Fast Regulation of Hormone Metabolism Contributes to Salt Tolerance in Rice (Oryzasativa spp. Japonica, L.) by Inducing Specific Morpho-Physiological Responses
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30223560
PubMed Central
PMC6161274
DOI
10.3390/plants7030075
PII: plants7030075
Knihovny.cz E-zdroje
- Klíčová slova
- Oryza sativa, RNA sequencing, phenotypic plasticity, phytohormones, salt stress,
- Publikační typ
- časopisecké články MeSH
Clear evidence has highlighted a role for hormones in the plant stress response, including salt stress. Interplay and cross-talk among different hormonal pathways are of vital importance in abiotic stress tolerance. A genome-wide transcriptional analysis was performed on leaves and roots of three-day salt treated and untreated plants of two Italian rice varieties, Baldo and Vialone Nano, which differ in salt sensitivity. Genes correlated with hormonal pathways were identified and analyzed. The contents of abscisic acid, indoleacetic acid, cytokinins, and gibberellins were measured in roots, stems, and leaves of seedlings exposed for one and three days to salt stress. From the transcriptomic analysis, a huge number of genes emerged as being involved in hormone regulation in response to salt stress. The expression profile of genes involved in biosynthesis, signaling, response, catabolism, and conjugation of phytohormones was analyzed and integrated with the measurements of hormones in roots, stems, and leaves of seedlings. Significant changes in the hormone levels, along with differences in morphological responses, emerged between the two varieties. These results support the faster regulation of hormones metabolism in the tolerant variety that allows a prompt growth reprogramming and the setting up of an acclimation program, leading to specific morpho-physiological responses and growth recovery.
Department of Biology University of Padova 35131 Padua Italy
Department of Molecular Medicine University of Padova Viale G Colombo 3 35121 Padova Italy
Zobrazit více v PubMed
Pandey P., Irulappan V., Bagavathiannan M.V., Senthil-Kumar M. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00537. PubMed DOI PMC
Ismail A.M., Horie T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. Annu. Rev. Plant Biol. 2017;68:405–434. doi: 10.1146/annurev-arplant-042916-040936. PubMed DOI
Food and Agriculture Organization of the United Nations. [(accessed on 21 August 2018)]; Available online: http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/
Das P., Nutan K.K., Singla-Pareek S.L., Pareek A. Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00712. PubMed DOI PMC
Munns R., Tester M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911. PubMed DOI
Xie R., Zhang J., Ma Y., Pan X., Dong C., Pang S., He S., Deng L., Yi S., Zheng Y., Lv Q. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots. Sci. Rep. 2017;7:42094. doi: 10.1038/srep42094. PubMed DOI PMC
Fu R., Zhang M., Zhao Y., He X., Ding C., Wang S., Feng Y., Song X., Li P., Wang B. Identification of Salt Tolerance-related microRNAs and Their Targets in Maize (Zea mays L.) Using High-throughput Sequencing and Degradome Analysis. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00864. PubMed DOI PMC
Kumar M., Choi J., An G., Kim S.-R. Ectopic Expression of OsSta2 Enhances Salt Stress Tolerance in Rice. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00316. PubMed DOI PMC
Nounjan N., Chansongkrow P., Charoensawan V., Siangliw J.L., Toojinda T., Chadchawan S., Theerakulpisut P. High Performance of Photosynthesis and Osmotic Adjustment Are Associated With Salt Tolerance Ability in Rice Carrying Drought Tolerance QTL: Physiological and Co-expression Network Analysis. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.01135. PubMed DOI PMC
Singh V.K., Singh B.D., Kumar A., Maurya S., Krishnan S.G., Vinod K.K., Singh M.P., Ellur R.K., Bhowmick P.K., Singh A.K. Marker-Assisted Introgression of Saltol QTL Enhances Seedling Stage Salt Tolerance in the Rice Variety “Pusa Basmati 1”. [(accessed on 5 September 2018)]; Available online: https://www.hindawi.com/journals/ijg/2018/8319879/ PubMed PMC
Munns R., Gilliham M. Salinity tolerance of crops—What is the cost? New Phytol. 2015;208:668–673. doi: 10.1111/nph.13519. PubMed DOI
Pierik R., Testerink C. The Art of Being Flexible: How to Escape from Shade, Salt, and Drought. Plant Physiol. 2014;166:5–22. doi: 10.1104/pp.114.239160. PubMed DOI PMC
Pierik R., de Wit M. Shade avoidance: Phytochrome signalling and other aboveground neighbour detection cues. J. Exp. Bot. 2014;65:2815–2824. doi: 10.1093/jxb/ert389. PubMed DOI
Bailey-Serres J., Voesenek L.A.C.J. Flooding Stress: Acclimations and Genetic Diversity. Annu. Rev. Plant Biol. 2008;59:313–339. doi: 10.1146/annurev.arplant.59.032607.092752. PubMed DOI
Galvan-Ampudia C.S., Julkowska M.M., Darwish E., Gandullo J., Korver R.A., Brunoud G., Haring M.A., Munnik T., Vernoux T., Testerink C. Halotropism Is a Response of Plant Roots to Avoid a Saline Environment. Curr. Biol. 2013;23:2044–2050. doi: 10.1016/j.cub.2013.08.042. PubMed DOI
Allu A.D., Soja A.M., Wu A., Szymanski J., Balazadeh S. Salt stress and senescence: Identification of cross-talk regulatory components. J. Exp. Bot. 2014;65:3993–4008. doi: 10.1093/jxb/eru173. PubMed DOI PMC
Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16 doi: 10.1186/s12870-016-0771-y. PubMed DOI PMC
Rowe J.H., Topping J.F., Liu J., Lindsey K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol. 2016;211:225–239. doi: 10.1111/nph.13882. PubMed DOI PMC
Colebrook E.H., Thomas S.G., Phillips A.L., Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 2014;217:67–75. doi: 10.1242/jeb.089938. PubMed DOI
Kazan K. Auxin and the integration of environmental signals into plant root development. Ann. Bot. 2013;112:1655–1665. doi: 10.1093/aob/mct229. PubMed DOI PMC
Golldack D., Li C., Mohan H., Probst N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00151. PubMed DOI PMC
Raghavendra A.S., Gonugunta V.K., Christmann A., Grill E. ABA perception and signalling. Trends Plant Sci. 2010;15:395–401. doi: 10.1016/j.tplants.2010.04.006. PubMed DOI
Peleg Z., Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 2011;14:290–295. doi: 10.1016/j.pbi.2011.02.001. PubMed DOI
Ye N., Jia L., Zhang J. ABA signal in rice under stress conditions. Rice (N. Y.) 2012;5:1. doi: 10.1186/1939-8433-5-1. PubMed DOI PMC
Munemasa S., Hauser F., Park J., Waadt R., Brandt B., Schroeder J.I. Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr. Opin. Plant Biol. 2015;28:154–162. doi: 10.1016/j.pbi.2015.10.010. PubMed DOI PMC
Wilkinson S., Kudoyarova G.R., Veselov D.S., Arkhipova T.N., Davies W.J. Plant hormone interactions: Innovative targets for crop breeding and management. J. Exp. Bot. 2012;63:3499–3509. doi: 10.1093/jxb/ers148. PubMed DOI
Tardieu F., Parent B., Simonneau T. Control of leaf growth by abscisic acid: Hydraulic or non-hydraulic processes? Plant Cell Environ. 2010;33:636–647. doi: 10.1111/j.1365-3040.2009.02091.x. PubMed DOI
Davies W.J., Wilkinson S., Loveys B. Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol. 2002;153:449–460. doi: 10.1046/j.0028-646X.2001.00345.x. PubMed DOI
Dietrich D., Pang L., Kobayashi A., Fozard J.A., Boudolf V., Bhosale R., Antoni R., Nguyen T., Hiratsuka S., Fujii N., et al. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants. 2017;3:17057. doi: 10.1038/nplants.2017.57. PubMed DOI
Sah S.K., Reddy K.R., Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00571. PubMed DOI PMC
Duan L., Dietrich D., Ng C.H., Chan P.M.Y., Bhalerao R., Bennett M.J., Dinneny J.R. Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in Arabidopsis Seedlings. Plant Cell. 2013;25:324–341. doi: 10.1105/tpc.112.107227. PubMed DOI PMC
Giuliani S., Sanguineti M.C., Tuberosa R., Bellotti M., Salvi S., Landi P. Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J. Exp. Bot. 2005;56:3061–3070. doi: 10.1093/jxb/eri303. PubMed DOI
Albacete A., Ghanem M.E., Martinez-Andujar C., Acosta M., Sanchez-Bravo J., Martinez V., Lutts S., Dodd I.C., Perez-Alfocea F. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot. 2008;59:4119–4131. doi: 10.1093/jxb/ern251. PubMed DOI PMC
Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 2015;20:219–229. doi: 10.1016/j.tplants.2015.02.001. PubMed DOI
Su Y.-H., Liu Y.-B., Zhang X.-S. Auxin–Cytokinin Interaction Regulates Meristem Development. Mol. Plant. 2011;4:616–625. doi: 10.1093/mp/ssr007. PubMed DOI PMC
Ma Q.-H., Liu Y.-C. Expression of isopentenyl transferase gene (ipt) in leaf and stem delayed leaf senescence without affecting root growth. Plant Cell Rep. 2009;28:1759. doi: 10.1007/s00299-009-0776-1. PubMed DOI
Talla S.K., Panigrahy M., Kappara S., Nirosha P., Neelamraju S., Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot. 2016;67:1839–1851. doi: 10.1093/jxb/erv575. PubMed DOI PMC
Zwack P.J., Rashotte A.M. Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 2015;66:4863–4871. doi: 10.1093/jxb/erv172. PubMed DOI
Daszkowska-Golec A., Szarejko I. Open or Close the Gate—Stomata Action Under the Control of Phytohormones in Drought Stress Conditions. Front. Plant Sci. 2013;4 doi: 10.3389/fpls.2013.00138. PubMed DOI PMC
Liu W., Li R.-J., Han T.-T., Cai W., Fu Z.-W., Lu Y.-T. Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis. Plant Physiol. 2015;168:343–356. doi: 10.1104/pp.15.00030. PubMed DOI PMC
Du H., Liu H., Xiong L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci. 2013;4 doi: 10.3389/fpls.2013.00397. PubMed DOI PMC
Zhang S.-W., Li C.-H., Cao J., Zhang Y.-C., Zhang S.-Q., Xia Y.-F., Sun D.-Y., Sun Y. Altered Architecture and Enhanced Drought Tolerance in Rice via the Down-Regulation of Indole-3-Acetic Acid by TLD1/OsGH3.13 Activation. Plant Physiol. 2009;151:1889–1901. doi: 10.1104/pp.109.146803. PubMed DOI PMC
Julkowska M.M., Testerink C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 2015;20:586–594. doi: 10.1016/j.tplants.2015.06.008. PubMed DOI
Zhu J.-K. Abiotic Stress Signaling and Responses in Plants. Cell. 2016;167:313–324. doi: 10.1016/j.cell.2016.08.029. PubMed DOI PMC
Ahmad P., Rasool S., Gul A., Sheikh S.A., Akram N.A., Ashraf M., Kazi A.M., Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00813. PubMed DOI PMC
Khan M.I.R., Fatma M., Per T.S., Anjum N.A., Khan N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00462. PubMed DOI PMC
Formentin E., Sudiro C., Perin G., Riccadonna S., Barizza E., Baldoni E., Lavezzo E., Stevanato P., Sacchi G.A., Fontana P., et al. Transcriptome and Cell Physiological Analyses in Different Rice Cultivars Provide New Insights Into Adaptive and Salinity Stress Responses. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.00204. PubMed DOI PMC
Formentin E., Sudiro C., Ronci M.B., Locato V., Barizza E., Stevanato P., Ijaz B., Zottini M., De Gara L., Lo Schiavo F. H2O2 Signature and Innate Antioxidative Profile Make the Difference between Sensitivity and Tolerance to Salt in Rice Cells. Front. Plant Sci. 2018 Accepted for publication. PubMed PMC
Ma B., Yin C.-C., He S.-J., Lu X., Zhang W.-K., Lu T.-G., Chen S.-Y., Zhang J.-S. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings. PLoS Genet. 2014;10:e1004701. doi: 10.1371/journal.pgen.1004701. PubMed DOI PMC
Koeduka T., Matsui K., Hasegawa M., Akakabe Y., Kajiwara T. Rice fatty acid α-dioxygenase is induced by pathogen attack and heavy metal stress: Activation through jasmonate signaling. J. Plant Physiol. 2005;162:912–920. doi: 10.1016/j.jplph.2004.11.003. PubMed DOI
Yue H., Nie S., Xing D. Over-expression of Arabidopsis Bax inhibitor-1 delays methyl jasmonate-induced leaf senescence by suppressing the activation of MAP kinase 6. J. Exp. Bot. 2012;63:4463–4474. doi: 10.1093/jxb/ers122. PubMed DOI
Liang C., Wang Y., Zhu Y., Tang J., Hu B., Liu L., Ou S., Wu H., Sun X., Chu J., et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. PNAS. 2014;111:10013–10018. doi: 10.1073/pnas.1321568111. PubMed DOI PMC
Hu Y., Jiang Y., Han X., Wang H., Pan J., Yu D. Jasmonate regulates leaf senescence and tolerance to cold stress: Crosstalk with other phytohormones. J. Exp. Bot. 2017;68:1361–1369. doi: 10.1093/jxb/erx004. PubMed DOI
Counce P.A., Keisling T.C., Mitchell A.J. A Uniform, Objective, and Adaptive System for Expressing Rice Development. Crop Sci. 2000;40:436. doi: 10.2135/cropsci2000.402436x. DOI
Nguyen K.H., Ha C.V., Nishiyama R., Watanabe Y., Leyva-González M.A., Fujita Y., Tran U.T., Li W., Tanaka M., Seki M., et al. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. PNAS. 2016;113:3090–3095. doi: 10.1073/pnas.1600399113. PubMed DOI PMC
Shinozaki K., Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 2007;58:221–227. doi: 10.1093/jxb/erl164. PubMed DOI
Osakabe Y., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S.P. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol. 2014;202:35–49. doi: 10.1111/nph.12613. PubMed DOI
Roy S.J., Negrão S., Tester M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014;26:115–124. doi: 10.1016/j.copbio.2013.12.004. PubMed DOI
Oh J.E., Kwon Y., Kim J.H., Noh H., Hong S.-W., Lee H. A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol. Biol. 2011;77:91–103. doi: 10.1007/s11103-011-9796-7. PubMed DOI
Galbiati M., Matus J.T., Francia P., Rusconi F., Cañón P., Medina C., Conti L., Cominelli E., Tonelli C., Arce-Johnson P. The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress. BMC Plant Biol. 2011;11:142. doi: 10.1186/1471-2229-11-142. PubMed DOI PMC
Lee M.-W., Qi M., Yang Y. A Novel Jasmonic Acid-Inducible Rice myb Gene Associates with Fungal Infection and Host Cell Death. MPMI. 2001;14:527–535. doi: 10.1094/MPMI.2001.14.4.527. PubMed DOI
Schäfer M., Brütting C., Meza-Canales I.D., Großkinsky D.K., Vankova R., Baldwin I.T., Meldau S. The role of cis -zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 2015;66:4873–4884. doi: 10.1093/jxb/erv214. PubMed DOI PMC
Lee B.H., Johnston R., Yang Y., Gallavotti A., Kojima M., Travençolo B.A., Costa L.D., Sakakibara H., Jackson D. Studies of aberrant phyllotaxy1 Mutants of Maize Indicate Complex Interactions between Auxin and Cytokinin Signaling in the Shoot Apical Meristem. Plant Physiol. 2009;150:205–216. doi: 10.1104/pp.109.137034. PubMed DOI PMC
Bielach A., Hrtyan M., Tognetti V., Bielach A., Hrtyan M., Tognetti V.B. Plants under Stress: Involvement of Auxin and Cytokinin. Int. J. Mol. Sci. 2017;18:1427. doi: 10.3390/ijms18071427. PubMed DOI PMC
Li X., Chen L., Forde B.G., Davies W.J. The Biphasic Root Growth Response to Abscisic Acid in Arabidopsis Involves Interaction with Ethylene and Auxin Signalling Pathways. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.01493. PubMed DOI PMC
Ding Z., De Smet I. Localised ABA signalling mediates root growth plasticity. Trends Plant Sci. 2013;18:533–535. doi: 10.1016/j.tplants.2013.08.009. PubMed DOI PMC
Yamaguchi S. Gibberellin Metabolism and its Regulation. Annu. Rev. Plant Biol. 2008;59:225–251. doi: 10.1146/annurev.arplant.59.032607.092804. PubMed DOI
Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., Chow T., Hsing Y.C., Kitano H., Yamaguchi I., et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature. 2005;437:693–698. doi: 10.1038/nature04028. PubMed DOI
Arnon D.I., Hoagland D.R. A Comparison of Water Culture and Soil as Media for Crop Production. Science. 1939;89:512–514. doi: 10.1126/science.89.2318.512. PubMed DOI
Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC
Kawahara Y., de la Bastide M., Hamilton J.P., Kanamori H., McCombie W.R., Ouyang S., Schwartz D.C., Tanaka T., Wu J., Zhou S., et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice. 2013;6:4. doi: 10.1186/1939-8433-6-4. PubMed DOI PMC
Quinlan A.R., Hall I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Falda M., Toppo S., Pescarolo A., Lavezzo E., Di Camillo B., Facchinetti A., Cilia E., Velasco R., Fontana P. Argot2: A large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinform. 2012;13:S14. doi: 10.1186/1471-2105-13-S4-S14. PubMed DOI PMC
Fontana P., Cestaro A., Velasco R., Formentin E., Toppo S. Rapid Annotation of Anonymous Sequences from Genome Projects Using Semantic Similarities and a Weighting Scheme in Gene Ontology. PLoS ONE. 2009;4:e4619. doi: 10.1371/journal.pone.0004619. PubMed DOI PMC
Lavezzo E., Falda M., Fontana P., Bianco L., Toppo S. Enhancing protein function prediction with taxonomic constraints—The Argot2.5 web server. Methods. 2016;93:15–23. doi: 10.1016/j.ymeth.2015.08.021. PubMed DOI
Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995;57:289–300.
Fitter A.H., Stickland T.R. Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol. 1991;118:383–389. doi: 10.1111/j.1469-8137.1991.tb00019.x. DOI
Fitter A.H., Stickland T.R., Harvey M.L., Wilson G.W. Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytol. 1991;118:375–382. doi: 10.1111/j.1469-8137.1991.tb00018.x. DOI
Floková K., Tarkowská D., Miersch O., Strnad M., Wasternack C., Novák O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI
Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. Talanta. 2013;112:85–94. doi: 10.1016/j.talanta.2013.03.068. PubMed DOI
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Prerostova S., Dobrev P.I., Gaudinova A., Hosek P., Soudek P., Knirsch V., Vankova R. Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Plant Sci. 2017;264:188–198. doi: 10.1016/j.plantsci.2017.07.020. PubMed DOI
Iqbal N., Khan N.A., Ferrante A., Trivellini A., Francini A., Khan M.I.R. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00475. PubMed DOI PMC
Rodriguez H.G., Roberts J., Jordan W.R., Drew M.C. Growth, Water Relations, and Accumulation of Organic and Inorganic Solutes in Roots of Maize Seedlings during Salt Stress. Plant Physiol. 1997;113:881–893. doi: 10.1104/pp.113.3.881. PubMed DOI PMC
Uga Y., Sugimoto K., Ogawa S., Rane J., Ishitani M., Hara N., Kitomi Y., Inukai Y., Ono K., Kanno N., et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013;45:1097–1102. doi: 10.1038/ng.2725. PubMed DOI