Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides

. 2021 Feb 26 ; 14 (5) : . [epub] 20210226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33652580

Grantová podpora
APVV-18-0534 Agentúra na Podporu Výskumu a Vývoja
CZ.02.1.01/0.0/0.0/16_019/0000728 Ministerstvo Školství, Mládeže a Tělovýchovy

Growing concern over the hazardous effect of radionuclides on the environment is driving research on mitigation and deposition strategies for radioactive waste management. Currently, there are many techniques used for radionuclides separation from the environment such as ion exchange, solvent extraction, chemical precipitation and adsorption. Adsorbents are the leading area of research and many useful materials are being discovered in this category of radionuclide ion separation. The adsorption technologies lack the ability of selective removal of metal ions from solution. This drawback is eliminated by the use of ion-imprinted polymers, these materials having targeted binding sites for specific ions in the media. In this review article, we present recently published literature about the use of ion-imprinted polymers for the adsorption of 10 important hazardous radionuclides-U, Th, Cs, Sr, Ce, Tc, La, Cr, Ni, Co-found in the nuclear fuel cycle.

Zobrazit více v PubMed

Keith S., Faroon O., Roney N., Scinicariello F., Wilbur S., Ingerman L., Llados F., Plewak D., Wohlers D., Diamond G. Toxicological Profile for Uranium. Agency for Toxic Substances and Disease Registry; Atlanta, GA, USA: 2013. PubMed

Horne G.P., Zarzana C.A., Grimes T.S., Rae C., Ceder J., Mezyk S.P., Mincher B.J., Charbonnel M.-C., Guilbaud P., Saint-Louis G. Effect of Chemical Environment on the Radiation Chemistry of N, N-Di-(2-Ethylhexyl) Butyramide (DEHBA) and Plutonium Retention. Dalton Trans. 2019;48:14450–14460. doi: 10.1039/C9DT02383F. PubMed DOI

Augustine S., Gagnaire B., Adam-Guillermin C., Kooijman S.A.L.M. Effects of Uranium on the Metabolism of Zebrafish, Danio Rerio. Aquat. Toxicol. 2012;118:9–26. doi: 10.1016/j.aquatox.2012.02.029. PubMed DOI

Manaka M., Seki Y., Okuzawa K., Watanabe Y. Uranium Sorption onto Natural Sediments within a Small Stream in Central Japan. Limnology. 2008;9:173–183. doi: 10.1007/s10201-008-0249-1. DOI

Nordberg G.F., Fowler B.A., Nordberg M., Friberg L. Handbook on the Toxicology of Metals. Academic Press; Amsterdam, The Netherlands: 2007. p. 1024.

Keith S., Wohlers D., Ingerman L. Toxicological Profile for Thorium. Agency for Toxic Substances and Disease Registry; Atlanta, GA, USA: 2019. PubMed

Ding H., Zhang X., Yang H., Luo X., Lin X. Highly Efficient Extraction of Thorium from Aqueous Solution by Fungal Mycelium-Based Microspheres Fabricated via Immobilization. Chem. Eng. J. 2019;368:37–50. doi: 10.1016/j.cej.2019.02.116. DOI

Morsy A.M.A. Performance of Magnetic Talc Titanium Oxide Composite for Thorium Ions Adsorption from Acidic Solution. Environ. Technol. Innov. 2017;8:399–410. doi: 10.1016/j.eti.2017.09.004. DOI

Igarashi Y., Kogure T., Kurihara Y., Miura H., Okumura T., Satou Y., Takahashi Y., Yamaguchi N. A Review of Cs-Bearing Microparticles in the Environment Emitted by the Fukushima Dai-Ichi Nuclear Power Plant Accident. J. Environ. Radioact. 2019;205:101–118. doi: 10.1016/j.jenvrad.2019.04.011. PubMed DOI

Ma B., Oh S., Shin W.S., Choi S.-J. Removal of Co2+, Sr2+ and Cs+ from Aqueous Solution by Phosphate-Modified Montmorillonite (PMM) Desalination. 2011;276:336–346. doi: 10.1016/j.desal.2011.03.072. DOI

Li Q., Liu H., Liu T., Guo M., Qing B., Ye X., Wu Z. Strontium and Calcium Ion Adsorption by Molecularly Imprinted Hybrid Gel. Chem. Eng. J. 2010;157:401–407. doi: 10.1016/j.cej.2009.11.029. DOI

Guo Y., Zhang S., Lai L., Wang G. Rare Earth Elements in Oolong Tea and Their Human Health Risks Associated with Drinking Tea. J. Food Compos. Anal. 2015;44:122–127. doi: 10.1016/j.jfca.2015.08.001. DOI

Li Y., Li P., Yu H., Bian Y. Recent Advances (2010–2015) in Studies of Cerium Oxide Nanoparticles’ Health Effects. Environ. Toxicol. Pharmacol. 2016;44:25–29. doi: 10.1016/j.etap.2016.04.004. PubMed DOI

Colton R. The Chemistry of Rhenium and Technetium. Interscience Publishers; London, UK: New York, NY, USA: 1965.

Iannicelli-Zubiani E.M., Stampino P.G., Cristiani C., Dotelli G. Enhanced Lanthanum Adsorption by Amine Modified Activated Carbon. Chem. Eng. J. 2018;341:75–82. doi: 10.1016/j.cej.2018.01.154. DOI

Boffetta P., Cardis E., Vainio H., Coleman M.P., Kogevinas M., Nordberg G., Parkin D.M., Partensky C., Shuker D., Tomatis L. Cancer Risks Related to Electricity Production. Eur. J. Cancer Clin. Oncol. 1991;27:1504–1519. doi: 10.1016/0277-5379(91)90040-K. PubMed DOI

Fišera O., Šebesta F. Determination of 59Ni in Radioactive Waste. J. Radioanal. Nucl. Chem. 2010;286:713–717. doi: 10.1007/s10967-010-0713-3. DOI

Mudipalli A., Zelikoff J.T. Essential and Non-Essential Metals. Humana Press; Totowa, NJ, USA: 2017.

Taddei M.H.T., Macacini J.F., Vicente R., Marumo J.T., Sakata S.K., Terremoto L.A.A. Determination of 63Ni and 59Ni in Spent Ion-Exchange Resin and Activated Charcoal from the IEA-R1 Nuclear Research Reactor. Appl. Radiat. Isot. 2013;77:50–55. doi: 10.1016/j.apradiso.2013.02.014. PubMed DOI

Gault N., Sandre C., Poncy J.-L., Moulin C., Lefaix J.-L., Bresson C. Cobalt Toxicity: Chemical and Radiological Combined Effects on HaCaT Keratinocyte Cell Line. Toxicol. Vitr. 2010;24:92–98. doi: 10.1016/j.tiv.2009.08.027. PubMed DOI

Mahar A., Wang P., Ali A., Awasthi M.K., Lahori A.H., Wang Q., Li R., Zhang Z. Challenges and Opportunities in the Phytoremediation of Heavy Metals Contaminated Soils: A Review. Ecotoxicol. Environ. Saf. 2016;126:111–121. doi: 10.1016/j.ecoenv.2015.12.023. PubMed DOI

Kononova O.N., Bryuzgina G.L., Apchitaeva O.V., Kononov Y.S. Ion Exchange Recovery of Chromium (VI) and Manganese (II) from Aqueous Solutions. Arab. J. Chem. 2019;12:2713–2720. doi: 10.1016/j.arabjc.2015.05.021. DOI

Mollah A., Begum A., Rahman M. Removal of Radionuclides from Low Level Radioactive Liquid Waste by Precipitation. J. Radioanal. Nucl. Chem. 1998;229:187–189. doi: 10.1007/BF02389473. DOI

Khani M.H., Keshtkar A.R., Ghannadi M., Pahlavanzadeh H. Equilibrium, Kinetic and Thermodynamic Study of the Biosorption of Uranium onto Cystoseria Indica Algae. J. Hazard. Mater. 2008;150:612–618. doi: 10.1016/j.jhazmat.2007.05.010. PubMed DOI

Montaña M., Camacho A., Serrano I., Devesa R., Matia L., Vallés I. Removal of Radionuclides in Drinking Water by Membrane Treatment Using Ultrafiltration, Reverse Osmosis and Electrodialysis Reversal. J. Environ. Radioact. 2013;125:86–92. doi: 10.1016/j.jenvrad.2013.01.010. PubMed DOI

Abdi S., Nasiri M., Mesbahi A., Khani M.H. Investigation of Uranium (VI) Adsorption by Polypyrrole. J. Hazard. Mater. 2017;332:132–139. doi: 10.1016/j.jhazmat.2017.01.013. PubMed DOI

Wang J., Zhuang S. Removal of Various Pollutants from Water and Wastewater by Modified Chitosan Adsorbents. Crit. Rev. Environ. Sci. Technol. 2017;47:2331–2386. doi: 10.1080/10643389.2017.1421845. DOI

Wang G., Liu J., Wang X., Xie Z., Deng N. Adsorption of Uranium (VI) from Aqueous Solution onto Cross-Linked Chitosan. J. Hazard. Mater. 2009;168:1053–1058. doi: 10.1016/j.jhazmat.2009.02.157. PubMed DOI

Galamboš M., Suchánek P., Rosskopfová O. Sorption of Anthropogenic Radionuclides on Natural and Synthetic Inorganic Sorbents. J. Radioanal. Nucl. Chem. 2012;293:613–633. doi: 10.1007/s10967-012-1717-y. DOI

Means J.L., Crerar D.A., Borcsik M.P., Duguid J.O. Radionuclide Adsorption by Manganese Oxides and Implications for Radioactive Waste Disposal. Nature. 1978;274:44–47. doi: 10.1038/274044a0. DOI

Musić S., Ristić M. Adsorption of Trace Elements or Radionuclides on Hydrous Iron Oxides. J. Radioanal. Nucl. Chem. 1988;120:289–304. doi: 10.1007/BF02037344. DOI

Lu S., Sun Y., Chen C. Interface Science and Technology. Vol. 29. Elsevier; Amsterdam, The Netherlands: 2019. Adsorption of Radionuclides on Carbon-Based Nanomaterials; pp. 141–215.

Claverie M., Garcia J., Prevost T., Brendlé J., Limousy L. Inorganic and Hybrid (Organic–Inorganic) Lamellar Materials for Heavy Metals and Radionuclides Capture in Energy Wastes Management—A Review. Materials. 2019;12:1399. doi: 10.3390/ma12091399. PubMed DOI PMC

Naeimi S., Faghihian H. Performance of Novel Adsorbent Prepared by Magnetic Metal-Organic Framework (MOF) Modified by Potassium Nickel Hexacyanoferrate for Removal of Cs+ from Aqueous Solution. Sep. Purif. Technol. 2017;175:255–265. doi: 10.1016/j.seppur.2016.11.028. DOI

Sun Q., Aguila B., Ma S. Opportunities of Porous Organic Polymers for Radionuclide Sequestration. Trends Chem. 2019;1:292–303. doi: 10.1016/j.trechm.2019.02.010. DOI

Vellingiri K., Kim K.-H., Pournara A., Deep A. Towards High-Efficiency Sorptive Capture of Radionuclides in Solution and Gas. Prog. Mater. Sci. 2018;94:1–67. doi: 10.1016/j.pmatsci.2018.01.002. DOI

Chen L., Xu S., Li J. Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted Applications. Chem. Soc. Rev. 2011;40:2922–2942. doi: 10.1039/c0cs00084a. PubMed DOI

Haupt K. Imprinted Polymers—Tailor-Made Mimics of Antibodies and Receptors. Chem. Commun. 2003:171–178. doi: 10.1039/b207596b. PubMed DOI

Tarley C.R.T., Corazza M.Z., Somera B.F., Segatelli M.G. Preparation of New Ion-Selective Cross-Linked Poly (Vinylimidazole-Co-Ethylene Glycol Dimethacrylate) Using a Double-Imprinting Process for the Preconcentration of Pb2+ Ions. J. Colloid Interface Sci. 2015;450:254–263. doi: 10.1016/j.jcis.2015.02.074. PubMed DOI

Mahony J.O., Nolan K., Smyth M.R., Mizaikoff B. Molecularly Imprinted Polymers—Potential and Challenges in Analytical Chemistry. Anal. Chim. Acta. 2005;534:31–39. doi: 10.1016/j.aca.2004.07.043. DOI

Rao T.P., Daniel S., Gladis J.M. Tailored Materials for Preconcentration or Separation of Metals by Ion-Imprinted Polymers for Solid-Phase Extraction (IIP-SPE) TrAC Trends Anal. Chem. 2004;23:28–35.

Wulff G. Molecular Imprinting in Cross-linked Materials with the Aid of Molecular Templates—A Way towards Artificial Antibodies. Angew. Chem. Int. Ed. Engl. 1995;34:1812–1832. doi: 10.1002/anie.199518121. DOI

Haupt K., Mosbach K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 2000;100:2495–2504. doi: 10.1021/cr990099w. PubMed DOI

Fu J., Chen L., Li J., Zhang Z. Current Status and Challenges of Ion Imprinting. J. Mater. Chem. A. 2015;3:13598–13627. doi: 10.1039/C5TA02421H. DOI

Metilda P., Gladis J.M., Rao T.P. Influence of Binary/Ternary Complex of Imprint Ion on the Preconcentration of Uranium (VI) Using Ion Imprinted Polymer Materials. Anal. Chim. Acta. 2004;512:63–73. doi: 10.1016/j.aca.2004.02.041. DOI

Nishide H., Deguchi J., Tsuchida E. Selective Adsorption of Metal Ions on Crosslinked Poly (Vinylpyridine) Resin Prepared with a Metal Ion as a Template. Chem. Lett. 1976;5:169–174. doi: 10.1246/cl.1976.169. DOI

Saunders G.D., Foxon S.P., Walton P.H., Joyce M.J., Port S.N. A Selective Uranium Extraction Agent Prepared by Polymer ImprintingS. N. Port, MJ Joyce, PH Walton and GD Saunders, UK Pat. Appl., 979946.7, 1997; Int. Pat., WO 99/15707, 1998. Chem. Commun. 2000:273–274. doi: 10.1039/a909691d. DOI

He Q., Chang X., Wu Q., Huang X., Hu Z., Zhai Y. Synthesis and Applications of Surface-Grafted Th (IV)-Imprinted Polymers for Selective Solid-Phase Extraction of Thorium (IV) Anal. Chim. Acta. 2007;605:192–197. doi: 10.1016/j.aca.2007.10.026. PubMed DOI

Mafu L.D., Msagati T.A.M., Mamba B.B. Ion-Imprinted Polymers for Environmental Monitoring of Inorganic Pollutants: Synthesis, Characterization, and Applications. Environ. Sci. Pollut. Res. 2013;20:790–802. doi: 10.1007/s11356-012-1215-3. PubMed DOI

Hande P.E., Samui A.B., Kulkarni P.S. Highly Selective Monitoring of Metals by Using Ion-Imprinted Polymers. Environ. Sci. Pollut. Res. 2015;22:7375–7404. doi: 10.1007/s11356-014-3937-x. PubMed DOI

Branger C., Meouche W., Margaillan A. Recent Advances on Ion-Imprinted Polymers. React. Funct. Polym. 2013;73:859–875. doi: 10.1016/j.reactfunctpolym.2013.03.021. DOI

He M.F.A.R.H., Brada S.T.M. A Mini Review on Molecularly Imprinted Polymer Based Halloysite Nanotubes Composites: Innovative Materials for Analytical and Environmental Applications. Rev. Environ. Sci. Bio/Technol. 2020;19:241–258.

Erdem Ö., Saylan Y., Andaç M., Denizli A. Molecularly Imprinted Polymers for Removal of Metal Ions: An Alternative Treatment Method. Biomimetics. 2018;3:38. doi: 10.3390/biomimetics3040038. PubMed DOI PMC

Chen L., Dai J., Hu B., Wang J., Wu Y., Dai J., Meng M., Li C., Yan Y. Recent Progresses on the Adsorption and Separation of Ions by Imprinting Routes. Sep. Purif. Rev. 2019;49:268–293. doi: 10.1080/15422119.2019.1596134. DOI

Say R., Birlik E., Ersöz A., Yılmaz F., Gedikbey T., Denizli A. Preconcentration of Copper on Ion-Selective Imprinted Polymer Microbeads. Anal. Chim. Acta. 2003;480:251–258. doi: 10.1016/S0003-2670(02)01656-2. DOI

Nicholls I.A., Adbo K., Andersson H.S., Andersson P.O., Ankarloo J., Hedin-Dahlström J., Jokela P., Karlsson J.G., Olofsson L., Rosengren J., et al. Can We Rationally Design Molecularly Imprinted Polymers? Anal. Chim. Acta. 2001;435:9–18. doi: 10.1016/S0003-2670(01)00932-1. DOI

Laatikainen K., Udomsap D., Siren H., Brisset H., Sainio T., Branger C. Effect of Template Ion–Ligand Complex Stoichiometry on Selectivity of Ion-Imprinted Polymers. Talanta. 2015;134:538–545. doi: 10.1016/j.talanta.2014.11.050. PubMed DOI

Özkara S., Andaç M., Karakoç V., Say R., Denizli A. Ion-imprinted PHEMA Based Monolith for the Removal of Fe3+ Ions from Aqueous Solutions. J. Appl. Polym. Sci. 2011;120:1829–1836. doi: 10.1002/app.33400. DOI

Sharma G., Kandasubramanian B. Molecularly Imprinted Polymers for Selective Recognition and Extraction of Heavy Metal Ions and Toxic Dyes. J. Chem. Eng. Data. 2020;65:396–418. doi: 10.1021/acs.jced.9b00953. DOI

Meng H., Li Z., Ma F., Jia L., Wang X., Zhou W., Zhang L. Preparation and Characterization of Surface Imprinted Polymer for Selective Sorption of Uranium (VI) J. Radioanal. Nucl. Chem. 2015;306:139–146. doi: 10.1007/s10967-015-4067-8. DOI

Germiniano T.O., Corazza M.Z., Segatelli M.G., Ribeiro E.S., Yabe M.J.S., Galunin E., Tarley C.R.T. Synthesis of Novel Copper Ion-Selective Material Based on Hierarchically Imprinted Cross-Linked Poly (Acrylamide-Co-Ethylene Glycol Dimethacrylate) React. Funct. Polym. 2014;82:72–80. doi: 10.1016/j.reactfunctpolym.2014.05.012. DOI

Mafu L.D., Mamba B.B., Msagati T.A.M. Synthesis and Characterization of Ion Imprinted Polymeric Adsorbents for the Selective Recognition and Removal of Arsenic and Selenium in Wastewater Samples. J. Saudi Chem. Soc. 2016;20:594–605. doi: 10.1016/j.jscs.2014.12.008. DOI

Cai X., Li J., Zhang Z., Yang F., Dong R., Chen L. Novel Pb2+ Ion Imprinted Polymers Based on Ionic Interaction via Synergy of Dual Functional Monomers for Selective Solid-Phase Extraction of Pb2+ in Water Samples. ACS Appl. Mater. Interfaces. 2014;6:305–313. doi: 10.1021/am4042405. PubMed DOI

Rodríguez-Fernández R., Peña-Vázquez E., Bermejo-Barrera P. Synthesis of an Imprinted Polymer for the Determination of Methylmercury in Marine Products. Talanta. 2015;144:636–641. doi: 10.1016/j.talanta.2015.06.028. PubMed DOI

Jinadasa K.K., Peña-Vázquez E., Bermejo-Barrera P., Moreda-Piñeiro A. Ionic Imprinted Polymer Solid-Phase Extraction for Inorganic Arsenic Selective Pre-Concentration in Fishery Products before High-Performance Liquid Chromatography–Inductively Coupled Plasma-Mass Spectrometry Speciation. J. Chromatogr. A. 2020;1619:460973. doi: 10.1016/j.chroma.2020.460973. PubMed DOI

Yordanova T., Dakova I., Balashev K., Karadjova I. Polymeric Ion-Imprinted Nanoparticles for Mercury Speciation in Surface Waters. Microchem. J. 2014;113:42–47. doi: 10.1016/j.microc.2013.11.008. DOI

Anirudhan T.S., Nima J., Divya P.L. Adsorption and Separation Behavior of Uranium (VI) by 4-Vinylpyridine-Grafted-Vinyltriethoxysilane-Cellulose Ion Imprinted Polymer. J. Environ. Chem. Eng. 2015;3:1267–1276. doi: 10.1016/j.jece.2014.10.006. DOI

Comba P., Schiek W. Fit and Misfit between Ligands and Metal Ions. Coord. Chem. Rev. 2003;238:21–29. doi: 10.1016/S0010-8545(02)00294-1. DOI

Fasihi J., Alahyari S.A., Shamsipur M., Sharghi H., Charkhi A. Adsorption of Uranyl Ion onto an Anthraquinone Based Ion-Imprinted Copolymer. React. Funct. Polym. 2011;71:803–808. doi: 10.1016/j.reactfunctpolym.2011.03.014. DOI

Zulfikar M.A., Zarlina R., Handayani N., Alni A., Wahyuningrum D. Separation of Yttrium from Aqueous Solution Using Ionic Imprinted Polymers. Russ. J. Non-Ferrous Met. 2017;58:614–624. doi: 10.3103/S1067821217060189. DOI

Muzzarelli R.A.A. Potential of Chitin/Chitosan-Bearing Materials for Uranium Recovery: An Interdisciplinary Review. Carbohydr. Polym. 2011;84:54–63. doi: 10.1016/j.carbpol.2010.12.025. DOI

Monier M., Abdel-Latif D.A., Mohammed H.A. Synthesis and Characterization of Uranyl Ion-Imprinted Microspheres Based on Amidoximated Modified Alginate. Int. J. Biol. Macromol. 2015;75:354–363. doi: 10.1016/j.ijbiomac.2014.12.001. PubMed DOI

Ngah W.S.W., Teong L.C., Hanafiah M.A.K.M. Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review. Carbohydr. Polym. 2011;83:1446–1456. doi: 10.1016/j.carbpol.2010.11.004. DOI

Özkahraman B., Özbaş Z., Öztürk A.B. Synthesis of Ion-Imprinted Alginate Based Beads: Selective Adsorption Behavior of Nickel (II) Ions. J. Polym. Environ. 2018;26:4303–4310. doi: 10.1007/s10924-018-1292-6. DOI

Okay O. Macroporous Copolymer Networks. Prog. Polym. Sci. 2000;25:711–779. doi: 10.1016/S0079-6700(00)00015-0. DOI

Yoshizako K., Hosoya K., Iwakoshi Y., Kimata K., Tanaka N. Porogen Imprinting Effects. Anal. Chem. 1998;70:386–389. doi: 10.1021/ac970541f. DOI

Rammika M., Darko G., Torto N. Optimal Synthesis of a Ni (II)-Dimethylglyoxime Ion-Imprinted Polymer for the Enrichment of Ni (II) Ions in Water, Soil and Mine Tailing Samples. Water SA. 2012;38:261–268. doi: 10.4314/wsa.v38i2.12. DOI

Lin C., Wang H., Wang Y., Zhou L., Liang J. Selective Preconcentration of Trace Thorium from Aqueous Solutions with Th (IV)-Imprinted Polymers Prepared by a Surface-Grafted Technique. Int. J. Environ. Anal. Chem. 2011;91:1050–1061. doi: 10.1080/03067311003629677. DOI

Monier M., Abdel-Latif D.A. Synthesis and Characterization of Ion-Imprinted Resin Based on Carboxymethyl Cellulose for Selective Removal of UO22+ Carbohydr. Polym. 2013;97:743–752. doi: 10.1016/j.carbpol.2013.05.062. PubMed DOI

Ji X.Z., Liu H.J., Wang L.L., Sun Y.K., Wu Y.W. Study on Adsorption of Th (IV) Using Surface Modified Dibenzoylmethane Molecular Imprinted Polymer. J. Radioanal. Nucl. Chem. 2013;295:265–270. doi: 10.1007/s10967-012-1979-4. DOI

Chen J., Bai H., Xia J., Liu X., Liu Y. Trace Detection of Ce3+ by Adsorption Strip Voltammetry at a Carbon Paste Electrode Modified with Ion Imprinted Polymers. J. Rare Earths. 2018;36:1121–1126. doi: 10.1016/j.jre.2018.03.014. DOI

Liu Y., Meng X., Luo M., Meng M., Ni L., Qiu J., Hu Z., Liu F., Zhong G., Liu Z. Synthesis of Hydrophilic Surface Ion-Imprinted Polymer Based on Graphene Oxide for Removal of Strontium from Aqueous Solution. J. Mater. Chem. A. 2015;3:1287–1297. doi: 10.1039/C4TA04908J. DOI

Salian V.D., Byrne M.E. Living Radical Polymerization and Molecular Imprinting: Improving Polymer Morphology in Imprinted Polymers. Macromol. Mater. Eng. 2013;298:379–390. doi: 10.1002/mame.201200191. DOI

Chen Y., Wang J. Removal of Radionuclide Sr2+ Ions from Aqueous Solution Using Synthesized Magnetic Chitosan Beads. Nucl. Eng. Des. 2012;242:445–451. doi: 10.1016/j.nucengdes.2011.10.059. DOI

Gao M., Zhu G., Gao C. A Review: Adsorption Materials for the Removal and Recovery of Uranium from Aqueous Solutions. Energy Environ. Focus. 2014;3:219–226. doi: 10.1166/eef.2014.1104. DOI

Gao D., Zhang Z., Wu M., Xie C., Guan G., Wang D. A Surface Functional Monomer-Directing Strategy for Highly Dense Imprinting of TNT at Surface of Silica Nanoparticles. J. Am. Chem. Soc. 2007;129:7859–7866. doi: 10.1021/ja070975k. PubMed DOI

Volesky B. Sorption and Biosorption. BV Sorbex, Inc.; Montreal, QC, Canada: 2003. pp. 103–116.

Wang J., Guo X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere. 2020;258:127279. doi: 10.1016/j.chemosphere.2020.127279. PubMed DOI

Cheng Z., Wang H., Wang Y., He F., Zhang H., Yang S. Synthesis and Characterization of an Ion-Imprinted Polymer for Selective Solid Phase Extraction of Thorium (IV) Microchim. Acta. 2011;173:423–431. doi: 10.1007/s00604-011-0576-5. DOI

Tavengwa N.T., Cukrowska E., Chimuka L. Sequestration of U (VI) from Aqueous Solutions Using Precipitate Ion Imprinted Polymers Endowed with Oleic Acid Functionalized Magnetite. J. Radioanal. Nucl. Chem. 2015;304:933–943. doi: 10.1007/s10967-014-3878-3. DOI

Meng X., Liu Y., Meng M., Gu Z., Ni L., Zhong G., Liu F., Hu Z., Chen R., Yan Y. Synthesis of Novel Ion-Imprinted Polymers by Two Different RAFT Polymerization Strategies for the Removal of Cs (I) from Aqueous Solutions. RSC Adv. 2015;5:12517–12529. doi: 10.1039/C4RA11459K. DOI

Sadeghi S., Aboobakri E. Magnetic Nanoparticles with an Imprinted Polymer Coating for the Selective Extraction of Uranyl Ions. Microchim. Acta. 2012;178:89–97. doi: 10.1007/s00604-012-0800-y. DOI

Liu F., Liu Y., Xu Y., Ni L., Meng X., Hu Z., Zhong G., Meng M., Wang Y., Han J. Efficient Static and Dynamic Removal of Sr (II) from Aqueous Solution Using Chitosan Ion-Imprinted Polymer Functionalized with Dithiocarbamate. J. Environ. Chem. Eng. 2015;3:1061–1071. doi: 10.1016/j.jece.2015.03.014. DOI

Song Y., Ou H., Bian W., Zhang Y., Pan J., Liu Y., Huang W. Ion-Imprinted Polymers Based on Hollow Silica with Yeasts as Sacrificial Supports for Sr 2+ Selective Adsorption. J. Inorg. Organomet. Polym. Mater. 2013;23:1325–1334. doi: 10.1007/s10904-013-9927-5. DOI

Kang R., Qiu L., Fang L., Yu R., Chen Y., Lu X., Luo X. A Novel Magnetic and Hydrophilic Ion-Imprinted Polymer as a Selective Sorbent for the Removal of Cobalt Ions from Industrial Wastewater. J. Environ. Chem. Eng. 2016;4:2268–2277. doi: 10.1016/j.jece.2016.04.010. DOI

Shu X., Shen L., Wei Y., Hua D. Synthesis of Surface Ion-Imprinted Magnetic Microsphere for Efficient Sorption of Perrhenate: A Structural Surrogate for Pertechnetate. J. Mol. Liq. 2015;211:621–627. doi: 10.1016/j.molliq.2015.07.059. DOI

Tavengwa N.T., Cukrowska E., Chimuka L. Synthesis of Bulk Ion-Imprinted Polymers (IIPs) Embedded with Oleic Acid Coated Fe 3 O 4 for Selective Extraction of Hexavalent Uranium. Water SA. 2014;40:623–630. doi: 10.4314/wsa.v40i4.7. DOI

Aly M.M., Hamza M.F. A Review: Studies on Uranium Removal Using Different Techniques. Overview. J. Dispers. Sci. Technol. 2013;34:182–213. doi: 10.1080/01932691.2012.657954. DOI

Ahmadi S.J., Noori-Kalkhoran O., Shirvani-Arani S. Synthesis and Characterization of New Ion-Imprinted Polymer for Separation and Preconcentration of Uranyl (UO22+) Ions. J. Hazard. Mater. 2010;175:193–197. doi: 10.1016/j.jhazmat.2009.09.148. PubMed DOI

Milja T.E., Prathish K.P., Rao T.P. Synthesis of Surface Imprinted Nanospheres for Selective Removal of Uranium from Simulants of Sambhar Salt Lake and Ground Water. J. Hazard. Mater. 2011;188:384–390. doi: 10.1016/j.jhazmat.2011.01.121. PubMed DOI

Liu Y., Cao X., Hua R., Wang Y., Liu Y., Pang C., Wang Y. Selective Adsorption of Uranyl Ion on Ion-Imprinted Chitosan/PVA Cross-Linked Hydrogel. Hydrometallurgy. 2010;104:150–155. doi: 10.1016/j.hydromet.2010.05.009. DOI

Zhou L., Shang C., Liu Z., Huang G., Adesina A.A. Selective Adsorption of Uranium (VI) from Aqueous Solutions Using the Ion-Imprinted Magnetic Chitosan Resins. J. Colloid Interface Sci. 2012;366:165–172. doi: 10.1016/j.jcis.2011.09.069. PubMed DOI

Yang S., Qian J., Kuang L., Hua D. Ion-Imprinted Mesoporous Silica for Selective Removal of Uranium from Highly Acidic and Radioactive Effluent. ACS Appl. Mater. Interfaces. 2017;9:29337–29344. doi: 10.1021/acsami.7b09419. PubMed DOI

Zhu J., Liu Q., Liu J., Chen R., Zhang H., Yu J., Zhang M., Li R., Wang J. Novel Ion-Imprinted Carbon Material Induced by Hyperaccumulation Pathway for the Selective Capture of Uranium. ACS Appl. Mater. Interfaces. 2018;10:28877–28886. doi: 10.1021/acsami.8b09022. PubMed DOI

Wang Z., Zhang D., Xiao X., Su C., Li Z., Xue J., Hu N., Peng P., Liao L., Wang H. A Highly Sensitive and Selective Sensor for Trace Uranyl (VI) Ion Based on a Graphene-Coated Carbon Paste Electrode Modified with Ion Imprinted Polymer. Microchem. J. 2020;155:104767. doi: 10.1016/j.microc.2020.104767. DOI

Zhong X., Sun Y., Zhang Z., Dai Y., Wang Y., Liu Y., Hua R., Cao X., Liu Y. A New Hydrothermal Cross-Linking Ion-Imprinted Chitosan for High-Efficiency Uranium Removal. J. Radioanal. Nucl. Chem. 2019;322:901–911. doi: 10.1007/s10967-019-06794-1. DOI

Zhang H., Liang H., Chen Q., Shen X. Synthesis of a New Ionic Imprinted Polymer for the Extraction of Uranium from Seawater. J. Radioanal. Nucl. Chem. 2013;298:1705–1712. doi: 10.1007/s10967-013-2612-x. DOI

Tavengwa N.T., Cukrowska E., Chimuka L. Preparation, Characterization and Application of NaHCO3 Leached Bulk U (VI) Imprinted Polymers Endowed with γ-MPS Coated Magnetite in Contaminated Water. J. Hazard. Mater. 2014;267:221–228. doi: 10.1016/j.jhazmat.2013.12.053. PubMed DOI

Monier M., Elsayed N.H. Selective Extraction of Uranyl Ions Using Ion-Imprinted Chelating Microspheres. J. Colloid Interface Sci. 2014;423:113–122. doi: 10.1016/j.jcis.2014.02.015. PubMed DOI

Güney S., Güney O. A Novel Electrochemical Sensor for Selective Determination of Uranyl Ion Based on Imprinted Polymer Sol–Gel Modified Carbon Paste Electrode. Sens. Actuators B Chem. 2016;231:45–53. doi: 10.1016/j.snb.2016.02.119. DOI

Arnold J., Gianetti T.L., Kashtan Y. Thorium Lends a Fiery Hand. Nat. Chem. 2014;6:554. doi: 10.1038/nchem.1952. PubMed DOI

Lin C., Wang H., Wang Y., Cheng Z. Selective Solid-Phase Extraction of Trace Thorium (IV) Using Surface-Grafted Th (IV)-Imprinted Polymers with Pyrazole Derivative. Talanta. 2010;81:30–36. doi: 10.1016/j.talanta.2009.11.032. PubMed DOI

He F.F., Wang H.Q., Wang Y.Y., Wang X.F., Zhang H.S., Li H.L., Tang J.H. Magnetic Th (IV)-Ion Imprinted Polymers with Salophen Schiff Base for Separation and Recognition of Th (IV) J. Radioanal. Nucl. Chem. 2013;295:167–177. doi: 10.1007/s10967-012-1891-y. DOI

Huang G., Chen Z., Wang L., Lv T., Shi J. Removal of Thorium (IV) from Aqueous Solution Using Magnetic Ion-Imprinted Chitosan Resin. J. Radioanal. Nucl. Chem. 2016;310:1265–1272. doi: 10.1007/s10967-016-4993-0. DOI

Othman N.A.F., Selambakkannu S., Azian H., Ratnam C.T., Yamanobe T., Hoshina H., Seko N. Synthesis of Surface Ion-Imprinted Polymer for Specific Detection of Thorium under Acidic Conditions. Polym. Bull. 2020;78:165–183. doi: 10.1007/s00289-019-03094-2. DOI

Khandaker S., Chowdhury M.F., Awual M.R., Islam A., Kuba T. Efficient Cesium Encapsulation from Contaminated Water by Cellulosic Biomass Based Activated Wood Charcoal. Chemosphere. 2020;262:127801. doi: 10.1016/j.chemosphere.2020.127801. PubMed DOI

Alby D., Charnay C., Heran M., Prelot B., Zajac J. Recent Developments in Nanostructured Inorganic Materials for Sorption of Cesium and Strontium: Synthesis and Shaping, Sorption Capacity, Mechanisms, and Selectivity—A Review. J. Hazard. Mater. 2018;344:511–530. doi: 10.1016/j.jhazmat.2017.10.047. PubMed DOI

Zhang Z., Xu X., Yan Y. Kinetic and Thermodynamic Analysis of Selective Adsorption of Cs (I) by a Novel Surface Whisker-Supported Ion-Imprinted Polymer. Desalination. 2010;263:97–106. doi: 10.1016/j.desal.2010.06.044. DOI

Shamsipur M., Rajabi H.R. Flame Photometric Determination of Cesium Ion after Its Preconcentration with Nanoparticles Imprinted with the Cesium-Dibenzo-24-Crown-8 Complex. Microchim. Acta. 2013;180:243–252. doi: 10.1007/s00604-012-0927-x. DOI

Iwasaki H., Yoshikawa M. Molecularly Imprinted Polyacrylonitrile Adsorbents for the Capture of Cs+ Ions. Polym. J. 2016;48:1151–1156. doi: 10.1038/pj.2016.87. DOI

Burger A., Lichtscheidl I. Strontium in the Environment: Review about Reactions of Plants towards Stable and Radioactive Strontium Isotopes. Sci. Total Environ. 2019;653:1458–1512. doi: 10.1016/j.scitotenv.2018.10.312. PubMed DOI

Liu Y., Gao J., Zhang Z., Dai J., Xie J., Yan Y. A New Sr (II) Ion-Imprinted Polymer Grafted onto Potassium Titanate Whiskers: Synthesis and Adsorption Performance for the Selective Separation of Strontium Ions. Adsorpt. Sci. Technol. 2010;28:23–37. doi: 10.1260/0263-6174.28.1.23. DOI

Bahraini N., Lai E.P.C., Li C., Sadi B.B., Kramer G.H. Molecularly Imprinted Polymers for 90Sr Urine Bioassay. Health Phys. 2011;101:128–135. doi: 10.1097/HP.0b013e318213a5ef. PubMed DOI

Pan J., Zou X., Yan Y., Wang X., Guan W., Han J., Wu X. An Ion-Imprinted Polymer Based on Palygorskite as a Sacrificial Support for Selective Removal of Strontium (II) Appl. Clay Sci. 2010;50:260–265. doi: 10.1016/j.clay.2010.08.007. DOI

Liu Y., Chen R., Yuan D., Liu Z., Meng M., Wang Y., Han J., Meng X., Liu F., Hu Z. Thermal-Responsive Ion-Imprinted Polymer Based on Magnetic Mesoporous Silica SBA-15 for Selective Removal of Sr (II) from Aqueous Solution. Colloid Polym. Sci. 2015;293:109–123. doi: 10.1007/s00396-014-3393-7. DOI

Liu Y., Liu F., Ni L., Meng M., Meng X., Zhong G., Qiu J. A Modeling Study by Response Surface Methodology (RSM) on Sr (II) Ion Dynamic Adsorption Optimization Using a Novel Magnetic Ion Imprinted Polymer. RSC Adv. 2016;6:54679–54692. doi: 10.1039/C6RA07270D. DOI

Wapstra A.H., Thibault C., Blachot J., Bersillon O. The NUBASE Evaluation of Nuclear and Decay Properties G. Audi. Nucl. Phys. A. 2003;729:3–128.

Pan J., Zou X., Li C., Liu Y., Yan Y., Han J. Synthesis and Applications of Ce (III)-Imprinted Polymer Based on Attapulgite as the Sacrificial Support Material for Selective Separation of Cerium (III) Ions. Microchim. Acta. 2010;171:151–160. doi: 10.1007/s00604-010-0416-z. DOI

Zhang X., Li C., Yan Y., Pan J., Xu P., Zhao X. A Ce 3+-Imprinted Functionalized Potassium Tetratitanate Whisker Sorbent Prepared by Surface Molecularly Imprinting Technique for Selective Separation and Determination of Ce 3+ Microchim. Acta. 2010;169:289–296. doi: 10.1007/s00604-010-0352-y. DOI

Prasad B.B., Jauhari D. Double-Ion Imprinted Polymer@ Magnetic Nanoparticles Modified Screen Printed Carbon Electrode for Simultaneous Analysis of Cerium and Gadolinium Ions. Anal. Chim. Acta. 2015;875:83–91. doi: 10.1016/j.aca.2015.02.009. PubMed DOI

Alizadeh T., Ganjali M.R., Akhoundian M., Norouzi P. Voltammetric Determination of Ultratrace Levels of Cerium (III) Using a Carbon Paste Electrode Modified with Nano-Sized Cerium-Imprinted Polymer and Multiwalled Carbon Nanotubes. Microchim. Acta. 2016;183:1123–1130. doi: 10.1007/s00604-015-1702-6. DOI

Keçili R., Dolak İ., Ziyadanoğulları B., Ersöz A., Say R. Ion Imprinted Cryogel-Based Supermacroporous Traps for Selective Separation of Cerium (III) in Real Samples. J. Rare Earths. 2018;36:857–862. doi: 10.1016/j.jre.2018.02.008. DOI

Liu Y., Tian S., Meng X., Dai X., Liu Z., Meng M., Han J., Wang Y., Chen R., Yan Y. Synthesis, Characterization, and Adsorption Properties of a Ce (III)-Imprinted Polymer Supported by Mesoporous SBA-15 Matrix by a Surface Molecular Imprinting Technique. Can. J. Chem. 2014;92:257–266. doi: 10.1139/cjc-2013-0423. DOI

Daňo M., Viglašová E., Galamboš M., Štamberg K., Kujan J. Surface Complexation Models of Pertechnetate on Biochar/Montmorillonite Composite—Batch and Dynamic Sorption Study. Materials. 2020;13:3108. doi: 10.3390/ma13143108. PubMed DOI PMC

Sert Ş., Kütahyali C., İnan S., Talip Z., Çetinkaya B., Eral M. Biosorption of Lanthanum and Cerium from Aqueous Solutions by Platanus Orientalis Leaf Powder. Hydrometallurgy. 2008;90:13–18. doi: 10.1016/j.hydromet.2007.09.006. DOI

Wang J., Wei J., Li J. Straw-Supported Ion Imprinted Polymer Sorbent Prepared by Surface Imprinting Technique Combined with AGET ATRP for Selective Adsorption of La3+ Ions. Chem. Eng. J. 2016;293:24–33. doi: 10.1016/j.cej.2016.02.051. DOI

Nik Mustapa N.R., Malek N.F.A., Yusoff M.M., Rahman M.L. Ion Imprinted Polymers for Selective Recognition and Separation of Lanthanum and Cerium Ions from Other Lanthanide. Sep. Sci. Technol. 2016;51:2762–2771. doi: 10.1080/01496395.2016.1225091. DOI

Besharati-Seidani A., Shamsipur M. Ion-Imprinted Polymeric Nanoparticles for Fast and Selective Separation of Lanthanum (III) Microchim. Acta. 2015;182:1747–1755. doi: 10.1007/s00604-015-1496-6. DOI

Trzonkowska L., Leśniewska B., Godlewska-Żyłkiewicz B. Studies on the Effect of Functional Monomer and Porogen on the Properties of Ion Imprinted Polymers Based on Cr (III)-1, 10-Phenanthroline Complex Designed for Selective Removal of Cr (III) Ions. React. Funct. Polym. 2017;117:131–139. doi: 10.1016/j.reactfunctpolym.2017.04.006. DOI

Liang Q., Geng J., Luo H., Fang W., Yin Y. Fast and Selective Removal of Cr (VI) from Aqueous Solutions by a Novel Magnetic Cr (VI) Ion-Imprinted Polymer. J. Mol. Liq. 2017;248:767–774. doi: 10.1016/j.molliq.2017.10.114. DOI

Zhou Z., Liu X., Zhang M., Jiao J., Zhang H., Du J., Zhang B., Ren Z. Preparation of Highly Efficient Ion-Imprinted Polymers with Fe3O4 Nanoparticles as Carrier for Removal of Cr (VI) from Aqueous Solution. Sci. Total Environ. 2020;699:134334. doi: 10.1016/j.scitotenv.2019.134334. PubMed DOI

Kumar S., Alveroğlu E., Balouch A., Talpur F.N., Jagirani M.S., Mahar A.M., Pato A.H., Mal D., Lal S. Fabrication of Chromium-Imprinted Polymer: A Real Magneto-Selective Sorbent for the Removal of Cr (vi) Ions in Real Water Samples. New J. Chem. 2020;44:18668–18678. doi: 10.1039/D0NJ04054A. DOI

Zhou Z., Kong D., Zhu H., Wang N., Wang Z., Wang Q., Liu W., Li Q., Zhang W., Ren Z. Preparation and Adsorption Characteristics of an Ion-Imprinted Polymer for Fast Removal of Ni (II) Ions from Aqueous Solution. J. Hazard. Mater. 2018;341:355–364. doi: 10.1016/j.jhazmat.2017.06.010. PubMed DOI

Ahmad I., Siddiqui W.A., Ahmad T., Siddiqui V.U. Synthesis and Characterization of Molecularly Imprinted Ferrite (SiO2@ Fe2O3) Nanomaterials for the Removal of Nickel (Ni2+ Ions) from Aqueous Solution. J. Mater. Res. Technol. 2019;8:1400–1411. doi: 10.1016/j.jmrt.2018.09.011. DOI

Elsayed N., Alatawi A., Monier M. Diacetylmonoxine Modified Chitosan Derived Ion-Imprinted Polymer for Selective Solid-Phase Extraction of Nickel (II) Ions. React. Funct. Polym. 2020;151:104570. doi: 10.1016/j.reactfunctpolym.2020.104570. DOI

Lenoble V., Laatikainen K., Garnier C., Angeletti B., Coulomb B., Sainio T., Branger C. Nickel Retention by an Ion-Imprinted Polymer: Wide-Range Selectivity Study and Modelling of the Binding Structures. Chem. Eng. J. 2016;304:20–28. doi: 10.1016/j.cej.2016.06.062. DOI

Leyssens L., Vinck B., Van Der Straeten C., Wuyts F., Maes L. Cobalt Toxicity in Humans—A Review of the Potential Sources and Systemic Health Effects. Toxicology. 2017;387:43–56. doi: 10.1016/j.tox.2017.05.015. PubMed DOI

Su Q., Deng L., Ye Q., He Y., Cui X. KOH-Activated Geopolymer Microspheres Recycle Co (II) with Higher Adsorption Capacity than NaOH-Activated Ones. ACS Omega. 2020;5:23898–23908. doi: 10.1021/acsomega.0c03158. PubMed DOI PMC

Anirudhan T.S., Deepa J.R., Christa J. Nanocellulose/Nanobentonite Composite Anchored with Multi-Carboxyl Functional Groups as an Adsorbent for the Effective Removal of Cobalt (II) from Nuclear Industry Wastewater Samples. J. Colloid Interface Sci. 2016;467:307–320. doi: 10.1016/j.jcis.2016.01.023. PubMed DOI

Liu Y., Gao J., Li C., Pan J., Yan Y., Xie J. Synthesis and Adsorption Performance of Surface-Grafted Co (II)-Imprinted Polymer for Selective Removal of Cobalt. Chin. J. Chem. 2010;28:548–554. doi: 10.1002/cjoc.201090110. DOI

Li C., Pan J., Zou X., Gao J., Xie J., Yongsheng Y. Synthesis and Applications of Novel Attapulgite-Supported Co (II)-Imprinted Polymers for Selective Solid-Phase Extraction of Cobalt (II) from Aqueous Solutions. Int. J. Environ. Anal. Chem. 2011;91:1035–1049. doi: 10.1080/03067310903502752. DOI

Liu Y., Liu Z., Dai J., Gao J., Xie J., Yan Y. Selective Adsorption of Co (II) by Mesoporous Silica SBA-15-supported Surface Ion Imprinted Polymer: Kinetics, Isotherms, and Thermodynamics Studies. Chin. J. Chem. 2011;29:387–398. doi: 10.1002/cjoc.201190093. DOI

Pan J., Guan W., Zhang Z., Wang X., Li C., Yan Y. Selective Adsorption of Co (II) Ions by Whisker Surface Ion-Imprinted Polymer: Equilibrium and Kinetics Modeling. Chin. J. Chem. 2010;28:2483–2488. doi: 10.1002/cjoc.201190026. DOI

Nishad P.A., Bhaskarapillai A., Velmurugan S., Narasimhan S.V. Cobalt (II) Imprinted Chitosan for Selective Removal of Cobalt during Nuclear Reactor Decontamination. Carbohydr. Polym. 2012;87:2690–2696. doi: 10.1016/j.carbpol.2011.11.061. DOI

Bhaskarapillai A., Narasimhan S.V. A Comparative Investigation of Copper and Cobalt Imprinted Polymers: Evidence for Retention of the Solution-State Metal Ion–Ligand Complex Stoichiometry in the Imprinted Cavities. RSC Adv. 2013;3:13178–13182. doi: 10.1039/c3ra23384g. DOI

Liu F.B., Jia M.C., Men J.F., Wang X.W. Mn2+ and Co2+ Removal from Dilute Solution Using Cysteine Grafted Cobalt/Manganese Imprinted Crosslinked Chitosan. Appl. Mech. Mater. 2015;751:44–50. doi: 10.4028/www.scientific.net/AMM.751.44. DOI

Turan K., Saygılı Canlıdinç R., Kalfa O.M. Determination of Trace Amounts of Co (II) after Preconcentration with Surface Ion Imprinted Sorbent Based on Activated Carbon. Sep. Sci. Technol. 2018;53:707–716. doi: 10.1080/01496395.2017.1405989. DOI

Yuan G., Tu H., Liu J., Zhao C., Liao J., Yang Y., Yang J., Liu N. A Novel Ion-Imprinted Polymer Induced by the Glycylglycine Modified Metal-Organic Framework for the Selective Removal of Co (II) from Aqueous Solutions. Chem. Eng. J. 2018;333:280–288. doi: 10.1016/j.cej.2017.09.123. DOI

Torkashvand M., Gholivand M.B., Azizi R. Synthesis, Characterization and Application of a Novel Ion-Imprinted Polymer Based Voltammetric Sensor for Selective Extraction and Trace Determination of Cobalt (II) Ions. Sens. Actuators B Chem. 2017;243:283–291. doi: 10.1016/j.snb.2016.11.094. DOI

Sebastian M., Mathew B. Multiwalled Carbon Nanotube Based Ion Imprinted Polymer as Sensor and Sorbent for Environmental Hazardous Cobalt Ion. J. Macromol. Sci. Part A. 2018;55:455–465. doi: 10.1080/10601325.2018.1470463. DOI

Yusof N.F., Mehamod F.S., Suah F.B.M. Fabrication and Binding Characterization of Ion Imprinted Polymers for Highly Selective Co2+ Ions in an Aqueous Medium. J. Environ. Chem. Eng. 2019;7:103007. doi: 10.1016/j.jece.2019.103007. DOI

Lee V.E., Schulman J.M., Stiefel E.I., Lee C.C. Reversible Precipitation of Bovine Serum Albumin by Metal Ions and Synthesis, Structure and Reactivity of New Tetrathiometallate Chelating Agents. J. Inorg. Biochem. 2007;101:1707–1718. doi: 10.1016/j.jinorgbio.2007.07.015. PubMed DOI

Li S., Li J., Ma X., Pang C., Yin G., Luo J. Molecularly Imprinted Electroluminescence Switch Sensor with a Dual Recognition Effect for Determination of Ultra-Trace Levels of Cobalt (II) Biosens. Bioelectron. 2019;139:111321. doi: 10.1016/j.bios.2019.111321. PubMed DOI

Lee H.-K., Choi J.-W., Choi S.-J. Magnetic Ion-Imprinted Polymer Based on Mesoporous Silica for Selective Removal of Co (II) from Radioactive Wastewater. Sep. Sci. Technol. 2020:1–11. doi: 10.1080/01496395.2020.1797798. DOI

Adibmehr Z., Faghihian H. Preparation of Highly Selective Magnetic Cobalt Ion-Imprinted Polymer Based on Functionalized SBA-15 for Removal Co 2+ from Aqueous Solutions. J. Environ. Health Sci. Eng. 2019;17:1213–1225. doi: 10.1007/s40201-019-00439-x. PubMed DOI PMC

Biswas T.K., Yusoff M.M., Sarjadi M.S., Arshad S.E., Musta B., Rahman M.L. Ion-Imprinted Polymer for Selective Separation of Cobalt, Cadmium and Lead Ions from Aqueous Media. Sep. Sci. Technol. 2019:1–10. doi: 10.1080/01496395.2019.1575418. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microbial involvement in iodine cycle: mechanisms and potential applications

. 2023 ; 11 () : 1279270. [epub] 20231030

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...