• This record comes from PubMed

Pyrene, a Test Case for Deep-Ultraviolet Molecular Photophysics

. 2019 Jun 20 ; 10 (12) : 3481-3487. [epub] 20190611

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

We determined the complete relaxation dynamics of pyrene in ethanol from the second bright state, employing experimental and theoretical broadband heterodyne detected transient grating and two-dimensional photon echo (2DPE) spectroscopy, using pulses with duration of 6 fs and covering a spectral range spanning from 250 to 300 nm. Multiple lifetimes are assigned to conical intersections through a cascade of electronic states, eventually leading to a rapid population of the lowest long-living excited state and subsequent slow vibrational cooling. The lineshapes in the 2DPE spectra indicate that the efficiency of the population transfer depends on the kinetic energy deposited into modes required to reach a sloped conical intersection, which mediates the decay to the lowest electronic state. The presented experimental-theoretical protocol paves the way for studies on deep-ultraviolet-absorbing biochromophores ubiquitous in genomic and proteic systems.

See more in PubMed

Baum P.; Lochbrunner S.; Riedle E. Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management. Appl. Phys. B: Lasers Opt. 2004, 79, 1027–1032. 10.1007/s00340-004-1668-2. DOI

Cowan M. L.; Bruner B. D.; Huse N.; Dwyer J. R.; Chugh B.; Nibbering E. T. J.; Elsaesser T.; Miller R. J. D. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 2005, 434, 199–202. 10.1038/nature03383. PubMed DOI

Selig U.; Schleussner C.-F.; Foerster M.; Langhojer F.; Nuernberger P.; Brixner T. Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry. Opt. Lett. 2010, 35, 4178–4180. 10.1364/OL.35.004178. PubMed DOI

Cannizzo A. Ultrafast UV spectroscopy: from a local to a global view of dynamical processes in macromolecules. Phys. Chem. Chem. Phys. 2012, 14, 11205–11223. 10.1039/c2cp40567a. PubMed DOI

Chergui M. Ultrafast molecular photophysics in the deep-ultraviolet. J. Chem. Phys. 2019, 150, 070901.10.1063/1.5082644. PubMed DOI

Prokhorenko V. I.; Picchiotti A.; Pola M.; Dijkstra A. G.; Miller R. J. D. New Insights into the Photophysics of DNA Nucleobases. J. Phys. Chem. Lett. 2016, 7 (22), 4445–4450. 10.1021/acs.jpclett.6b02085. PubMed DOI

Segarra-Martí J.; Mukamel S.; Garavelli M.; Nenov A.; Rivalta I. Towards Accurate Simulation of Two-Dimensional Electronic Spectroscopy. Top. Curr. Chem. 2018, 376, 24.10.1007/s41061-018-0201-8. PubMed DOI

Nenov A.; Borrego-Varillas R.; Oriana A.; Ganzer L.; Segatta F.; Conti I.; Segarra-Marti J.; Omachi J.; Dapor M.; Taioli S.; et al. UV-Light-Induced Vibrational Coherences: The Key to Understand Kasha Rule Violation in trans-Azobenzene. J. Phys. Chem. Lett. 2018, 9, 1534–1541. 10.1021/acs.jpclett.8b00152. PubMed DOI

Nenov A.; Giussani A.; Fingerhut B. P.; Rivalta I.; Dumont E.; Mukamel S.; Garavelli M. Spectral lineshapes in nonlinear electronic spectroscopy. Phys. Chem. Chem. Phys. 2015, 17, 30925–30936. 10.1039/C5CP01167A. PubMed DOI

Borrego-Varillas R.; Teles-Ferreira D. C.; Nenov A.; Conti I.; Ganzer L.; Manzoni C.; Garavelli M.; De Paula A. M.; Cerullo G. Observation of the sub-100 fs population of a dark state in a thiobase mediating intersystem crossing. J. Am. Chem. Soc. 2018, 140, 16087–16093. 10.1021/jacs.8b07057. PubMed DOI

Johnson P. J.; Farag M. H.; Halpin A.; Morizumi T.; Prokhorenko V. I.; Knoester J.; Jansen T. L.; Ernst O. P.; Miller R. D. The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit. J. Phys. Chem. B 2017, 121, 4040–4047. 10.1021/acs.jpcb.7b02329. PubMed DOI

Farag M. H.; Jansen T. L. C.; Knoester J. The origin of absorptive features in the two-dimensional electronic spectra of rhodopsin. Phys. Chem. Chem. Phys. 2018, 20, 12746–12754. 10.1039/C8CP00638E. PubMed DOI

Roos M. K.; Reiter S.; de Vivie-Riedle R. Ultrafast relaxation from 1La to 1Lb in pyrene: a theoretical study. Chem. Phys. 2018, 515, 586–595. 10.1016/j.chemphys.2018.08.002. DOI

Reichardt C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–2358. 10.1021/cr00032a005. DOI

Winnik F. M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem. Rev. 1993, 93, 587–614. 10.1021/cr00018a001. DOI

França B. M. de; Bello Forero J. S.; Garden S. J.; Ribeiro E. S.; Souza R. da S.; Teixeira R. S.; Corrêa R. J. Green fluorescence pyrene-based dye as a new p-extended system: Synthesis, photophysical and theoretical studies. Dyes Pigm. 2018, 148, 444–451. 10.1016/j.dyepig.2017.09.003. DOI

Kwon J.; Park S. K.; Lee Y.; Lee J. S.; Kim J. Tailoring chemically converted graphenes using a water-soluble pyrene derivative with a zwitterionic arm for sensitive electrochemiluminescence-based analyses. Biosens. Bioelectron. 2017, 87, 89–95. 10.1016/j.bios.2016.08.013. PubMed DOI

Ruzicka P.; Kral T.. Pyrene: Chemical Properties, Biochemistry Applications and Toxic Effects; Chemistry Research and Applications Series; Nova Publishers, 2013.

Figueira-Duarte T. M.; Müllen K. Pyrene-based materials for organic electronics. Chem. Rev. 2011, 111, 7260–7314. 10.1021/cr100428a. PubMed DOI

Niko Y.; Didier P.; Mely Y.; Konishi G.; Klymchenko A. S. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes. Sci. Rep. 2016, 6, 18870.10.1038/srep18870. PubMed DOI PMC

Krebs N.; Pugliesi I.; Hauer J.; Riedle E. Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. New J. Phys. 2013, 15, 085016.10.1088/1367-2630/15/8/085016. DOI

Borrego-Varillas R.; Ganzer L.; Cerullo G.; Manzoni C. Ultraviolet Transient Absorption Spectrometer with Sub-20-fs Time Resolution. Appl. Sci. 2018, 8, 989.10.3390/app8060989. DOI

Malmqvist P.-Å.; Rendell A.; Roos B. O. The restricted active space self-consistent-field method, implemented with a split graph unitary group approach. J. Phys. Chem. 1990, 94, 5477–5482. 10.1021/j100377a011. DOI

Malmqvist P.-Å.; Pierloot K.; Shahi A. R. M.; Cramer C. J.; Gagliardi L. The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J. Chem. Phys. 2008, 128, 204109.10.1063/1.2920188. PubMed DOI

Prokhorenko V. I.; Picchiotti A.; Maneshi S.; Miller R. J. D.. Broadband Electronic Two-Dimensional Spectroscopy in the Deep UV. In Springer Proceedings in Physics; Yamanouchi K., Cundiff S., de Vivie-Riedle R., Kuwata-Gonokami M., DiMauro L., Eds.; Springer International Publishing, 2015; Vol. 162, p 432.

Jones C. M.; Asher S. A. Ultraviolet Resonance Raman Study of the Pyrene S4, S3, and S2 Excited Electronic States. J. Chem. Phys. 1988, 89, 2649.10.1063/1.455015. DOI

Shinohara H.; Yamakita Y.; Ohno K. Raman spectra of polycyclic aromatic hydrocarbons. Comparison of calculated Raman intensity distributions with observed spectra for naphthalene, anthracene, pyrene, and perylene. J. Mol. Struct. 1998, 442, 221–234. 10.1016/S0022-2860(97)00335-9. DOI

Freidzon A. Y.; Valiev R. R.; Berezhnoy A. A. Ab initio simulation of pyrene spectra in water matrices. RSC Adv. 2014, 4, 42054–42065. 10.1039/C4RA05574H. DOI

West B. a.; Molesky B. P.; Giokas P. G.; Moran A. M. Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV. Chem. Phys. 2013, 423, 92–104. 10.1016/j.chemphys.2013.06.027. DOI

Neuwahl F. V. R.; Foggi P. Direct observation of S2-S1 internal conversion in pyrene by femtosecond transient absorption. Laser Chem. 1999, 19, 375–379. 10.1155/1999/37692. DOI

Foggi P.; Pettini L.; Santa I.; Righini R.; Califano S. Transient absorption and vibrational relaxation dynamics of the lowest excited singlet state of pyrene in solution. J. Phys. Chem. 1995, 99, 7439–7445. 10.1021/j100019a029. DOI

Baba H.; Aoi M. Vapor-phase fluorescence spectra from the second excited singlet state of pyrene and its derivatives. J. Mol. Spectrosc. 1973, 46, 214–222. 10.1016/0022-2852(73)90037-4. DOI

Butkus V.; Valkunas L.; Abramavicius D. Molecular vibrations-induced quantum beats in two-dimensional electronic spectroscopy. J. Chem. Phys. 2012, 137, 044513.10.1063/1.4737843. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...