Transferring the entatic-state principle to copper photochemistry

. 2018 Mar ; 10 (3) : 355-362. [epub] 20180115

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29461525

The entatic state denotes a distorted coordination geometry of a complex from its typical arrangement that generates an improvement to its function. The entatic-state principle has been observed to apply to copper electron-transfer proteins and it results in a lowering of the reorganization energy of the electron-transfer process. It is thus crucial for a multitude of biochemical processes, but its importance to photoactive complexes is unexplored. Here we study a copper complex-with a specifically designed constraining ligand geometry-that exhibits metal-to-ligand charge-transfer state lifetimes that are very short. The guanidine-quinoline ligand used here acts on the bis(chelated) copper(I) centre, allowing only small structural changes after photoexcitation that result in very fast structural dynamics. The data were collected using a multimethod approach that featured time-resolved ultraviolet-visible, infrared and X-ray absorption and optical emission spectroscopy. Through supporting density functional calculations, we deliver a detailed picture of the structural dynamics in the picosecond-to-nanosecond time range.

Zobrazit více v PubMed

J Am Chem Soc. 2015 Jan 28;137(3):1141-6 PubMed

Eur J Biochem. 1994 Aug 1;223(3):711-8 PubMed

Chem Rev. 2014 Apr 9;114(7):3659-853 PubMed

Proc Natl Acad Sci U S A. 1968 Feb;59(2):498-505 PubMed

Science. 2017 Jun 23;356(6344):1276-1280 PubMed

Dalton Trans. 2016 Jun 14;45(24):9871-83 PubMed

Phys Chem Chem Phys. 2016 Mar 21;18(11):7641-50 PubMed

Eur J Biochem. 1995 Dec 1;234(2):363-81 PubMed

Annu Rev Phys Chem. 2010;61:263-82 PubMed

Inorg Chem. 2003 Oct 6;42(20):6366-78 PubMed

Angew Chem Int Ed Engl. 2004 May 24;43(22):2886-905 PubMed

Angew Chem Int Ed Engl. 2014 Jan 3;53(1):299-304 PubMed

J Comput Chem. 2014 Jan 5;35(1):1-17 PubMed

J Am Chem Soc. 2007 Apr 25;129(16):5217-27 PubMed

Chem Rev. 2004 Feb;104(2):651-97 PubMed

Acc Chem Res. 2015 Mar 17;48(3):782-91 PubMed

Rev Sci Instrum. 2016 May;87(5):053116 PubMed

Annu Rev Phys Chem. 2005;56:221-54 PubMed

J Am Chem Soc. 2006 Apr 19;128(15):5001-9 PubMed

Metallomics. 2011 Feb;3(2):140-51 PubMed

J Phys Chem B. 2013 Feb 14;117(6):1921-31 PubMed

J Am Chem Soc. 2008 Jul 16;130(28):8967-74 PubMed

Nat Chem. 2009 Dec;1(9):711-5 PubMed

J Phys Chem B. 2010 Nov 18;114(45):14521-7 PubMed

J Am Chem Soc. 2003 Jun 11;125(23):7022-34 PubMed

J Biol Inorg Chem. 2000 Oct;5(5):551-9 PubMed

Angew Chem Int Ed Engl. 2016 Sep 5;55(37):11129-33 PubMed

Nat Chem. 2015 Dec;7(12):961-7 PubMed

Angew Chem Int Ed Engl. 2016 Feb 24;55(9):3101-5 PubMed

Biochemistry. 1989 Sep 19;28(19):7499-505 PubMed

Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4369-74 PubMed

Phys Chem Chem Phys. 2015 Jan 21;17(3):2067-77 PubMed

Biochim Biophys Acta. 2015 Jan;1847(1):79-85 PubMed

Sci Adv. 2016 Jan 01;2(1):e1500889 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...