Microbial involvement in iodine cycle: mechanisms and potential applications

. 2023 ; 11 () : 1279270. [epub] 20231030

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38026895

Stable iodine isotopes are essential for humans as they are necessary for producing thyroid gland hormones. However, there are hazardous radioactive iodine isotopes that are emitted into the environment through radioactive waste generated by nuclear power plants, nuclear weapon tests, and medical practice. Due to the biophilic character of iodine radionuclides and their enormous biomagnification potential, their elimination from contaminated environments is essential to prevent the spread of radioactive pollution in ecosystems. Since microorganisms play a vital role in controlling iodine cycling and fate in the environment, they also can be efficiently utilized in solving the issue of contamination spread. Thus, this paper summarizes all known on microbial processes that are involved in iodine transformation to highlight their prospects in remediation of the sites contaminated with radioactive iodine isotopes.

Zobrazit více v PubMed

Amachi S., Iino T. (2022). The genus Iodidimonas: from its discovery to potential applications. Microorganisms 10, 1661. 10.3390/microorganisms10081661 PubMed DOI PMC

Amachi S., Kamagata Y., Kanagawa T., Muramatsu Y. (2001). Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl. Environ. Microbiol. 67, 2718–2722. 10.1128/aem.67.6.2718-2722.2001 PubMed DOI PMC

Amachi S., Kasahara M., Fujii T., Shinoyama H., Hanada S., Kamagata Y., et al. (2004). Radiotracer experiments on biological volatilization of organic iodine from coastal seawaters. Geomicrobiol. J. 21, 481–488. 10.1080/01490450490506201 DOI

Amachi S., Kawaguchi N., Muramatsu Y., Tsuchiya S., Watanabe Y., Shinoyama H., et al. (2007). Dissimilatory iodate reduction by marine Pseudomonas sp. Strain SCT 73, 5725–5730. 10.1128/aem.00241-07 PubMed DOI PMC

Amachi S., Mishima Y., Shinoyama H., Muramatsu Y., Fujii T. (2005a). Active transport and accumulation of iodide by newly isolated marine bacteria. Appl. Environ. Microbiol. 71, 741–745. 10.1128/aem.71.2.741-745.2005 PubMed DOI PMC

Amachi S., Muramatsu Y., Akiyama Y., Miyazaki K., Yoshiki S., Hanada S., et al. (2005b). Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters. Microb. Ecol. 49, 547–557. 10.1007/s00248-004-0056-0 PubMed DOI

Andersson M., Braegger C. P. (2021). The role of iodine for thyroid function in lactating women and infants. Endocr. Rev. 43, 469–506. 10.1210/endrev/bnab029 PubMed DOI PMC

Au-Duong A.-N., Lee C.-K. (2018). Flexible metal–organic framework-bacterial cellulose nanocomposite for iodine capture. Cryst. Growth and Des. 18, 356–363. 10.1021/acs.cgd.7b01360 DOI

Ban-Nai T., Muramatsu Y., Amachi S. (2006). Rate of iodine volatilization and accumulation by filamentous fungi through laboratory cultures. Chemosphere 65, 2216–2222. 10.1016/j.chemosphere.2006.05.047 PubMed DOI

Bluhm K., Croot P., Wuttig K., Lochte K. (2010). Transformation of iodate to iodide in marine phytoplankton driven by cell senescence. Aquat. Biol. 11, 1–15. 10.3354/ab00284 DOI

Bregnhøj M., Strunge K., Sørensen R. J., Ströbele M., Hummel T., Meyer H. J., et al. (2019). Tungsten iodide clusters as singlet oxygen photosensitizers: exploring the domain of resonant Energy transfer at 1 eV. J. Phys. Chem. A 123, 1730–1739. 10.1021/acs.jpca.9b00541 PubMed DOI

Čerňanský S., Urik M., Ševc J., Littera P., Hiller E. (2007). Biosorption of arsenic and cadmium from aqueous solutions. Afr. J. Biotechnol. 6, 1932–1934. 10.5897/ajb2007.000-2293 DOI

Challenger F. (1951). “Biological methylation,” in Advances in enzymology and related areas of molecular biology, 429–491. PubMed

Chang S., Wang K., Li Y., Wang J., Song X., Zhang Z., et al. (2022). A novel three-dimensionally ordered macroporous aerogel for capturing radioactive gaseous iodine. Ceram. Int. 48, 35310–35316. 10.1016/j.ceramint.2022.08.133 DOI

Choi M. H., Jeong S.-W., Shim H. E., Yun S.-J., Mushtaq S., Choi D. S., et al. (2017). Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chem. Commun. 53, 3937–3940. 10.1039/c7cc00720e PubMed DOI

Choi M. H., Shim H.-E., Yun S.-J., Park S.-H., Choi D. S., Jang B.-S., et al. (2016). Gold-nanoparticle-immobilized desalting columns for highly efficient and specific removal of radioactive iodine in aqueous media. ACS Appl. Mater. Interfaces 8, 29227–29231. 10.1021/acsami.6b11136 PubMed DOI

Costa O. Y. A., Raaijmakers J. M., Kuramae E. E. (2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636. 10.3389/fmicb.2018.01636 PubMed DOI PMC

Duborská E., Balíková K., Matulová M., Zvěřina O., Farkas B., Littera P., et al. (2021a). Production of methyl-iodide in the environment. Front. Microbiol. 12, 804081. 10.3389/fmicb.2021.804081 PubMed DOI PMC

Duborská E., Matulová M., Vaculovič T., Matúš P., Urík M. J. F. (2021b). Iodine fractions in soil and their determination. Forests 12, 1512. 10.3390/f12111512 DOI

Duborská E., Urík M., Bujdoš M. (2017). Comparison of iodide and iodate accumulation and volatilization by filamentous fungi during static cultivation. Water, Air, and Soil Pollut. 228, 225. 10.1007/s11270-017-3407-4 DOI

Ekidin A. A., Antonov K. L., Nazarovich A. V. (2022). Estimation of the specific activity of iodine release to comply with the base principle of INPRO methodology for PWR, BWR NPP. At. Energy 131, 291–297. 10.1007/s10512-022-00881-5 DOI

Fan L., Meng F., Gao Y., Liu P. (2021). Insufficient iodine nutrition may affect the thyroid cancer incidence in China. Br. J. Nutr. 126, 1852–1860. 10.1017/s0007114521000593 PubMed DOI

Farrenkopf A. M., Luther G. W., Truesdale V. W., Van Der Weijden C. H. (1997). Sub-surface iodide maxima: evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 1391–1409. 10.1016/s0967-0645(97)00013-1 DOI

Fukuda S.-Y., Iwamoto K., Atsumi M., Yokoyama A., Nakayama T., Ishida K.-I., et al. (2014). Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy. J. Plant Res. 127, 79–89. 10.1007/s10265-013-0596-9 PubMed DOI PMC

Fuse H., Inoue H., Murakami K., Takimura O., Yamaoka Y. (2003). Production of free and organic iodine by Roseovarius spp. FEMS Microbiol. Lett. 229, 189–194. 10.1016/s0378-1097(03)00839-5 PubMed DOI

Gómez-Consarnau L., Klein N. J., Cutter L. S., Sañudo-Wilhelmy S. A. (2021). Growth rate-dependent synthesis of halomethanes in marine heterotrophic bacteria and its implications for the ozone layer recovery. Environ. Microbiol. Rep. 13, 77–85. 10.1111/1758-2229.12905 PubMed DOI

Gómez-Jacinto V., García-Barrera T., Garbayo-Nores I., Vilchez-Lobato C., Gómez-Ariza J.-L. (2012). Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media. Chem. Pap. 66, 821–828. 10.2478/s11696-012-0186-7 DOI

Gozlan R. S., Margalith P. (1974). Iodide oxidation by Pseudomonas iodooxidans. J. Appl. Bacteriol. 37, 493–499. 10.1111/j.1365-2672.1974.tb00474.x PubMed DOI

Grandbois R. M., Santschi P. H., Xu C., Mitchell J. M., Kaplan D. I., Yeager C. M. (2023). Iodide uptake by forest soils is principally related to the activity of extracellular oxidases. Front. Chem. 11. 10.3389/fchem.2023.1105641 PubMed DOI PMC

Grzybowski A., Kanclerz P., Myers W. G. (2018). The use of povidone–iodine in ophthalmology. Curr. Opin. Ophthalmol. 29, 19–32. 10.1097/icu.0000000000000437 PubMed DOI

Gschwend F., Hartmann M., Mayerhofer J., Hug A. S., Enkerli J., Gubler A., et al. (2022). Site and land-use associations of soil bacteria and fungi define core and indicative taxa. FEMS Microbiol. Ecol. 97, fiab165. 10.1093/femsec/fiab165 PubMed DOI PMC

Guido-Garcia F., Law G. T. W., Lloyd J. R., Lythgoe P., Morris K. (2015). Bioreduction of iodate in sediment microcosms. Mineral. Mag. 79, 1343–1351. 10.1180/minmag.2015.079.6.10 DOI

Han W., Clarke W., Pratt S. (2016). Cycling of iodine by microalgae: iodine uptake and release by a microalgae biofilm in a groundwater holding pond. Ecol. Eng. 94, 286–294. 10.1016/j.ecoleng.2016.05.001 DOI

Horikami D., Sayama N., Sasaki J., Kusuno H., Matsuzaki H., Hayashi A., et al. (2022). The effect of exposure on cattle thyroid after the Fukushima Daiichi nuclear power plant accident. Sci. Rep. 12, 21754. 10.1038/s41598-022-25269-0 PubMed DOI PMC

Hou X., Povinec P. P., Zhang L., Shi K., Biddulph D., Chang C.-C., et al. (2013). Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environ. Sci. Technol. 47, 3091–3098. 10.1021/es304460k PubMed DOI

Iino T., Oshima K., Hattori M., Ohkuma M., Amachi S. (2021). Iodidimonas gelatinilytica sp. nov., aerobic iodide-oxidizing bacteria isolated from brine water and surface seawater. Antonie Leeuwenhoek 114, 625–631. 10.1007/s10482-021-01546-2 PubMed DOI

Iwamoto K., Shiraiwa Y. (2012). Characterization of intracellular iodine accumulation by iodine-tolerant microalgae. Procedia Environ. Sci. 15, 34–42. 10.1016/j.proenv.2012.05.007 DOI

Kengen S. W., Rikken G. B., Hagen W. R., Van Ginkel C. G., Stams A. J. (1999). Purification and characterization of (per)chlorate reductase from the chlorate-respiring strain GR-1. J. Bacteriol. 181, 6706–6711. 10.1128/jb.181.21.6706-6711.1999 PubMed DOI PMC

Korobova E. (2010). Soil and landscape geochemical factors which contribute to iodine spatial distribution in the main environmental components and food chain in the central Russian plain. J. Geochem. Explor. 107, 180–192. 10.1016/j.gexplo.2010.03.003 DOI

Kupper C., Gartner R. (2007). Risk of breast cancer and iodine deficiency. Ernahrungs-Umschau 54, 324-+.

Küpper F. C., Miller E. P., Andrews S. J., Hughes C., Carpenter L. J., Meyer-Klaucke W., et al. (2018). Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus. JBIC J. Biol. Inorg. Chem. 23, 1119–1128. 10.1007/s00775-018-1539-7 PubMed DOI

Kusumkar V. V., Galamboš M., Viglašová E., Daňo M., Šmelková J. (2021). Ion-imprinted polymers: synthesis, characterization, and adsorption of radionuclides. Materials 14, 1083. 10.3390/ma14051083 PubMed DOI PMC

Kwak J., Lee S.-H., Shin J., Lee Y.-G., Kim S., Son C., et al. (2022). Synthesis and applications of bismuth-impregnated biochars originated from spent coffee grounds for efficient adsorption of radioactive iodine: a mechanism study. Environ. Pollut. 313, 120138. 10.1016/j.envpol.2022.120138 PubMed DOI

Lee B. D., Ellis J. T., Dodwell A., Eisenhauer E. E. R., Saunders D. L., Lee M. H. (2018). Iodate and nitrate transformation by Agrobacterium/Rhizobium related strain DVZ35 isolated from contaminated Hanford groundwater. J. Hazard. Mater. 350, 19–26. 10.1016/j.jhazmat.2018.02.006 PubMed DOI

Lee B. D., Moser E. L., Brooks S. M., Saunders D. L., Howard M. H. (2020). Microbial contribution to iodine speciation in hanford's central plateau groundwater: iodide oxidation. Front. Environ. Sci. 7. 10.3389/fenvs.2019.00145 DOI

Letunova S. V., Alekseeva S. A., Korobova E. M. (1986). Iodine concentration by the fungus Penicillium chrysogenum inhabiting soils of the nonchernozem zone. Nauchnye Doki Vyss Shkoly Biol. Nauki, 94–98. PubMed

Levitskaia T. G., Qafoku N. P., Bowden M. E., Asmussen R. M., Buck E. C., Freedman V. L., et al. (2022). A review of bismuth(III)-Based materials for remediation of contaminated sites. ACS Earth Space Chem. 6, 883–908. 10.1021/acsearthspacechem.1c00114 DOI

Li H.-P., Brinkmeyer R., Jones W. L., Zhang S., Xu C., Schwehr K., et al. (2011). Iodide accumulation by aerobic bacteria isolated from subsurface sediments of a 129 I-contaminated aquifer at the Savannah River site, South Carolina. Appl. Environ. Microbiol. 77, 2153–2160. 10.1128/aem.02164-10 PubMed DOI PMC

Littera P., Urík M., Ševc J., Kolenčík M., Gardošová K., Molnárová M. (2011). Removal of arsenic from aqueous environments by native and chemically modified biomass of Aspergillus Niger and Neosartorya fischeri. Environ. Technol. 32, 1215–1222. 10.1080/09593330.2010.532510 PubMed DOI

Ma J., Ye X., Jin B. (2011). Structure and application of polarizer film for thin-film-transistor liquid crystal displays. Displays 32, 49–57. 10.1016/j.displa.2010.12.006 DOI

Mégier C., Dumery G., Luton D. (2023). Iodine and thyroid maternal and fetal metabolism during pregnancy. Metabolites 13, 633. 10.3390/metabo13050633 PubMed DOI PMC

Mironov V., Kudrjashov V., Yiou F., Raisbeck G. M. (2002). Use of 129I and 137Cs in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident. J. Environ. Radioact. 59, 293–307. 10.1016/s0265-931x(01)00080-7 PubMed DOI

Mohan A., Al-Sayah M. H., Ahmed A., El-Kadri O. M. (2022). Triazine-based porous organic polymers for reversible capture of iodine and utilization in antibacterial application. Sci. Rep. 12, 2638. 10.1038/s41598-022-06671-0 PubMed DOI PMC

Mok J. K., Toporek Y. J., Shin H.-D., Lee B. D., Lee M. H., Dichristina T. J. (2018). Iodate reduction by Shewanella oneidensis does not involve nitrate reductase. Geomicrobiol. J. 35, 570–579. 10.1080/01490451.2018.1430189 DOI

Muhire C., Tesfay Reda A., Zhang D., Xu X., Cui C. (2022). An overview on metal Oxide-based materials for iodine capture and storage. Chem. Eng. J. 431, 133816. 10.1016/j.cej.2021.133816 DOI

Müller E., Von Gunten U., Bouchet S., Droz B., Winkel L. H. E. (2021). Reaction of DMS and HOBr as a sink for marine DMS and an inhibitor of bromoform formation. Environ. Sci. Technol. 55, 5547–5558. 10.1021/acs.est.0c08189 PubMed DOI

Nightingale P. D., Malin G., Liss P. S. (1995). Production of chloroform and other low molecular-weight halocarbons by some species of macroalgae. Limnol. Oceanogr. 40, 680–689. 10.4319/lo.1995.40.4.0680 DOI

Nihei R., Usami M., Taguchi T., Amachi S. (2018). Role of fungal laccase in iodide oxidation in soils. J. Environ. Radioact. 189, 127–134. 10.1016/j.jenvrad.2018.03.016 PubMed DOI

Nobukuni K. (2009). “Chapter 96 - influence of iodine-containing pharmaceuticals on iodine status and thyroid function: iodine-induced hyperthyroidism and hypothyroidism,” in Comprehensive handbook of iodine. Editors Preedy V. R., Burrow G. N., Watson R. (San Diego: Academic Press; ), 927–935.

Okuda Y., Hiraiwa M., Shimizu N., Hashimoto S. (2023). Production of volatile organic iodine compounds by the marine cyanobacterium Calothrix parasitica under different light intensities. Mar. Chem. 248, 104211. 10.1016/j.marchem.2023.104211 DOI

Pasternak J. J., Williamson E. E. (2012). Clinical pharmacology, uses, and adverse reactions of iodinated contrast agents: a primer for the non-radiologist. Mayo Clin. Proc. 87, 390–402. 10.1016/j.mayocp.2012.01.012 PubMed DOI PMC

Pearce A. A. (1940). On the so-called "iodide oxidase". Mechanism of iodide oxidation by Aspergillus. Biochem. J. 34, 1493–1500. 10.1042/bj0341493 PubMed DOI PMC

Petrov S. A., Yusubov M. S., Beloglazkina E. K., Nenajdenko V. G. (2022). Synthesis of radioiodinated compounds. Classical approaches and achievements of recent years. Class. Approaches Achiev. Recent Years 23, 13789. 10.3390/ijms232213789 PubMed DOI PMC

Punitha T., Phang S.-M., Juan J. C., Beardall J. (2018). Environmental control of vanadium haloperoxidases and halocarbon emissions in macroalgae. Mar. Biotechnol. 20, 282–303. 10.1007/s10126-018-9820-x PubMed DOI

Redeker K. R., Treseder K. K., Allen M. F. (2004). Ectomycorrhizal fungi: a new source of atmospheric methyl halides? Glob. Change Biol. 10, 1009–1016. 10.1111/j.1529-8817.2003.00782.x DOI

Reyes-Umana V., Henning Z., Lee K., Barnum T. P., Coates J. D. (2022). Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans. ISME J. 16, 38–49. 10.1038/s41396-021-01034-5 PubMed DOI PMC

Sasamura S., Ohnuki T., Kozai N., Amachi S. (2023). Iodate respiration by Azoarcus sp. DN11 and its potential use for removal of radioiodine from contaminated aquifers. Front. Microbiol. 14, 1162788. 10.3389/fmicb.2023.1162788 PubMed DOI PMC

Seki M., Oikawa J.-I., Taguchi T., Ohnuki T., Muramatsu Y., Sakamoto K., et al. (2013). Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils. Environ. Sci. Technol. 47, 390–397. 10.1021/es303228n PubMed DOI

Shim H. E., Yang J. E., Jeong S.-W., Lee C. H., Song L., Mushtaq S., et al. (2018). Silver nanomaterial-immobilized desalination systems for efficient removal of radioactive iodine species in water. Nanomaterials 8, 660. 10.3390/nano8090660 PubMed DOI PMC

Shimada A., Taniguchi Y., Kakiuchi K., Ohira S., Iida Y., Sugiyama T., et al. (2022). Radiochemical analysis of the drain water sampled at the exhaust stack shared by Units 1 and 2 of the Fukushima Daiichi Nuclear Power Station. Sci. Rep. 12, 2086. 10.1038/s41598-022-05924-2 PubMed DOI PMC

Shin H.-D., Toporek Y., Mok J. K., Maekawa R., Lee B. D., Howard M. H., et al. (2022). Iodate reduction by Shewanella oneidensis requires genes encoding an extracellular dimethylsulfoxide reductase. Front. Microbiol. 13, 852942. 10.3389/fmicb.2022.852942 PubMed DOI PMC

Shiroyama K., Kawasaki Y., Unno Y., Amachi S. (2015). A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2. Biosci. Biotechnol. Biochem. 79, 1898–1905. 10.1080/09168451.2015.1052767 PubMed DOI

Sorrenti S., Baldini E., Pironi D., Lauro A., D’orazi V., Tartaglia F., et al. (2021). Iodine: its role in thyroid hormone biosynthesis and beyond. Nutrients 13, 4469. 10.3390/nu13124469 PubMed DOI PMC

Strickland C. E., Johnson C. D., Lee B. D., Qafoku N. P., Szecsody J. E., Truex M. J., et al. (2021). Identification of promising remediation technologies for iodine in the UP-1 operable unit.

Sun Z., Liang M., Chen J. (2015). Kinetics of iodine-free redox shuttles in dye-sensitized solar cells: interfacial recombination and dye regeneration. Accounts Chem. Res. 48, 1541–1550. 10.1021/ar500337g PubMed DOI

Suzuki M., Eda Y., Ohsawa S., Kanesaki Y., Yoshikawa H., Tanaka K., et al. (2012). Iodide oxidation by a novel multicopper oxidase from the alphaproteobacterium strain Q-1. Appl. Environ. Microbiol. 78, 3941–3949. 10.1128/aem.00084-12 PubMed DOI PMC

Suzuki T., Otosaka S., Kuwabara J., Kawamura H., Kobayashi T. (2013). Iodine-129 concentration in seawater near Fukushima before and after the accident at the Fukushima daiichi nuclear power plant. Biogeosciences 10, 3839–3847. 10.5194/bg-10-3839-2013 DOI

Tang W., Duan J., Zhang Y., Luo X. (2022). Cross-linked sponge fungal hyphae: an efficient and environmentally friendly sorbent addition of iodine. Biomass Convers. Biorefinery. 10.1007/s13399-022-02706-8 DOI

Taurog A., Howells E. M., Nachimson H. I. (1966). Conversion of iodate to iodide in vivo and in vitro . J. Biol. Chem. 241, 4686–4693. 10.1016/s0021-9258(18)99701-2 PubMed DOI

Thorenz U. R., Carpenter L. J., Huang R. J., Kundel M., Bosle J., Hoffmann T. (2014). Emission of iodine-containing volatiles by selected microalgae species. Atmos. Chem. Phys. 14, 13327–13335. 10.5194/acp-14-13327-2014 DOI

Toporek Y. J., Mok J. K., Shin H. D., Lee B. D., Lee M. H., Dichristina T. J. (2019). Metal reduction and protein secretion genes required for iodate reduction by Shewanella oneidensis. Appl. Environ. Microbiol. 85, e02115-18. 10.1128/aem.02115-18 PubMed DOI PMC

Tsunogai S., Sase T. (1969). Formation of iodide-iodine in the ocean. Deep Sea Res. Oceanogr. Abstr. 16, 489–496. 10.1016/0011-7471(69)90037-0 DOI

Urik M., Antogka R., Littera P., Gardosova K., Kolencik M., Korenkova L. (2011). Biotransformation and biosorption of se(iv) by aspergillus niger strain. Fresenius Environ. Bull. 20, 3387–3393.

Urik M., Kramarova Z., Sevc J., Cernansky S., Kalis M., Medved J., et al. (2010). Biosorption and bioaccumulation of thallium(I) and its effect on growth of Neosartorya fischeri strain. Pol. J. Environ. Stud. 19, 457–460.

Van Bergeijk S. A., Hernández L., Zubía E., Cañavate J. P. (2016). Iodine balance, growth and biochemical composition of three marine microalgae cultured under various inorganic iodine concentrations. Mar. Biol. 163, 107. 10.1007/s00227-016-2884-0 DOI

Wadley M. R., Stevens D. P., Jickells T. D., Hughes C., Chance R., Hepach H., et al. (2020). A global model for iodine speciation in the upper ocean. Glob. Biogeochem. Cycles 34, e2019GB006467. 10.1029/2019GB006467 DOI

Xu S., Freeman S. P. H. T., Hou X., Watanabe A., Yamaguchi K., Zhang L. (2013). Iodine isotopes in precipitation: temporal responses to 129I emissions from the Fukushima nuclear accident. Environ. Sci. Technol. 47, 10851–10859. 10.1021/es401527q PubMed DOI

Yamazaki C., Kashiwa S., Horiuchi A., Kasahara Y., Yamamura S., Amachi S. (2020). A novel dimethylsulfoxide reductase family of molybdenum enzyme, Idr, is involved in iodate respiration by Pseudomonas sp. SCT. SCT 22, 2196–2212. 10.1111/1462-2920.14988 PubMed DOI

Yang J., Tai W., Wu F., Shi K., Jia T., Su Y., et al. (2022). Enhanced removal of radioactive iodine anions from wastewater using modified bentonite: experimental and theoretical study. Chemosphere 292, 133401. 10.1016/j.chemosphere.2021.133401 PubMed DOI

Yuliana T., Ebihara K., Suzuki M., Shimonaka C., Amachi S. (2015). A novel enzyme-based antimicrobial system comprising iodide and a multicopper oxidase isolated from Alphaproteobacterium strain Q-1. Appl. Microbiol. Biotechnol. 99, 10011–10018. 10.1007/s00253-015-6862-0 PubMed DOI

Zaruba S., Bozóová V., Vishnikin A. B., Bazeľ Y. R., Šandrejová J., Gavazov K., et al. (2017). Vortex-assisted liquid-liquid microextraction procedure for iodine speciation in water samples. Microchem. J. 132, 59–68. 10.1016/j.microc.2017.01.004 DOI

Zhang X., Liu Y., Zhang S., Zhang Z., Feng Y., Zhang Y., et al. (2022). Immobilization of iodine waste via moderate temperature sintering of (Ag)iodosodalite. J. Solid State Chem. 316, 123553. 10.1016/j.jssc.2022.123553 DOI

Zhao D., Lim C.-P., Miyanaga K., Tanji Y. (2013). Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria. Appl. Microbiol. Biotechnol. 97, 2173–2182. 10.1007/s00253-012-4043-y PubMed DOI

Zia H., Arham Shamim M., Zeeshan M., Yasir Khan M., Shahid M. (2022). Metal organic frameworks as a versatile platform for the radioactive iodine capture: state of the art developments and future prospects. Inorganica Chim. Acta 539, 121026. 10.1016/j.ica.2022.121026 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...