Pertechnetate/Perrhenate Surface Complexation on Bamboo Engineered Biochar
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-18-0534
Agentúra na Podporu Výskumu a Vývoja
CZ.02.1.01/0.0/0.0/16_019/0000728
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33498548
PubMed Central
PMC7864208
DOI
10.3390/ma14030486
PII: ma14030486
Knihovny.cz E-zdroje
- Klíčová slova
- engineered biochar, modelling, potentiometric titration, rhenium, sorption, technetium,
- Publikační typ
- časopisecké články MeSH
The work deals with the evaluation of biochar samples prepared from Phyllostachys Viridiglaucescens bamboo. This evaluation consists of the characterization of prepared materials' structural properties, batch and dynamic sorption experiments, and potentiometric titrations. The batch technique was focused on obtaining basic sorption data of ⁸⁸ᵐTcO₄⁻ on biochar samples including influence of pH, contact time, and Freundlich isotherm. ReO4 -, which has very similar chemical properties to ⁸⁸ᵐTcO₄⁻, was used as a carrier in the experiments. Theoretical modeling of titration curves of biochar samples was based on the application of surface complexation models, namely, so called Chemical Equilibrium Model (CEM) and Ion Exchange Model (IExM). In this case it is assumed that there are two types of surface groups, namely, the so-called layer and edge sites. The dynamic experimental data of sorption curves were fitted by a model based on complementary error function erfc(x).
Zobrazit více v PubMed
Li D., Seaman J.C., Kaplan D.I., Heald S.M., Sun C. Pertechnetate TcO4− sequestration from groundwater by cost-effective organoclays and granular activated carbon under oxic-environmental conditions. Chem. Eng. J. 2019;360:1–9. doi: 10.1016/j.cej.2018.11.146. DOI
Chen L., Yin X., Yu Q., Lu S., Meng F., Ning S., Wang X., Wei Y. Rapid and selective capture of perrhenate anion from simulated groundwater by a mesoporous silica-supported anion exchanger. Micropor. Mesopor. Mater. 2019;274:155–162. doi: 10.1016/j.micromeso.2018.07.029. DOI
Isaacs M., Lange S., Deissmannn G., Bosbach D., Mildowski A.E., Read D. Retention of Technetium-99 by grout and backfill cements: Implications for the safe disposal of radioactive waste. Appl. Geochem. 2020;116:104580. doi: 10.1016/j.apgeochem.2020.104580. DOI
Emerson P.H., Gebru A., Boglaienko D., Katsenovich Y.P., Kandel S., Levitskaia T.G. Impact of zero valent iron aging on reductive removal of technetium-99. J. Environ. Chem. Eng. 2020;8:103767. doi: 10.1016/j.jece.2020.103767. DOI
Hu H., Jiang B., Wu H., Zhang J., Chen X.H. Bamboo (Acidosasa edulis) shoot shell biochar: Its potential isolation and mechanism to perrhenate as a chemical surrogate for pertechnetate. J. Environ. Radioact. 2016;165:39–46. doi: 10.1016/j.jenvrad.2016.09.004. PubMed DOI
Schwochau K. Technetium Chemistry and Radiopharmaceutical Applications. Wiley-VCH; Weinheim, Germany: 2000.
Serne R.J., Crum J.V., Riley B.J., Levitskaia T.G. Options for the Separation and Immobilization of Technetium. Pacific Northwest National Lab. (PNNL); Richland, WA, USA: 2016. (No. PNNL-25834; EMSP-RPT-029Rev0)
TrisKem International Extraction Chromatography. Technical Documentation. [(accessed on 11 November 2020)]; Available online: https://www.triskem-international.com/scripts/files/5addcf96423962.97324869/technical_doc_all-products_web-0.pdf.
Viglašová E., Daňo M., Galamboš M., Rosskopfová O., Rajec P., Novák I. Column studies for the separation of 99mTc using activated carbon. J. Radioanal. Nucl. Chem. 2016;307:591–597. doi: 10.1007/s10967-015-4142-1. DOI
Hu H., Sun L., Gao Y., Wang T., Huang Y., Lv C., Zhang Y.F., Huang Q., Chen X., Wu H. Synthesis of ZnO nanoparticles-anchored biochar composites for selective removal of perrhenate, a surrogate for pertechnetate, from radioactive effluents. J. Hazard. Mat. 2020;387:121670. doi: 10.1016/j.jhazmat.2019.121670. PubMed DOI
Pandey D., Daverey A., Arunachalam K. Biochar: Production, properties and emerging role as a support for enzyme immobilization. J. Clean. Prod. 2020;255:120267. doi: 10.1016/j.jclepro.2020.120267. DOI
Khan M.B., Cui X., Jilan G., Lu L.T.M., Cao X., Sahito Z.A., Hamid Y., Hussain B., Yang X., He Z. New insight into the impact of biochar during vermi-stabilization of divergent biowastes: Literature synthesis and research pursuits. Chemosphere. 2020;238:124679. doi: 10.1016/j.chemosphere.2019.124679. PubMed DOI
Rajapaksha A.U., Chen S.S., Tsang D.C., Zhang M., Vithanage M., Mandal S., Gao B., Bolan N.S., Ok Y.S. Review: Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere. 2016;148:276–291. doi: 10.1016/j.chemosphere.2016.01.043. PubMed DOI
O’Toole A., Andersson D., Gerlach A., Glaser B., Kammann C., Kern J., Kuoppamäki K., Mumme J., Schmidt H.P., Schulze M. Biochar in European Soils and Agriculture—Science and Practice. 1st ed. Taylor & Francis Group; Abingdon, UK: 2016. Current and future applications for biochar; pp. 253–280.
Beesley L., Marmiroli M. The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 2011;159:474–480. doi: 10.1016/j.envpol.2010.10.016. PubMed DOI
Mukherjee A., Zimmerman A.R., Harris W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma. 2011;163:247–255. doi: 10.1016/j.geoderma.2011.04.021. DOI
Chen B., Chen Z., Lv S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphates. Bioresour. Technol. 2011;102:716–723. doi: 10.1016/j.biortech.2010.08.067. PubMed DOI
Li H., Dong X., Da Silva E.B., De Oliviera L.M., Chen Y., Ma L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere. 2017;178:466–478. doi: 10.1016/j.chemosphere.2017.03.072. PubMed DOI
Thinnes K.R., Abdullah E.C., Mubarak N.M., Ruthiraan M. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste-water polymer application: A review. Renew. Sust. Energ. Rev. 2017;67:257–276. doi: 10.1016/j.rser.2016.09.057. DOI
El-Naggar A., Lee S.S., Rinklebe J., Farooq M., Song H., Sarmah A.K., Zimmerman A.R., Ahmad M., Shaheen S.M., Ok Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma. 2019;337:536–554. doi: 10.1016/j.geoderma.2018.09.034. DOI
Lu H.P., Li Z.A., Gascó G., Méndez A., Shen Y., Paz-Ferreiro J. Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Sci. Total. Environ. 2018;622–623:892–899. doi: 10.1016/j.scitotenv.2017.12.056. PubMed DOI
Mazarji M., Aminzadeh B., Baghdadi M., Bhantnagar A. Removal of nitrate from aqueous solution using modified granular activated carbon. J. Mol. Liq. 2017;233:139–148. doi: 10.1016/j.molliq.2017.03.004. DOI
Viglašová E., Galamboš M., Diviš D., Danková Z., Daňo M., Krivosudský L., Lengauer C.L., Matik M., Briančin J., Soja G. Engineer biochar as a tool for nitrogen pollutants removal: Preparation, characterization and sorption study. Desalin. Wat. Treat. 2020;191:318–331. doi: 10.5004/dwt.2020.25750. DOI
Daňo M., Viglašová E., Galamboš M., Štamberg K., Kujan J. Surface Complexation Models of Pertechnetate on Biochar/Montmorillonite Composite—Batch and Dynamic Sorption Study. Materials. 2020;13:3108. doi: 10.3390/ma13143108. PubMed DOI PMC
Viglašová E., Galamboš M., Danková Z., Krivosudský L., Lengauer C.L., Hood-Nowotny R., Soja G., Rompel A., Matík M., Briančin J. Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Manag. 2018;79:385–394. doi: 10.1016/j.wasman.2018.08.005. PubMed DOI
Filipská H., Štamberg K. Mathematical modeling of a Cs(I)-Sr(II)-bentonite-magnetite sorption system, simulating the processes taking place in a deep geological repository. Acta Polytech. 2005;45:11–18. doi: 10.14311/758. DOI
Lutzenkirchen J. Surface Complexation Modelling. 1st ed. Volume 11. Elsevier; Amsterdam, The Netherlands: 2006.
Dvořák L., Ledvinka M., Sobotka M. Famulus 3.5. Software. Charles University; Prague, Czech Republic: 1993.
Steven J.W. Calibration Method Using a Stable and Safe Redox Standard Solution. 6,350,367 B1. U.S. Patent. 2002 Feb 26;
Rahmani A., Mousavi H.Z., Fazli M. Effect of nanostructure alumina on adsorption of heavy metals. Desalination. 2010;253:94–100. doi: 10.1016/j.desal.2009.11.027. DOI
Rachinskii V.V. The General Theory of Sorption Dynamics and Chromatography. Springer Verlag US; Boston, MA, USA: 1965. DOI
Bear J. Dynamics of Fluids in Porous Media. Dover Publications, Inc.; New York, NY, USA: 1972.
Štamberg K., Palagyi Š. Effect of grain size on the sorption and desorption of 137Cs in crushed granite columns and ground water system under dynamic conditions. J. Radioanal. Nucl. Chem. 2012;293:127–134. doi: 10.1007/s10967-012-1626-0. DOI
Luyckx M., Hausman J.-F., Lutts S., Guerriero G. Silicon and Plants: Current Knowledge and Technological Perspectives. Front. Plant. Sci. 2017;8:411. doi: 10.3389/fpls.2017.00411. PubMed DOI PMC
Ang K.L., Li D., Nikoloski A.N. The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and cationic resins. Hydrometallurgy. 2017;174:147–155. doi: 10.1016/j.hydromet.2017.10.011. DOI
Takeno N. Atlas of Eh-pH Diagrams. Intercomparison of Thermodynamic Databases. Geological Survey of Japan; Tokyo, Japan: 2005. Open File Report No. 419.
Huinink H.P., Zahn D. Elucidating water dynamics in MgCl2 hydrates from moleculardynamics simulation. Solid State Sci. 2017;69:64–70. doi: 10.1016/j.solidstatesciences.2017.05.011. DOI
Hellman H., Laitinen R.S., Kaila L., Jalonen J., Hietapelto V., Jokela J., Sarpola J., Sarpola A., Rämö J. Identification of hydrolysis products of FeCl3·6 H2O by ESI-MS. J. Mass. Spectrom. 2006;41:1421–1429. doi: 10.1002/jms.1107. PubMed DOI