Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-18-0534
Agentúra na Podporu Výskumu a Vývoja
CZ.02.1.01/0.0/0.0/16_019/0000728
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33652580
PubMed Central
PMC7956459
DOI
10.3390/ma14051083
PII: ma14051083
Knihovny.cz E-zdroje
- Klíčová slova
- adsorption, ion-imprinted polymers, radioactive waste, radionuclides, separation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Growing concern over the hazardous effect of radionuclides on the environment is driving research on mitigation and deposition strategies for radioactive waste management. Currently, there are many techniques used for radionuclides separation from the environment such as ion exchange, solvent extraction, chemical precipitation and adsorption. Adsorbents are the leading area of research and many useful materials are being discovered in this category of radionuclide ion separation. The adsorption technologies lack the ability of selective removal of metal ions from solution. This drawback is eliminated by the use of ion-imprinted polymers, these materials having targeted binding sites for specific ions in the media. In this review article, we present recently published literature about the use of ion-imprinted polymers for the adsorption of 10 important hazardous radionuclides-U, Th, Cs, Sr, Ce, Tc, La, Cr, Ni, Co-found in the nuclear fuel cycle.
Zobrazit více v PubMed
Keith S., Faroon O., Roney N., Scinicariello F., Wilbur S., Ingerman L., Llados F., Plewak D., Wohlers D., Diamond G. Toxicological Profile for Uranium. Agency for Toxic Substances and Disease Registry; Atlanta, GA, USA: 2013. PubMed
Horne G.P., Zarzana C.A., Grimes T.S., Rae C., Ceder J., Mezyk S.P., Mincher B.J., Charbonnel M.-C., Guilbaud P., Saint-Louis G. Effect of Chemical Environment on the Radiation Chemistry of N, N-Di-(2-Ethylhexyl) Butyramide (DEHBA) and Plutonium Retention. Dalton Trans. 2019;48:14450–14460. doi: 10.1039/C9DT02383F. PubMed DOI
Augustine S., Gagnaire B., Adam-Guillermin C., Kooijman S.A.L.M. Effects of Uranium on the Metabolism of Zebrafish, Danio Rerio. Aquat. Toxicol. 2012;118:9–26. doi: 10.1016/j.aquatox.2012.02.029. PubMed DOI
Manaka M., Seki Y., Okuzawa K., Watanabe Y. Uranium Sorption onto Natural Sediments within a Small Stream in Central Japan. Limnology. 2008;9:173–183. doi: 10.1007/s10201-008-0249-1. DOI
Nordberg G.F., Fowler B.A., Nordberg M., Friberg L. Handbook on the Toxicology of Metals. Academic Press; Amsterdam, The Netherlands: 2007. p. 1024.
Keith S., Wohlers D., Ingerman L. Toxicological Profile for Thorium. Agency for Toxic Substances and Disease Registry; Atlanta, GA, USA: 2019. PubMed
Ding H., Zhang X., Yang H., Luo X., Lin X. Highly Efficient Extraction of Thorium from Aqueous Solution by Fungal Mycelium-Based Microspheres Fabricated via Immobilization. Chem. Eng. J. 2019;368:37–50. doi: 10.1016/j.cej.2019.02.116. DOI
Morsy A.M.A. Performance of Magnetic Talc Titanium Oxide Composite for Thorium Ions Adsorption from Acidic Solution. Environ. Technol. Innov. 2017;8:399–410. doi: 10.1016/j.eti.2017.09.004. DOI
Igarashi Y., Kogure T., Kurihara Y., Miura H., Okumura T., Satou Y., Takahashi Y., Yamaguchi N. A Review of Cs-Bearing Microparticles in the Environment Emitted by the Fukushima Dai-Ichi Nuclear Power Plant Accident. J. Environ. Radioact. 2019;205:101–118. doi: 10.1016/j.jenvrad.2019.04.011. PubMed DOI
Ma B., Oh S., Shin W.S., Choi S.-J. Removal of Co2+, Sr2+ and Cs+ from Aqueous Solution by Phosphate-Modified Montmorillonite (PMM) Desalination. 2011;276:336–346. doi: 10.1016/j.desal.2011.03.072. DOI
Li Q., Liu H., Liu T., Guo M., Qing B., Ye X., Wu Z. Strontium and Calcium Ion Adsorption by Molecularly Imprinted Hybrid Gel. Chem. Eng. J. 2010;157:401–407. doi: 10.1016/j.cej.2009.11.029. DOI
Guo Y., Zhang S., Lai L., Wang G. Rare Earth Elements in Oolong Tea and Their Human Health Risks Associated with Drinking Tea. J. Food Compos. Anal. 2015;44:122–127. doi: 10.1016/j.jfca.2015.08.001. DOI
Li Y., Li P., Yu H., Bian Y. Recent Advances (2010–2015) in Studies of Cerium Oxide Nanoparticles’ Health Effects. Environ. Toxicol. Pharmacol. 2016;44:25–29. doi: 10.1016/j.etap.2016.04.004. PubMed DOI
Colton R. The Chemistry of Rhenium and Technetium. Interscience Publishers; London, UK: New York, NY, USA: 1965.
Iannicelli-Zubiani E.M., Stampino P.G., Cristiani C., Dotelli G. Enhanced Lanthanum Adsorption by Amine Modified Activated Carbon. Chem. Eng. J. 2018;341:75–82. doi: 10.1016/j.cej.2018.01.154. DOI
Boffetta P., Cardis E., Vainio H., Coleman M.P., Kogevinas M., Nordberg G., Parkin D.M., Partensky C., Shuker D., Tomatis L. Cancer Risks Related to Electricity Production. Eur. J. Cancer Clin. Oncol. 1991;27:1504–1519. doi: 10.1016/0277-5379(91)90040-K. PubMed DOI
Fišera O., Šebesta F. Determination of 59Ni in Radioactive Waste. J. Radioanal. Nucl. Chem. 2010;286:713–717. doi: 10.1007/s10967-010-0713-3. DOI
Mudipalli A., Zelikoff J.T. Essential and Non-Essential Metals. Humana Press; Totowa, NJ, USA: 2017.
Taddei M.H.T., Macacini J.F., Vicente R., Marumo J.T., Sakata S.K., Terremoto L.A.A. Determination of 63Ni and 59Ni in Spent Ion-Exchange Resin and Activated Charcoal from the IEA-R1 Nuclear Research Reactor. Appl. Radiat. Isot. 2013;77:50–55. doi: 10.1016/j.apradiso.2013.02.014. PubMed DOI
Gault N., Sandre C., Poncy J.-L., Moulin C., Lefaix J.-L., Bresson C. Cobalt Toxicity: Chemical and Radiological Combined Effects on HaCaT Keratinocyte Cell Line. Toxicol. Vitr. 2010;24:92–98. doi: 10.1016/j.tiv.2009.08.027. PubMed DOI
Mahar A., Wang P., Ali A., Awasthi M.K., Lahori A.H., Wang Q., Li R., Zhang Z. Challenges and Opportunities in the Phytoremediation of Heavy Metals Contaminated Soils: A Review. Ecotoxicol. Environ. Saf. 2016;126:111–121. doi: 10.1016/j.ecoenv.2015.12.023. PubMed DOI
Kononova O.N., Bryuzgina G.L., Apchitaeva O.V., Kononov Y.S. Ion Exchange Recovery of Chromium (VI) and Manganese (II) from Aqueous Solutions. Arab. J. Chem. 2019;12:2713–2720. doi: 10.1016/j.arabjc.2015.05.021. DOI
Mollah A., Begum A., Rahman M. Removal of Radionuclides from Low Level Radioactive Liquid Waste by Precipitation. J. Radioanal. Nucl. Chem. 1998;229:187–189. doi: 10.1007/BF02389473. DOI
Khani M.H., Keshtkar A.R., Ghannadi M., Pahlavanzadeh H. Equilibrium, Kinetic and Thermodynamic Study of the Biosorption of Uranium onto Cystoseria Indica Algae. J. Hazard. Mater. 2008;150:612–618. doi: 10.1016/j.jhazmat.2007.05.010. PubMed DOI
Montaña M., Camacho A., Serrano I., Devesa R., Matia L., Vallés I. Removal of Radionuclides in Drinking Water by Membrane Treatment Using Ultrafiltration, Reverse Osmosis and Electrodialysis Reversal. J. Environ. Radioact. 2013;125:86–92. doi: 10.1016/j.jenvrad.2013.01.010. PubMed DOI
Abdi S., Nasiri M., Mesbahi A., Khani M.H. Investigation of Uranium (VI) Adsorption by Polypyrrole. J. Hazard. Mater. 2017;332:132–139. doi: 10.1016/j.jhazmat.2017.01.013. PubMed DOI
Wang J., Zhuang S. Removal of Various Pollutants from Water and Wastewater by Modified Chitosan Adsorbents. Crit. Rev. Environ. Sci. Technol. 2017;47:2331–2386. doi: 10.1080/10643389.2017.1421845. DOI
Wang G., Liu J., Wang X., Xie Z., Deng N. Adsorption of Uranium (VI) from Aqueous Solution onto Cross-Linked Chitosan. J. Hazard. Mater. 2009;168:1053–1058. doi: 10.1016/j.jhazmat.2009.02.157. PubMed DOI
Galamboš M., Suchánek P., Rosskopfová O. Sorption of Anthropogenic Radionuclides on Natural and Synthetic Inorganic Sorbents. J. Radioanal. Nucl. Chem. 2012;293:613–633. doi: 10.1007/s10967-012-1717-y. DOI
Means J.L., Crerar D.A., Borcsik M.P., Duguid J.O. Radionuclide Adsorption by Manganese Oxides and Implications for Radioactive Waste Disposal. Nature. 1978;274:44–47. doi: 10.1038/274044a0. DOI
Musić S., Ristić M. Adsorption of Trace Elements or Radionuclides on Hydrous Iron Oxides. J. Radioanal. Nucl. Chem. 1988;120:289–304. doi: 10.1007/BF02037344. DOI
Lu S., Sun Y., Chen C. Interface Science and Technology. Vol. 29. Elsevier; Amsterdam, The Netherlands: 2019. Adsorption of Radionuclides on Carbon-Based Nanomaterials; pp. 141–215.
Claverie M., Garcia J., Prevost T., Brendlé J., Limousy L. Inorganic and Hybrid (Organic–Inorganic) Lamellar Materials for Heavy Metals and Radionuclides Capture in Energy Wastes Management—A Review. Materials. 2019;12:1399. doi: 10.3390/ma12091399. PubMed DOI PMC
Naeimi S., Faghihian H. Performance of Novel Adsorbent Prepared by Magnetic Metal-Organic Framework (MOF) Modified by Potassium Nickel Hexacyanoferrate for Removal of Cs+ from Aqueous Solution. Sep. Purif. Technol. 2017;175:255–265. doi: 10.1016/j.seppur.2016.11.028. DOI
Sun Q., Aguila B., Ma S. Opportunities of Porous Organic Polymers for Radionuclide Sequestration. Trends Chem. 2019;1:292–303. doi: 10.1016/j.trechm.2019.02.010. DOI
Vellingiri K., Kim K.-H., Pournara A., Deep A. Towards High-Efficiency Sorptive Capture of Radionuclides in Solution and Gas. Prog. Mater. Sci. 2018;94:1–67. doi: 10.1016/j.pmatsci.2018.01.002. DOI
Chen L., Xu S., Li J. Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted Applications. Chem. Soc. Rev. 2011;40:2922–2942. doi: 10.1039/c0cs00084a. PubMed DOI
Haupt K. Imprinted Polymers—Tailor-Made Mimics of Antibodies and Receptors. Chem. Commun. 2003:171–178. doi: 10.1039/b207596b. PubMed DOI
Tarley C.R.T., Corazza M.Z., Somera B.F., Segatelli M.G. Preparation of New Ion-Selective Cross-Linked Poly (Vinylimidazole-Co-Ethylene Glycol Dimethacrylate) Using a Double-Imprinting Process for the Preconcentration of Pb2+ Ions. J. Colloid Interface Sci. 2015;450:254–263. doi: 10.1016/j.jcis.2015.02.074. PubMed DOI
Mahony J.O., Nolan K., Smyth M.R., Mizaikoff B. Molecularly Imprinted Polymers—Potential and Challenges in Analytical Chemistry. Anal. Chim. Acta. 2005;534:31–39. doi: 10.1016/j.aca.2004.07.043. DOI
Rao T.P., Daniel S., Gladis J.M. Tailored Materials for Preconcentration or Separation of Metals by Ion-Imprinted Polymers for Solid-Phase Extraction (IIP-SPE) TrAC Trends Anal. Chem. 2004;23:28–35.
Wulff G. Molecular Imprinting in Cross-linked Materials with the Aid of Molecular Templates—A Way towards Artificial Antibodies. Angew. Chem. Int. Ed. Engl. 1995;34:1812–1832. doi: 10.1002/anie.199518121. DOI
Haupt K., Mosbach K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 2000;100:2495–2504. doi: 10.1021/cr990099w. PubMed DOI
Fu J., Chen L., Li J., Zhang Z. Current Status and Challenges of Ion Imprinting. J. Mater. Chem. A. 2015;3:13598–13627. doi: 10.1039/C5TA02421H. DOI
Metilda P., Gladis J.M., Rao T.P. Influence of Binary/Ternary Complex of Imprint Ion on the Preconcentration of Uranium (VI) Using Ion Imprinted Polymer Materials. Anal. Chim. Acta. 2004;512:63–73. doi: 10.1016/j.aca.2004.02.041. DOI
Nishide H., Deguchi J., Tsuchida E. Selective Adsorption of Metal Ions on Crosslinked Poly (Vinylpyridine) Resin Prepared with a Metal Ion as a Template. Chem. Lett. 1976;5:169–174. doi: 10.1246/cl.1976.169. DOI
Saunders G.D., Foxon S.P., Walton P.H., Joyce M.J., Port S.N. A Selective Uranium Extraction Agent Prepared by Polymer ImprintingS. N. Port, MJ Joyce, PH Walton and GD Saunders, UK Pat. Appl., 979946.7, 1997; Int. Pat., WO 99/15707, 1998. Chem. Commun. 2000:273–274. doi: 10.1039/a909691d. DOI
He Q., Chang X., Wu Q., Huang X., Hu Z., Zhai Y. Synthesis and Applications of Surface-Grafted Th (IV)-Imprinted Polymers for Selective Solid-Phase Extraction of Thorium (IV) Anal. Chim. Acta. 2007;605:192–197. doi: 10.1016/j.aca.2007.10.026. PubMed DOI
Mafu L.D., Msagati T.A.M., Mamba B.B. Ion-Imprinted Polymers for Environmental Monitoring of Inorganic Pollutants: Synthesis, Characterization, and Applications. Environ. Sci. Pollut. Res. 2013;20:790–802. doi: 10.1007/s11356-012-1215-3. PubMed DOI
Hande P.E., Samui A.B., Kulkarni P.S. Highly Selective Monitoring of Metals by Using Ion-Imprinted Polymers. Environ. Sci. Pollut. Res. 2015;22:7375–7404. doi: 10.1007/s11356-014-3937-x. PubMed DOI
Branger C., Meouche W., Margaillan A. Recent Advances on Ion-Imprinted Polymers. React. Funct. Polym. 2013;73:859–875. doi: 10.1016/j.reactfunctpolym.2013.03.021. DOI
He M.F.A.R.H., Brada S.T.M. A Mini Review on Molecularly Imprinted Polymer Based Halloysite Nanotubes Composites: Innovative Materials for Analytical and Environmental Applications. Rev. Environ. Sci. Bio/Technol. 2020;19:241–258.
Erdem Ö., Saylan Y., Andaç M., Denizli A. Molecularly Imprinted Polymers for Removal of Metal Ions: An Alternative Treatment Method. Biomimetics. 2018;3:38. doi: 10.3390/biomimetics3040038. PubMed DOI PMC
Chen L., Dai J., Hu B., Wang J., Wu Y., Dai J., Meng M., Li C., Yan Y. Recent Progresses on the Adsorption and Separation of Ions by Imprinting Routes. Sep. Purif. Rev. 2019;49:268–293. doi: 10.1080/15422119.2019.1596134. DOI
Say R., Birlik E., Ersöz A., Yılmaz F., Gedikbey T., Denizli A. Preconcentration of Copper on Ion-Selective Imprinted Polymer Microbeads. Anal. Chim. Acta. 2003;480:251–258. doi: 10.1016/S0003-2670(02)01656-2. DOI
Nicholls I.A., Adbo K., Andersson H.S., Andersson P.O., Ankarloo J., Hedin-Dahlström J., Jokela P., Karlsson J.G., Olofsson L., Rosengren J., et al. Can We Rationally Design Molecularly Imprinted Polymers? Anal. Chim. Acta. 2001;435:9–18. doi: 10.1016/S0003-2670(01)00932-1. DOI
Laatikainen K., Udomsap D., Siren H., Brisset H., Sainio T., Branger C. Effect of Template Ion–Ligand Complex Stoichiometry on Selectivity of Ion-Imprinted Polymers. Talanta. 2015;134:538–545. doi: 10.1016/j.talanta.2014.11.050. PubMed DOI
Özkara S., Andaç M., Karakoç V., Say R., Denizli A. Ion-imprinted PHEMA Based Monolith for the Removal of Fe3+ Ions from Aqueous Solutions. J. Appl. Polym. Sci. 2011;120:1829–1836. doi: 10.1002/app.33400. DOI
Sharma G., Kandasubramanian B. Molecularly Imprinted Polymers for Selective Recognition and Extraction of Heavy Metal Ions and Toxic Dyes. J. Chem. Eng. Data. 2020;65:396–418. doi: 10.1021/acs.jced.9b00953. DOI
Meng H., Li Z., Ma F., Jia L., Wang X., Zhou W., Zhang L. Preparation and Characterization of Surface Imprinted Polymer for Selective Sorption of Uranium (VI) J. Radioanal. Nucl. Chem. 2015;306:139–146. doi: 10.1007/s10967-015-4067-8. DOI
Germiniano T.O., Corazza M.Z., Segatelli M.G., Ribeiro E.S., Yabe M.J.S., Galunin E., Tarley C.R.T. Synthesis of Novel Copper Ion-Selective Material Based on Hierarchically Imprinted Cross-Linked Poly (Acrylamide-Co-Ethylene Glycol Dimethacrylate) React. Funct. Polym. 2014;82:72–80. doi: 10.1016/j.reactfunctpolym.2014.05.012. DOI
Mafu L.D., Mamba B.B., Msagati T.A.M. Synthesis and Characterization of Ion Imprinted Polymeric Adsorbents for the Selective Recognition and Removal of Arsenic and Selenium in Wastewater Samples. J. Saudi Chem. Soc. 2016;20:594–605. doi: 10.1016/j.jscs.2014.12.008. DOI
Cai X., Li J., Zhang Z., Yang F., Dong R., Chen L. Novel Pb2+ Ion Imprinted Polymers Based on Ionic Interaction via Synergy of Dual Functional Monomers for Selective Solid-Phase Extraction of Pb2+ in Water Samples. ACS Appl. Mater. Interfaces. 2014;6:305–313. doi: 10.1021/am4042405. PubMed DOI
Rodríguez-Fernández R., Peña-Vázquez E., Bermejo-Barrera P. Synthesis of an Imprinted Polymer for the Determination of Methylmercury in Marine Products. Talanta. 2015;144:636–641. doi: 10.1016/j.talanta.2015.06.028. PubMed DOI
Jinadasa K.K., Peña-Vázquez E., Bermejo-Barrera P., Moreda-Piñeiro A. Ionic Imprinted Polymer Solid-Phase Extraction for Inorganic Arsenic Selective Pre-Concentration in Fishery Products before High-Performance Liquid Chromatography–Inductively Coupled Plasma-Mass Spectrometry Speciation. J. Chromatogr. A. 2020;1619:460973. doi: 10.1016/j.chroma.2020.460973. PubMed DOI
Yordanova T., Dakova I., Balashev K., Karadjova I. Polymeric Ion-Imprinted Nanoparticles for Mercury Speciation in Surface Waters. Microchem. J. 2014;113:42–47. doi: 10.1016/j.microc.2013.11.008. DOI
Anirudhan T.S., Nima J., Divya P.L. Adsorption and Separation Behavior of Uranium (VI) by 4-Vinylpyridine-Grafted-Vinyltriethoxysilane-Cellulose Ion Imprinted Polymer. J. Environ. Chem. Eng. 2015;3:1267–1276. doi: 10.1016/j.jece.2014.10.006. DOI
Comba P., Schiek W. Fit and Misfit between Ligands and Metal Ions. Coord. Chem. Rev. 2003;238:21–29. doi: 10.1016/S0010-8545(02)00294-1. DOI
Fasihi J., Alahyari S.A., Shamsipur M., Sharghi H., Charkhi A. Adsorption of Uranyl Ion onto an Anthraquinone Based Ion-Imprinted Copolymer. React. Funct. Polym. 2011;71:803–808. doi: 10.1016/j.reactfunctpolym.2011.03.014. DOI
Zulfikar M.A., Zarlina R., Handayani N., Alni A., Wahyuningrum D. Separation of Yttrium from Aqueous Solution Using Ionic Imprinted Polymers. Russ. J. Non-Ferrous Met. 2017;58:614–624. doi: 10.3103/S1067821217060189. DOI
Muzzarelli R.A.A. Potential of Chitin/Chitosan-Bearing Materials for Uranium Recovery: An Interdisciplinary Review. Carbohydr. Polym. 2011;84:54–63. doi: 10.1016/j.carbpol.2010.12.025. DOI
Monier M., Abdel-Latif D.A., Mohammed H.A. Synthesis and Characterization of Uranyl Ion-Imprinted Microspheres Based on Amidoximated Modified Alginate. Int. J. Biol. Macromol. 2015;75:354–363. doi: 10.1016/j.ijbiomac.2014.12.001. PubMed DOI
Ngah W.S.W., Teong L.C., Hanafiah M.A.K.M. Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review. Carbohydr. Polym. 2011;83:1446–1456. doi: 10.1016/j.carbpol.2010.11.004. DOI
Özkahraman B., Özbaş Z., Öztürk A.B. Synthesis of Ion-Imprinted Alginate Based Beads: Selective Adsorption Behavior of Nickel (II) Ions. J. Polym. Environ. 2018;26:4303–4310. doi: 10.1007/s10924-018-1292-6. DOI
Okay O. Macroporous Copolymer Networks. Prog. Polym. Sci. 2000;25:711–779. doi: 10.1016/S0079-6700(00)00015-0. DOI
Yoshizako K., Hosoya K., Iwakoshi Y., Kimata K., Tanaka N. Porogen Imprinting Effects. Anal. Chem. 1998;70:386–389. doi: 10.1021/ac970541f. DOI
Rammika M., Darko G., Torto N. Optimal Synthesis of a Ni (II)-Dimethylglyoxime Ion-Imprinted Polymer for the Enrichment of Ni (II) Ions in Water, Soil and Mine Tailing Samples. Water SA. 2012;38:261–268. doi: 10.4314/wsa.v38i2.12. DOI
Lin C., Wang H., Wang Y., Zhou L., Liang J. Selective Preconcentration of Trace Thorium from Aqueous Solutions with Th (IV)-Imprinted Polymers Prepared by a Surface-Grafted Technique. Int. J. Environ. Anal. Chem. 2011;91:1050–1061. doi: 10.1080/03067311003629677. DOI
Monier M., Abdel-Latif D.A. Synthesis and Characterization of Ion-Imprinted Resin Based on Carboxymethyl Cellulose for Selective Removal of UO22+ Carbohydr. Polym. 2013;97:743–752. doi: 10.1016/j.carbpol.2013.05.062. PubMed DOI
Ji X.Z., Liu H.J., Wang L.L., Sun Y.K., Wu Y.W. Study on Adsorption of Th (IV) Using Surface Modified Dibenzoylmethane Molecular Imprinted Polymer. J. Radioanal. Nucl. Chem. 2013;295:265–270. doi: 10.1007/s10967-012-1979-4. DOI
Chen J., Bai H., Xia J., Liu X., Liu Y. Trace Detection of Ce3+ by Adsorption Strip Voltammetry at a Carbon Paste Electrode Modified with Ion Imprinted Polymers. J. Rare Earths. 2018;36:1121–1126. doi: 10.1016/j.jre.2018.03.014. DOI
Liu Y., Meng X., Luo M., Meng M., Ni L., Qiu J., Hu Z., Liu F., Zhong G., Liu Z. Synthesis of Hydrophilic Surface Ion-Imprinted Polymer Based on Graphene Oxide for Removal of Strontium from Aqueous Solution. J. Mater. Chem. A. 2015;3:1287–1297. doi: 10.1039/C4TA04908J. DOI
Salian V.D., Byrne M.E. Living Radical Polymerization and Molecular Imprinting: Improving Polymer Morphology in Imprinted Polymers. Macromol. Mater. Eng. 2013;298:379–390. doi: 10.1002/mame.201200191. DOI
Chen Y., Wang J. Removal of Radionuclide Sr2+ Ions from Aqueous Solution Using Synthesized Magnetic Chitosan Beads. Nucl. Eng. Des. 2012;242:445–451. doi: 10.1016/j.nucengdes.2011.10.059. DOI
Gao M., Zhu G., Gao C. A Review: Adsorption Materials for the Removal and Recovery of Uranium from Aqueous Solutions. Energy Environ. Focus. 2014;3:219–226. doi: 10.1166/eef.2014.1104. DOI
Gao D., Zhang Z., Wu M., Xie C., Guan G., Wang D. A Surface Functional Monomer-Directing Strategy for Highly Dense Imprinting of TNT at Surface of Silica Nanoparticles. J. Am. Chem. Soc. 2007;129:7859–7866. doi: 10.1021/ja070975k. PubMed DOI
Volesky B. Sorption and Biosorption. BV Sorbex, Inc.; Montreal, QC, Canada: 2003. pp. 103–116.
Wang J., Guo X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere. 2020;258:127279. doi: 10.1016/j.chemosphere.2020.127279. PubMed DOI
Cheng Z., Wang H., Wang Y., He F., Zhang H., Yang S. Synthesis and Characterization of an Ion-Imprinted Polymer for Selective Solid Phase Extraction of Thorium (IV) Microchim. Acta. 2011;173:423–431. doi: 10.1007/s00604-011-0576-5. DOI
Tavengwa N.T., Cukrowska E., Chimuka L. Sequestration of U (VI) from Aqueous Solutions Using Precipitate Ion Imprinted Polymers Endowed with Oleic Acid Functionalized Magnetite. J. Radioanal. Nucl. Chem. 2015;304:933–943. doi: 10.1007/s10967-014-3878-3. DOI
Meng X., Liu Y., Meng M., Gu Z., Ni L., Zhong G., Liu F., Hu Z., Chen R., Yan Y. Synthesis of Novel Ion-Imprinted Polymers by Two Different RAFT Polymerization Strategies for the Removal of Cs (I) from Aqueous Solutions. RSC Adv. 2015;5:12517–12529. doi: 10.1039/C4RA11459K. DOI
Sadeghi S., Aboobakri E. Magnetic Nanoparticles with an Imprinted Polymer Coating for the Selective Extraction of Uranyl Ions. Microchim. Acta. 2012;178:89–97. doi: 10.1007/s00604-012-0800-y. DOI
Liu F., Liu Y., Xu Y., Ni L., Meng X., Hu Z., Zhong G., Meng M., Wang Y., Han J. Efficient Static and Dynamic Removal of Sr (II) from Aqueous Solution Using Chitosan Ion-Imprinted Polymer Functionalized with Dithiocarbamate. J. Environ. Chem. Eng. 2015;3:1061–1071. doi: 10.1016/j.jece.2015.03.014. DOI
Song Y., Ou H., Bian W., Zhang Y., Pan J., Liu Y., Huang W. Ion-Imprinted Polymers Based on Hollow Silica with Yeasts as Sacrificial Supports for Sr 2+ Selective Adsorption. J. Inorg. Organomet. Polym. Mater. 2013;23:1325–1334. doi: 10.1007/s10904-013-9927-5. DOI
Kang R., Qiu L., Fang L., Yu R., Chen Y., Lu X., Luo X. A Novel Magnetic and Hydrophilic Ion-Imprinted Polymer as a Selective Sorbent for the Removal of Cobalt Ions from Industrial Wastewater. J. Environ. Chem. Eng. 2016;4:2268–2277. doi: 10.1016/j.jece.2016.04.010. DOI
Shu X., Shen L., Wei Y., Hua D. Synthesis of Surface Ion-Imprinted Magnetic Microsphere for Efficient Sorption of Perrhenate: A Structural Surrogate for Pertechnetate. J. Mol. Liq. 2015;211:621–627. doi: 10.1016/j.molliq.2015.07.059. DOI
Tavengwa N.T., Cukrowska E., Chimuka L. Synthesis of Bulk Ion-Imprinted Polymers (IIPs) Embedded with Oleic Acid Coated Fe 3 O 4 for Selective Extraction of Hexavalent Uranium. Water SA. 2014;40:623–630. doi: 10.4314/wsa.v40i4.7. DOI
Aly M.M., Hamza M.F. A Review: Studies on Uranium Removal Using Different Techniques. Overview. J. Dispers. Sci. Technol. 2013;34:182–213. doi: 10.1080/01932691.2012.657954. DOI
Ahmadi S.J., Noori-Kalkhoran O., Shirvani-Arani S. Synthesis and Characterization of New Ion-Imprinted Polymer for Separation and Preconcentration of Uranyl (UO22+) Ions. J. Hazard. Mater. 2010;175:193–197. doi: 10.1016/j.jhazmat.2009.09.148. PubMed DOI
Milja T.E., Prathish K.P., Rao T.P. Synthesis of Surface Imprinted Nanospheres for Selective Removal of Uranium from Simulants of Sambhar Salt Lake and Ground Water. J. Hazard. Mater. 2011;188:384–390. doi: 10.1016/j.jhazmat.2011.01.121. PubMed DOI
Liu Y., Cao X., Hua R., Wang Y., Liu Y., Pang C., Wang Y. Selective Adsorption of Uranyl Ion on Ion-Imprinted Chitosan/PVA Cross-Linked Hydrogel. Hydrometallurgy. 2010;104:150–155. doi: 10.1016/j.hydromet.2010.05.009. DOI
Zhou L., Shang C., Liu Z., Huang G., Adesina A.A. Selective Adsorption of Uranium (VI) from Aqueous Solutions Using the Ion-Imprinted Magnetic Chitosan Resins. J. Colloid Interface Sci. 2012;366:165–172. doi: 10.1016/j.jcis.2011.09.069. PubMed DOI
Yang S., Qian J., Kuang L., Hua D. Ion-Imprinted Mesoporous Silica for Selective Removal of Uranium from Highly Acidic and Radioactive Effluent. ACS Appl. Mater. Interfaces. 2017;9:29337–29344. doi: 10.1021/acsami.7b09419. PubMed DOI
Zhu J., Liu Q., Liu J., Chen R., Zhang H., Yu J., Zhang M., Li R., Wang J. Novel Ion-Imprinted Carbon Material Induced by Hyperaccumulation Pathway for the Selective Capture of Uranium. ACS Appl. Mater. Interfaces. 2018;10:28877–28886. doi: 10.1021/acsami.8b09022. PubMed DOI
Wang Z., Zhang D., Xiao X., Su C., Li Z., Xue J., Hu N., Peng P., Liao L., Wang H. A Highly Sensitive and Selective Sensor for Trace Uranyl (VI) Ion Based on a Graphene-Coated Carbon Paste Electrode Modified with Ion Imprinted Polymer. Microchem. J. 2020;155:104767. doi: 10.1016/j.microc.2020.104767. DOI
Zhong X., Sun Y., Zhang Z., Dai Y., Wang Y., Liu Y., Hua R., Cao X., Liu Y. A New Hydrothermal Cross-Linking Ion-Imprinted Chitosan for High-Efficiency Uranium Removal. J. Radioanal. Nucl. Chem. 2019;322:901–911. doi: 10.1007/s10967-019-06794-1. DOI
Zhang H., Liang H., Chen Q., Shen X. Synthesis of a New Ionic Imprinted Polymer for the Extraction of Uranium from Seawater. J. Radioanal. Nucl. Chem. 2013;298:1705–1712. doi: 10.1007/s10967-013-2612-x. DOI
Tavengwa N.T., Cukrowska E., Chimuka L. Preparation, Characterization and Application of NaHCO3 Leached Bulk U (VI) Imprinted Polymers Endowed with γ-MPS Coated Magnetite in Contaminated Water. J. Hazard. Mater. 2014;267:221–228. doi: 10.1016/j.jhazmat.2013.12.053. PubMed DOI
Monier M., Elsayed N.H. Selective Extraction of Uranyl Ions Using Ion-Imprinted Chelating Microspheres. J. Colloid Interface Sci. 2014;423:113–122. doi: 10.1016/j.jcis.2014.02.015. PubMed DOI
Güney S., Güney O. A Novel Electrochemical Sensor for Selective Determination of Uranyl Ion Based on Imprinted Polymer Sol–Gel Modified Carbon Paste Electrode. Sens. Actuators B Chem. 2016;231:45–53. doi: 10.1016/j.snb.2016.02.119. DOI
Arnold J., Gianetti T.L., Kashtan Y. Thorium Lends a Fiery Hand. Nat. Chem. 2014;6:554. doi: 10.1038/nchem.1952. PubMed DOI
Lin C., Wang H., Wang Y., Cheng Z. Selective Solid-Phase Extraction of Trace Thorium (IV) Using Surface-Grafted Th (IV)-Imprinted Polymers with Pyrazole Derivative. Talanta. 2010;81:30–36. doi: 10.1016/j.talanta.2009.11.032. PubMed DOI
He F.F., Wang H.Q., Wang Y.Y., Wang X.F., Zhang H.S., Li H.L., Tang J.H. Magnetic Th (IV)-Ion Imprinted Polymers with Salophen Schiff Base for Separation and Recognition of Th (IV) J. Radioanal. Nucl. Chem. 2013;295:167–177. doi: 10.1007/s10967-012-1891-y. DOI
Huang G., Chen Z., Wang L., Lv T., Shi J. Removal of Thorium (IV) from Aqueous Solution Using Magnetic Ion-Imprinted Chitosan Resin. J. Radioanal. Nucl. Chem. 2016;310:1265–1272. doi: 10.1007/s10967-016-4993-0. DOI
Othman N.A.F., Selambakkannu S., Azian H., Ratnam C.T., Yamanobe T., Hoshina H., Seko N. Synthesis of Surface Ion-Imprinted Polymer for Specific Detection of Thorium under Acidic Conditions. Polym. Bull. 2020;78:165–183. doi: 10.1007/s00289-019-03094-2. DOI
Khandaker S., Chowdhury M.F., Awual M.R., Islam A., Kuba T. Efficient Cesium Encapsulation from Contaminated Water by Cellulosic Biomass Based Activated Wood Charcoal. Chemosphere. 2020;262:127801. doi: 10.1016/j.chemosphere.2020.127801. PubMed DOI
Alby D., Charnay C., Heran M., Prelot B., Zajac J. Recent Developments in Nanostructured Inorganic Materials for Sorption of Cesium and Strontium: Synthesis and Shaping, Sorption Capacity, Mechanisms, and Selectivity—A Review. J. Hazard. Mater. 2018;344:511–530. doi: 10.1016/j.jhazmat.2017.10.047. PubMed DOI
Zhang Z., Xu X., Yan Y. Kinetic and Thermodynamic Analysis of Selective Adsorption of Cs (I) by a Novel Surface Whisker-Supported Ion-Imprinted Polymer. Desalination. 2010;263:97–106. doi: 10.1016/j.desal.2010.06.044. DOI
Shamsipur M., Rajabi H.R. Flame Photometric Determination of Cesium Ion after Its Preconcentration with Nanoparticles Imprinted with the Cesium-Dibenzo-24-Crown-8 Complex. Microchim. Acta. 2013;180:243–252. doi: 10.1007/s00604-012-0927-x. DOI
Iwasaki H., Yoshikawa M. Molecularly Imprinted Polyacrylonitrile Adsorbents for the Capture of Cs+ Ions. Polym. J. 2016;48:1151–1156. doi: 10.1038/pj.2016.87. DOI
Burger A., Lichtscheidl I. Strontium in the Environment: Review about Reactions of Plants towards Stable and Radioactive Strontium Isotopes. Sci. Total Environ. 2019;653:1458–1512. doi: 10.1016/j.scitotenv.2018.10.312. PubMed DOI
Liu Y., Gao J., Zhang Z., Dai J., Xie J., Yan Y. A New Sr (II) Ion-Imprinted Polymer Grafted onto Potassium Titanate Whiskers: Synthesis and Adsorption Performance for the Selective Separation of Strontium Ions. Adsorpt. Sci. Technol. 2010;28:23–37. doi: 10.1260/0263-6174.28.1.23. DOI
Bahraini N., Lai E.P.C., Li C., Sadi B.B., Kramer G.H. Molecularly Imprinted Polymers for 90Sr Urine Bioassay. Health Phys. 2011;101:128–135. doi: 10.1097/HP.0b013e318213a5ef. PubMed DOI
Pan J., Zou X., Yan Y., Wang X., Guan W., Han J., Wu X. An Ion-Imprinted Polymer Based on Palygorskite as a Sacrificial Support for Selective Removal of Strontium (II) Appl. Clay Sci. 2010;50:260–265. doi: 10.1016/j.clay.2010.08.007. DOI
Liu Y., Chen R., Yuan D., Liu Z., Meng M., Wang Y., Han J., Meng X., Liu F., Hu Z. Thermal-Responsive Ion-Imprinted Polymer Based on Magnetic Mesoporous Silica SBA-15 for Selective Removal of Sr (II) from Aqueous Solution. Colloid Polym. Sci. 2015;293:109–123. doi: 10.1007/s00396-014-3393-7. DOI
Liu Y., Liu F., Ni L., Meng M., Meng X., Zhong G., Qiu J. A Modeling Study by Response Surface Methodology (RSM) on Sr (II) Ion Dynamic Adsorption Optimization Using a Novel Magnetic Ion Imprinted Polymer. RSC Adv. 2016;6:54679–54692. doi: 10.1039/C6RA07270D. DOI
Wapstra A.H., Thibault C., Blachot J., Bersillon O. The NUBASE Evaluation of Nuclear and Decay Properties G. Audi. Nucl. Phys. A. 2003;729:3–128.
Pan J., Zou X., Li C., Liu Y., Yan Y., Han J. Synthesis and Applications of Ce (III)-Imprinted Polymer Based on Attapulgite as the Sacrificial Support Material for Selective Separation of Cerium (III) Ions. Microchim. Acta. 2010;171:151–160. doi: 10.1007/s00604-010-0416-z. DOI
Zhang X., Li C., Yan Y., Pan J., Xu P., Zhao X. A Ce 3+-Imprinted Functionalized Potassium Tetratitanate Whisker Sorbent Prepared by Surface Molecularly Imprinting Technique for Selective Separation and Determination of Ce 3+ Microchim. Acta. 2010;169:289–296. doi: 10.1007/s00604-010-0352-y. DOI
Prasad B.B., Jauhari D. Double-Ion Imprinted Polymer@ Magnetic Nanoparticles Modified Screen Printed Carbon Electrode for Simultaneous Analysis of Cerium and Gadolinium Ions. Anal. Chim. Acta. 2015;875:83–91. doi: 10.1016/j.aca.2015.02.009. PubMed DOI
Alizadeh T., Ganjali M.R., Akhoundian M., Norouzi P. Voltammetric Determination of Ultratrace Levels of Cerium (III) Using a Carbon Paste Electrode Modified with Nano-Sized Cerium-Imprinted Polymer and Multiwalled Carbon Nanotubes. Microchim. Acta. 2016;183:1123–1130. doi: 10.1007/s00604-015-1702-6. DOI
Keçili R., Dolak İ., Ziyadanoğulları B., Ersöz A., Say R. Ion Imprinted Cryogel-Based Supermacroporous Traps for Selective Separation of Cerium (III) in Real Samples. J. Rare Earths. 2018;36:857–862. doi: 10.1016/j.jre.2018.02.008. DOI
Liu Y., Tian S., Meng X., Dai X., Liu Z., Meng M., Han J., Wang Y., Chen R., Yan Y. Synthesis, Characterization, and Adsorption Properties of a Ce (III)-Imprinted Polymer Supported by Mesoporous SBA-15 Matrix by a Surface Molecular Imprinting Technique. Can. J. Chem. 2014;92:257–266. doi: 10.1139/cjc-2013-0423. DOI
Daňo M., Viglašová E., Galamboš M., Štamberg K., Kujan J. Surface Complexation Models of Pertechnetate on Biochar/Montmorillonite Composite—Batch and Dynamic Sorption Study. Materials. 2020;13:3108. doi: 10.3390/ma13143108. PubMed DOI PMC
Sert Ş., Kütahyali C., İnan S., Talip Z., Çetinkaya B., Eral M. Biosorption of Lanthanum and Cerium from Aqueous Solutions by Platanus Orientalis Leaf Powder. Hydrometallurgy. 2008;90:13–18. doi: 10.1016/j.hydromet.2007.09.006. DOI
Wang J., Wei J., Li J. Straw-Supported Ion Imprinted Polymer Sorbent Prepared by Surface Imprinting Technique Combined with AGET ATRP for Selective Adsorption of La3+ Ions. Chem. Eng. J. 2016;293:24–33. doi: 10.1016/j.cej.2016.02.051. DOI
Nik Mustapa N.R., Malek N.F.A., Yusoff M.M., Rahman M.L. Ion Imprinted Polymers for Selective Recognition and Separation of Lanthanum and Cerium Ions from Other Lanthanide. Sep. Sci. Technol. 2016;51:2762–2771. doi: 10.1080/01496395.2016.1225091. DOI
Besharati-Seidani A., Shamsipur M. Ion-Imprinted Polymeric Nanoparticles for Fast and Selective Separation of Lanthanum (III) Microchim. Acta. 2015;182:1747–1755. doi: 10.1007/s00604-015-1496-6. DOI
Trzonkowska L., Leśniewska B., Godlewska-Żyłkiewicz B. Studies on the Effect of Functional Monomer and Porogen on the Properties of Ion Imprinted Polymers Based on Cr (III)-1, 10-Phenanthroline Complex Designed for Selective Removal of Cr (III) Ions. React. Funct. Polym. 2017;117:131–139. doi: 10.1016/j.reactfunctpolym.2017.04.006. DOI
Liang Q., Geng J., Luo H., Fang W., Yin Y. Fast and Selective Removal of Cr (VI) from Aqueous Solutions by a Novel Magnetic Cr (VI) Ion-Imprinted Polymer. J. Mol. Liq. 2017;248:767–774. doi: 10.1016/j.molliq.2017.10.114. DOI
Zhou Z., Liu X., Zhang M., Jiao J., Zhang H., Du J., Zhang B., Ren Z. Preparation of Highly Efficient Ion-Imprinted Polymers with Fe3O4 Nanoparticles as Carrier for Removal of Cr (VI) from Aqueous Solution. Sci. Total Environ. 2020;699:134334. doi: 10.1016/j.scitotenv.2019.134334. PubMed DOI
Kumar S., Alveroğlu E., Balouch A., Talpur F.N., Jagirani M.S., Mahar A.M., Pato A.H., Mal D., Lal S. Fabrication of Chromium-Imprinted Polymer: A Real Magneto-Selective Sorbent for the Removal of Cr (vi) Ions in Real Water Samples. New J. Chem. 2020;44:18668–18678. doi: 10.1039/D0NJ04054A. DOI
Zhou Z., Kong D., Zhu H., Wang N., Wang Z., Wang Q., Liu W., Li Q., Zhang W., Ren Z. Preparation and Adsorption Characteristics of an Ion-Imprinted Polymer for Fast Removal of Ni (II) Ions from Aqueous Solution. J. Hazard. Mater. 2018;341:355–364. doi: 10.1016/j.jhazmat.2017.06.010. PubMed DOI
Ahmad I., Siddiqui W.A., Ahmad T., Siddiqui V.U. Synthesis and Characterization of Molecularly Imprinted Ferrite (SiO2@ Fe2O3) Nanomaterials for the Removal of Nickel (Ni2+ Ions) from Aqueous Solution. J. Mater. Res. Technol. 2019;8:1400–1411. doi: 10.1016/j.jmrt.2018.09.011. DOI
Elsayed N., Alatawi A., Monier M. Diacetylmonoxine Modified Chitosan Derived Ion-Imprinted Polymer for Selective Solid-Phase Extraction of Nickel (II) Ions. React. Funct. Polym. 2020;151:104570. doi: 10.1016/j.reactfunctpolym.2020.104570. DOI
Lenoble V., Laatikainen K., Garnier C., Angeletti B., Coulomb B., Sainio T., Branger C. Nickel Retention by an Ion-Imprinted Polymer: Wide-Range Selectivity Study and Modelling of the Binding Structures. Chem. Eng. J. 2016;304:20–28. doi: 10.1016/j.cej.2016.06.062. DOI
Leyssens L., Vinck B., Van Der Straeten C., Wuyts F., Maes L. Cobalt Toxicity in Humans—A Review of the Potential Sources and Systemic Health Effects. Toxicology. 2017;387:43–56. doi: 10.1016/j.tox.2017.05.015. PubMed DOI
Su Q., Deng L., Ye Q., He Y., Cui X. KOH-Activated Geopolymer Microspheres Recycle Co (II) with Higher Adsorption Capacity than NaOH-Activated Ones. ACS Omega. 2020;5:23898–23908. doi: 10.1021/acsomega.0c03158. PubMed DOI PMC
Anirudhan T.S., Deepa J.R., Christa J. Nanocellulose/Nanobentonite Composite Anchored with Multi-Carboxyl Functional Groups as an Adsorbent for the Effective Removal of Cobalt (II) from Nuclear Industry Wastewater Samples. J. Colloid Interface Sci. 2016;467:307–320. doi: 10.1016/j.jcis.2016.01.023. PubMed DOI
Liu Y., Gao J., Li C., Pan J., Yan Y., Xie J. Synthesis and Adsorption Performance of Surface-Grafted Co (II)-Imprinted Polymer for Selective Removal of Cobalt. Chin. J. Chem. 2010;28:548–554. doi: 10.1002/cjoc.201090110. DOI
Li C., Pan J., Zou X., Gao J., Xie J., Yongsheng Y. Synthesis and Applications of Novel Attapulgite-Supported Co (II)-Imprinted Polymers for Selective Solid-Phase Extraction of Cobalt (II) from Aqueous Solutions. Int. J. Environ. Anal. Chem. 2011;91:1035–1049. doi: 10.1080/03067310903502752. DOI
Liu Y., Liu Z., Dai J., Gao J., Xie J., Yan Y. Selective Adsorption of Co (II) by Mesoporous Silica SBA-15-supported Surface Ion Imprinted Polymer: Kinetics, Isotherms, and Thermodynamics Studies. Chin. J. Chem. 2011;29:387–398. doi: 10.1002/cjoc.201190093. DOI
Pan J., Guan W., Zhang Z., Wang X., Li C., Yan Y. Selective Adsorption of Co (II) Ions by Whisker Surface Ion-Imprinted Polymer: Equilibrium and Kinetics Modeling. Chin. J. Chem. 2010;28:2483–2488. doi: 10.1002/cjoc.201190026. DOI
Nishad P.A., Bhaskarapillai A., Velmurugan S., Narasimhan S.V. Cobalt (II) Imprinted Chitosan for Selective Removal of Cobalt during Nuclear Reactor Decontamination. Carbohydr. Polym. 2012;87:2690–2696. doi: 10.1016/j.carbpol.2011.11.061. DOI
Bhaskarapillai A., Narasimhan S.V. A Comparative Investigation of Copper and Cobalt Imprinted Polymers: Evidence for Retention of the Solution-State Metal Ion–Ligand Complex Stoichiometry in the Imprinted Cavities. RSC Adv. 2013;3:13178–13182. doi: 10.1039/c3ra23384g. DOI
Liu F.B., Jia M.C., Men J.F., Wang X.W. Mn2+ and Co2+ Removal from Dilute Solution Using Cysteine Grafted Cobalt/Manganese Imprinted Crosslinked Chitosan. Appl. Mech. Mater. 2015;751:44–50. doi: 10.4028/www.scientific.net/AMM.751.44. DOI
Turan K., Saygılı Canlıdinç R., Kalfa O.M. Determination of Trace Amounts of Co (II) after Preconcentration with Surface Ion Imprinted Sorbent Based on Activated Carbon. Sep. Sci. Technol. 2018;53:707–716. doi: 10.1080/01496395.2017.1405989. DOI
Yuan G., Tu H., Liu J., Zhao C., Liao J., Yang Y., Yang J., Liu N. A Novel Ion-Imprinted Polymer Induced by the Glycylglycine Modified Metal-Organic Framework for the Selective Removal of Co (II) from Aqueous Solutions. Chem. Eng. J. 2018;333:280–288. doi: 10.1016/j.cej.2017.09.123. DOI
Torkashvand M., Gholivand M.B., Azizi R. Synthesis, Characterization and Application of a Novel Ion-Imprinted Polymer Based Voltammetric Sensor for Selective Extraction and Trace Determination of Cobalt (II) Ions. Sens. Actuators B Chem. 2017;243:283–291. doi: 10.1016/j.snb.2016.11.094. DOI
Sebastian M., Mathew B. Multiwalled Carbon Nanotube Based Ion Imprinted Polymer as Sensor and Sorbent for Environmental Hazardous Cobalt Ion. J. Macromol. Sci. Part A. 2018;55:455–465. doi: 10.1080/10601325.2018.1470463. DOI
Yusof N.F., Mehamod F.S., Suah F.B.M. Fabrication and Binding Characterization of Ion Imprinted Polymers for Highly Selective Co2+ Ions in an Aqueous Medium. J. Environ. Chem. Eng. 2019;7:103007. doi: 10.1016/j.jece.2019.103007. DOI
Lee V.E., Schulman J.M., Stiefel E.I., Lee C.C. Reversible Precipitation of Bovine Serum Albumin by Metal Ions and Synthesis, Structure and Reactivity of New Tetrathiometallate Chelating Agents. J. Inorg. Biochem. 2007;101:1707–1718. doi: 10.1016/j.jinorgbio.2007.07.015. PubMed DOI
Li S., Li J., Ma X., Pang C., Yin G., Luo J. Molecularly Imprinted Electroluminescence Switch Sensor with a Dual Recognition Effect for Determination of Ultra-Trace Levels of Cobalt (II) Biosens. Bioelectron. 2019;139:111321. doi: 10.1016/j.bios.2019.111321. PubMed DOI
Lee H.-K., Choi J.-W., Choi S.-J. Magnetic Ion-Imprinted Polymer Based on Mesoporous Silica for Selective Removal of Co (II) from Radioactive Wastewater. Sep. Sci. Technol. 2020:1–11. doi: 10.1080/01496395.2020.1797798. DOI
Adibmehr Z., Faghihian H. Preparation of Highly Selective Magnetic Cobalt Ion-Imprinted Polymer Based on Functionalized SBA-15 for Removal Co 2+ from Aqueous Solutions. J. Environ. Health Sci. Eng. 2019;17:1213–1225. doi: 10.1007/s40201-019-00439-x. PubMed DOI PMC
Biswas T.K., Yusoff M.M., Sarjadi M.S., Arshad S.E., Musta B., Rahman M.L. Ion-Imprinted Polymer for Selective Separation of Cobalt, Cadmium and Lead Ions from Aqueous Media. Sep. Sci. Technol. 2019:1–10. doi: 10.1080/01496395.2019.1575418. DOI
Microbial involvement in iodine cycle: mechanisms and potential applications