardiac hypertrophy in the spontaneously hypertensive rat. Hypertension. 2010;56:412–421. doi: 10.1161/HYPERTENSIONAHA.110.154732. PubMed DOI
Olejnikova L, Polidarova L, Behuliak M, Sladek M, Sumova A. Circadian alignment in a foster mother improves the offspring's pathological phenotype. J Physiol. 2018;596:5757–5775. doi: 10.1113/JP275585. PubMed DOI PMC
Phillips ML. Circadian rhythms: Of owls, larks and alarm clocks. Nature. 2009;458:142–144. doi: 10.1038/458142a. PubMed DOI
Ekstrand K, Bostrom PA, Arborelius M, Nilsson JA, Lindell SE. Cardiovascular risk factors in commercial flight aircrew officers compared with those in the general population. Angiology. 1996;47:1089–1094. doi: 10.1177/000331979604701109. PubMed DOI
Peters RW, McQuillan S, Gold MR. Interaction of septadian and circadian rhythms in life-threatening ventricular arrhythmias in patients with implantable cardioverter-defibrillators. Am J Cardiol. 1999;84:555–557. doi: 10.1016/S0002-9149(99)00376-8. PubMed DOI
Al-Naimi S, Hampton SM, Richard P, Tzung C, Morgan LM. Postprandial metabolic profiles following meals and snacks eaten during simulated night and day shift work. Chronobiol Int. 2004;21:937–947. doi: 10.1081/CBI-200037171. PubMed DOI
Karlsson BH, Knutsson AK, Lindahl BO, Alfredsson LS. Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int Arch Occup Environ Health. 2003;76:424–430. doi: 10.1007/s00420-003-0440-y. PubMed DOI
Liu L, Labani N, Cecon E, Jockers R. Melatonin Target Proteins: Too Many or Not Enough? Front Endocrinol (Lausanne) 2019;10:791. doi: 10.3389/fendo.2019.00791. PubMed DOI PMC
Polidarova L, Houdek P, Sumova A. Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon. Chronobiol Int. 2017;34:1273–1287. doi: 10.1080/07420528.2017.1361436. PubMed DOI
Schoonderwoerd RA, de Rover M, Janse JAM, Hirschler L, Willemse CR, Scholten L, Klop I, et al. The photobiology of the human circadian clock. Proc Natl Acad Sci U S A. 2022;119:e2118803119. doi: 10.1073/pnas.2118803119. PubMed DOI PMC
Morris CJ, Purvis TE, Hu K, Scheer FA. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A. 2016;113: E1402–1411. doi: 10.1073/pnas.1516953113. PubMed DOI PMC
Arora T, Taheri S. Associations among late chronotype, body mass index and dietary behaviors in young adolescents. Int J Obes (Lond) 2015;39:39–44. doi: 10.1038/ijo.2014.157. PubMed DOI
Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol Int. 2014;31:64–71. doi: 10.3109/07420528.2013.821614. PubMed DOI
Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL, Van Cauter E. Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes Care. 2013;36:2523–2529. doi: 10.2337/dc12-2697. PubMed DOI PMC
Sladek M, Klusacek J, Hamplova D, Sumova A. Population-representative study reveals cardiovascular and metabolic disease biomarkers associated with misaligned sleep schedules. Sleep. 2023;46:zsad037. doi: 10.1093/sleep/zsad037. PubMed DOI PMC
Koopman ADM, Rauh SP, van 't Riet E, Groeneveld L, van der Heijden AA, Elders PJ, Dekker JM, et al. The Association between Social Jetlag, the Metabolic Syndrome, and Type 2 Diabetes Mellitus in the General Population: The New Hoorn Study. J Biol Rhythms. 2017;32:359–368. doi: 10.1177/0748730417713572. PubMed DOI PMC
Wong PM, Hasler BP, Kamarck TW, Muldoon MF, Manuck SB. Social Jetlag, Chronotype, and Cardiometabolic Risk. J Clin Endocrinol Metab. 2015;100:4612–4620. doi: 10.1210/jc.2015-2923. PubMed DOI PMC
Islam Z, Akter S, Kochi T, Hu H, Eguchi M, Yamaguchi M, Kuwahara K, et al. Association of social jetlag with metabolic syndrome among Japanese working population: the Furukawa Nutrition and Health Study. Sleep Med. 2018;51:53–58. doi: 10.1016/j.sleep.2018.07.003. PubMed DOI
Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int. 2006;23:497–509. doi: 10.1080/07420520500545979. PubMed DOI