Surface Complexation Models of Pertechnetate on Biochar/Montmorillonite Composite-Batch and Dynamic Sorption Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000728
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000778
Ministerstvo Školství, Mládeže a Tělovýchovy
1/0507/17
Science and Scientific Grant Agency
APVV-18-0534
Agentúra na Podporu Výskumu a Vývoja
26220120038
European Regional Development Fund
PubMed
32664656
PubMed Central
PMC7411574
DOI
10.3390/ma13143108
PII: ma13143108
Knihovny.cz E-zdroje
- Klíčová slova
- XRF, column experiments, engineered biochar, equilibrium isotherm, mathematical modeling, pH dependencies, potentiometric titration, rhenium, sorption, technetium,
- Publikační typ
- časopisecké články MeSH
The study summarizes the results of monitoring the properties of two types of sorbents, BC1 (biochar sample 1) and BC2a (biochar sample 2), prepared by pyrolysis of bamboo biomass (BC1) and as its composite with montmorillonite K10 (BC2a). The main goal was to study their applicability to the Tc (VII) separation from liquid wastes, using NH4ReO4 as a carrier. The research was focused on determining the sorbents surface properties (by XRF (X-ray fluorescence) method and potentiometric titration in order to determine the properties of surface groups-Chemical Equilibrium Model (CEM) and Ion Exchange Model (IExM) models were applied here). As well as monitoring Tc (VII) (+Re(VII)) sorption, especially to determine equilibrium isotherm, the influence of pH and kinetics. The subject of research was also the dynamics of sorption, including its mathematical-physical modeling. Both sorbents have good properties against Tc (VII), however BC2a, due to the presence of montmorillonite, is more advantageous in this respect. It has a higher sorption capacity and faster kinetic investigation. An important finding is that the optimal pH is 2-3, which is related not only to the protonation of surface groups (they have a positive charge), but also to the negative form of the existence of Tc (VII) and Re (VII): TcO4- and ReO4-.
Zobrazit více v PubMed
Li D., Seaman J.C., Kaplan D.I., Heald S.M., Sun C. Pertechnetate (TcO4−) sequestration from groundwater by cost-effective organoclays and granular activated carbon under oxic-environmental conditions. Chem. Eng. J. 2019;360:1–9. doi: 10.1016/j.cej.2018.11.146. DOI
Hu H., Jiang B., Wu H., Zhang J., Chen X.H. Bamboo (acidosasa edulis) shoot shell biochar: Its potential isolation and mechanism to perrhenate as a chemical surrogate for pertechnetate. J. Environ. Radioac. 2016;165:39–46. doi: 10.1016/j.jenvrad.2016.09.004. PubMed DOI
Rajec P., Rosskopfova O., Galamboš M., Frišták V., Soja G., Dafnomili A., Noli F., Ðukicć A., Matović L.J. Sorption and desorption of pertechnetate on biochar under static batch and dynamic conditions. J. Radioanal. Nucl. Chem. 2016;310:253–261. doi: 10.1007/s10967-016-4811-8. DOI
Chen L., Yin X., Yu Q., Lu S., Meng F., Ning S., Wang X., Wei Y. Rapid and selective capture of perrhenate anion from simulated groundwater by a mesoporous silica-supported anion exchanger. Microporous Mesoporous Mater. 2019;274:155–162. doi: 10.1016/j.micromeso.2018.07.029. DOI
Nicholson S., Sanders T.W., Blaine L.M. The determination of low levels of 99Tc in environmental samples by inductively coupled plasma-mass spectrometry. Sci. Total. Environ. 1993;130–131:275–284. doi: 10.1016/0048-9697(93)90082-H. DOI
Chen Q., Dahlgaard H., Hansen H.J.M., Aarkrog A. Determination of 99Tc in environmental samples by anion exchange and liquid-liquid extraction at controlled valency. Anal. Chim. Acta. 1990;228:163–167. doi: 10.1016/S0003-2670(00)80493-6. DOI
Attrep M., Enochs J.A., Broz L.D. Atmospheric technetium-99. Environ. Sci. Technol. 1971;5:344–345. doi: 10.1021/es60051a006. DOI
Serne R.J., Crum J.V., Riley B.J., Levitskaia T.G. Options for the Separation and Immobilization of Technetium. Pacific Northwest National Lab. (PNNL); Richland, WA, USA: Sep, 2016. Technical Report for the U.S. Department of Energy Under Contract DE-AC05-76RL01830.
TrisKem International Extraction Chromatography. [(accessed on 16 May 2020)]; Technical Documentation. Available online: https://www.triskem-international.com/scripts/files/5addcf96423962.97324869/technical_doc_all-products_web-0.pdf.
Viglašová E., Daňo M., Galamboš M., Rosskopfová O., Rajec P., Novák I. Column studies for the separation of 99mTc using activated carbon. J. Radioanal. Nucl. Chem. 2016;307:591–597. doi: 10.1007/s10967-015-4142-1. DOI
Shi K., Hou X., Roos P., Wu W. Determination of technetium-99 in environmental samples: A review. Anal. Chim. Acta. 2012;709:1–20. doi: 10.1016/j.aca.2011.10.020. PubMed DOI
Cornett R.J., Zhao X.-L., Hou X.-L., Kieser W.E. A preliminary study of 99Tc measurement using matrix-assisted low energy AMS. Nucl. Instrum. Methods Phys. Res. Sec. B. 2019;455:181–189. doi: 10.1016/j.nimb.2018.12.028. DOI
Bergquist B.A., Marchetti A.A., Martinelli R.E., McAninch J.E., Nimz G.J., Proctor I.D., Southon J.R., Vogel J.S. Technetium measurements by accelerator mass spectrometry at LLNL. Nucl. Instrum. Methods Phys. Res. Sec. B. 2000;172:328–332. doi: 10.1016/S0168-583X(00)00084-7. DOI
Povinec P. Analysis of Environmental Radionuclides. Elsevier; Amsterdam, The Netherlands: 2011.
Triskem TEVA Resin, Product Sheet. [(accessed on 16 May 2020)]; 10.12.2015. Available online: https://www.triskem-international.com/scripts/files/5c5855b887c4f4.23796223/PS_TEVA-Resin_EN_160927.pdf.
Eichrom Analytical Procedure Technetium-99 in Water. [(accessed on 16 May 2020)]; Available online: https://www.eichrom.com/eichrom/methods/eichrom-methods/
Viglašová E., Galamboš M., Dankovaá Z., Krivosudský L., Lengauer C.L., Hood-Nowotny R., Soja G., Rompel A., Matík M., Briančin J. Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Manag. 2018;79:385–394. doi: 10.1016/j.wasman.2018.08.005. PubMed DOI
Chacón F.J., Sánchez-Monedero M.A., Lezama L., Cayuela M.L. Enhancing biochar redox properties through feedstock selection, metal preloading and post-pyrolysis treatments. Chem. Eng. J. 2020;395:125100. doi: 10.1016/j.cej.2020.125100. DOI
Wu L., Jing S.Z., Ding X.W. Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: Adsorption, column and field tests. Environ. Pollut. 2020;261:114223. doi: 10.1016/j.envpol.2020.114223. PubMed DOI
Pandey D., Daverey A., Arunachalam K. Biochar: Production, properties and emerging role as a support for enzyme immobilization. J. Clean. Prod. 2020;255:120267. doi: 10.1016/j.jclepro.2020.120267. DOI
Khan M.B., Cui X., Jilan G., Lu L.T.M., Cao X., Sahito Z.A., Hamid Y., Hussain B., Yang X., He Z. New insight into the impact of biochar during vermi-stabilization of divergent biowastes: Literature synthesis and research pursuits. Chemosphere. 2020;238:124679. doi: 10.1016/j.chemosphere.2019.124679. PubMed DOI
Filipská H., Štamberg K. Mathematical modeling of a Cs(I)-Sr(II)-bentonite-magnetite sorption system, simulating the processes taking place in a deep geological repository. Acta Polytech. 2005;45:11–18.
Wanner H., Albinsson Y., Karnland O., Wieland E., Wersin P., Charlet L. The acid-base chemistry of montmorillonite. Radiochim. Acta. 1994;66:157–162. doi: 10.1524/ract.1994.6667.s1.157. DOI
Dvořák L., Ledvinka M., Sobotka M. Famulus 3.5. Software. Charles University; Prague, Czech Republic: 1993.
Rahmani A., Mousavi H.Z., Fazli M. Effect of nanostructure alumina on adsorption of heavy metals. Desalination. 2010;253:94–100. doi: 10.1016/j.desal.2009.11.027. DOI
Palágyi Š., Štamberg K. Modeling of transport of radionuclides in beds of crushed crystalline rocks under equilibrium non-linear sorption isotherm conditions. Radiochim. Acta. 2010;98:359–365. doi: 10.1524/ract.2010.1729. DOI
Palágyi Š., Štamberg K., Vopálka D. Simplified modeling in dynamic column technique for the determination of radionuclide transport parameters in systems of solid granular materials and groundwater. J. Radioanal. Nucl. Chem. 2017;311:1059–1073. doi: 10.1007/s10967-016-4958-3. DOI
Štamberg K., Palágyi Š. Effect of grain size on the sorption and desorption of 137Cs in crushed granite columns and groundwater system under dynamic conditions. J. Radioanal. Nucl. Chem. 2011;293:127–134. doi: 10.1007/s10967-012-1626-0. DOI
Nartey O.D., Zhao B. Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview. Adv. Matter. Sci. Eng. 2014;2014:12. doi: 10.1155/2014/715398. DOI
Batista E.M.C.C., Shultz J., Matos T.T.S., Fornari M.R., Ferreira T.M., Szpoganicz B., De Freitas R.A., Mangrich A.S. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci. Rep. 2018;8:10677. doi: 10.1038/s41598-018-28794-z. PubMed DOI PMC
Wu M., Feng Q., Sun X., Wang H., Gielen G., Wu W. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Sci. Rep. 2015;5:1–10. doi: 10.1038/srep10001. PubMed DOI PMC
Liu Y., He Z., Uchimiya M. Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Mod. Appl. Sci. 2015;9:246–253. doi: 10.5539/mas.v9n4p246. DOI
Zhao J., Shen X.-J., Domene X., Alcañiz J.-M., Liao X., Palet C. Comparison of biochars derived from diferent types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci. Rep. 2019;9:1–12. doi: 10.1038/s41598-019-46234-4. PubMed DOI PMC
IBI (International Biochar Iniciative) Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. [(accessed on 7 July 2020)]; Available online: https://biochar-international.org/wp-content/uploads/2020/06/IBI_Biochar_Standards_V2.1_Final2.pdf.
Wijitkosum S., Jiwnok P. Elemental composition of biochar obtained from agricultural waste for soil amendment and carbon sequestration. Appl. Sci. 2019;9:3980. doi: 10.3390/app9193980. DOI
Waqas M., Aburiazaiza A., Miandad R., Rehan M., Barakat M., Nizami A.-S. Development of biochar as fuel and catalyst in energy recovery technologies. J. Clean. Prod. 2018;188:477–488. doi: 10.1016/j.jclepro.2018.04.017. DOI
Manna S., Singh N., Purakayastha T., Berns A.E.E. Effect of deashing on physico-chemical properties of wheat and rice straw biochars and potential sorption of pyrazosulfuron-ethyl. Arab. J. Chem. 2020;13:1247–1258. doi: 10.1016/j.arabjc.2017.10.005. DOI
Sen T.K. Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Waste Adsorbents. CRC Press; Boca Raton, FL, USA: 2017. Point of Zero Charge and Effect of Solution pH. Chapter 12.3.2.
Guo Y., Yu X. Characterizing the surface charge of clay minerals with Atomic Force Microscope (AFM) AIMS Mater. Sci. 2017;4:582–593. doi: 10.3934/matersci.2017.3.582. DOI
Liu J., Gaikwad R., Hande A., Das S., Thundat T. Mapping and quantifying surface charges on clay nanoparticles. Langmuir. 2015;31:10469–10476. doi: 10.1021/acs.langmuir.5b02859. PubMed DOI
Liu X., Lu X., Sprik M., Cheng J., Meijer E.J., Wang R. Acidity of edge surface sites of montmorillonite and kaolinite. Geochim. Cosmochim. Acta. 2013;117:180–190. doi: 10.1016/j.gca.2013.04.008. DOI
Demiral H., Gündüzoğlu G. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresour. Technol. 2010;101:1675–1680. doi: 10.1016/j.biortech.2009.09.087. PubMed DOI
Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides
Pertechnetate/Perrhenate Surface Complexation on Bamboo Engineered Biochar