Transferring the entatic-state principle to copper photochemistry
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29461525
DOI
10.1038/nchem.2916
PII: nchem.2916
Knihovny.cz E-zdroje
- MeSH
- fotochemické procesy * MeSH
- komplexní sloučeniny chemie MeSH
- měď chemie MeSH
- molekulární struktura MeSH
- teorie funkcionálu hustoty MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- komplexní sloučeniny MeSH
- měď MeSH
The entatic state denotes a distorted coordination geometry of a complex from its typical arrangement that generates an improvement to its function. The entatic-state principle has been observed to apply to copper electron-transfer proteins and it results in a lowering of the reorganization energy of the electron-transfer process. It is thus crucial for a multitude of biochemical processes, but its importance to photoactive complexes is unexplored. Here we study a copper complex-with a specifically designed constraining ligand geometry-that exhibits metal-to-ligand charge-transfer state lifetimes that are very short. The guanidine-quinoline ligand used here acts on the bis(chelated) copper(I) centre, allowing only small structural changes after photoexcitation that result in very fast structural dynamics. The data were collected using a multimethod approach that featured time-resolved ultraviolet-visible, infrared and X-ray absorption and optical emission spectroscopy. Through supporting density functional calculations, we deliver a detailed picture of the structural dynamics in the picosecond-to-nanosecond time range.
Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
Condensed Matter Physics Department of Physics Chalmers University of Technology Göteborg Sweden
Department of Chemistry University of Paderborn 33098 Paderborn Germany
Department of Physics Technical University of Denmark Fysikvej 307 Kongens Lyngby 2800 Denmark
Deutsches Elektronensynchrotron Notkestraße 85 22607 Hamburg Germany
European XFEL Holzkoppel 4 22869 Schenefeld Germany
Institute for Inorganic Chemistry RWTH Aachen University 52074 Aachen Germany
Institute of Nanostructure and Solid State Physics University of Hamburg 22761 Hamburg Germany
Zobrazit více v PubMed
J Am Chem Soc. 2015 Jan 28;137(3):1141-6 PubMed
Eur J Biochem. 1994 Aug 1;223(3):711-8 PubMed
Chem Rev. 2014 Apr 9;114(7):3659-853 PubMed
Proc Natl Acad Sci U S A. 1968 Feb;59(2):498-505 PubMed
Science. 2017 Jun 23;356(6344):1276-1280 PubMed
Dalton Trans. 2016 Jun 14;45(24):9871-83 PubMed
Phys Chem Chem Phys. 2016 Mar 21;18(11):7641-50 PubMed
Eur J Biochem. 1995 Dec 1;234(2):363-81 PubMed
Annu Rev Phys Chem. 2010;61:263-82 PubMed
Inorg Chem. 2003 Oct 6;42(20):6366-78 PubMed
Angew Chem Int Ed Engl. 2004 May 24;43(22):2886-905 PubMed
Angew Chem Int Ed Engl. 2014 Jan 3;53(1):299-304 PubMed
J Comput Chem. 2014 Jan 5;35(1):1-17 PubMed
J Am Chem Soc. 2007 Apr 25;129(16):5217-27 PubMed
Chem Rev. 2004 Feb;104(2):651-97 PubMed
Acc Chem Res. 2015 Mar 17;48(3):782-91 PubMed
Rev Sci Instrum. 2016 May;87(5):053116 PubMed
Annu Rev Phys Chem. 2005;56:221-54 PubMed
J Am Chem Soc. 2006 Apr 19;128(15):5001-9 PubMed
Metallomics. 2011 Feb;3(2):140-51 PubMed
J Phys Chem B. 2013 Feb 14;117(6):1921-31 PubMed
J Am Chem Soc. 2008 Jul 16;130(28):8967-74 PubMed
Nat Chem. 2009 Dec;1(9):711-5 PubMed
J Phys Chem B. 2010 Nov 18;114(45):14521-7 PubMed
J Am Chem Soc. 2003 Jun 11;125(23):7022-34 PubMed
J Biol Inorg Chem. 2000 Oct;5(5):551-9 PubMed
Angew Chem Int Ed Engl. 2016 Sep 5;55(37):11129-33 PubMed
Nat Chem. 2015 Dec;7(12):961-7 PubMed
Angew Chem Int Ed Engl. 2016 Feb 24;55(9):3101-5 PubMed
Biochemistry. 1989 Sep 19;28(19):7499-505 PubMed
Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4369-74 PubMed
Phys Chem Chem Phys. 2015 Jan 21;17(3):2067-77 PubMed
Biochim Biophys Acta. 2015 Jan;1847(1):79-85 PubMed
Sci Adv. 2016 Jan 01;2(1):e1500889 PubMed
X-ray spectroscopy station for sample characterization at ELI Beamlines