Healthy microbiome - a mere idea or a sound concept?
Language English Country Czech Republic Media print-electronic
Document type Review, Journal Article
PubMed
36426891
PubMed Central
PMC9814986
DOI
10.33549/physiolres.934967
PII: 934967
Knihovny.cz E-resources
- MeSH
- Humans MeSH
- Microbiota * physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Hundreds of studies in last decades have aimed to compare the microbiome of patients suffering from diverse diseases with that of healthy controls. The microbiome-related component was additionally identified in pathophysiology of many diseases formerly considered to depend only on the host physiology. This, however, opens important questions like: "What is the healthy microbiome?" or "Is it possible to define it unequivocally?". In this review, we describe the main hindrances complicating the definition of "healthy microbiome" in terms of microbiota composition. We discuss the human microbiome from the perspective of classical ecology and we advocate for the shift from the stress on microbiota composition to the functions that microbiome ensures for the host. Finally, we propose to leave the concept of ideal healthy microbiome and replace it by focus on microbiome advantageous for the host, which always depends on the specific context like the age, genetics, dietary habits, body site or physiological state.
See more in PubMed
Gordon J, Knowlton N, Relman DA, Rohwer F, Youle M. Superorganisms and holobionts. Microbe. 2013;8:152–3. doi: 10.1128/microbe.8.152.1. DOI
Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. doi: 10.1038/nature11234. PubMed DOI PMC
Gilbert SF. A holobiont birth narrative: the epigenetic transmission of the human microbiome. Front Genet. 2014;5:282. doi: 10.3389/fgene.2014.00282. PubMed DOI PMC
Levin Polasky S, Simon A. Fragile Dominion: Complexity and the Commons. Reading MA: Perseus Books; 1999. p. 254.
American Journal of Agricultural Economics. 2001;83(1):246–7. doi: 10.1111/1467-8276.t01-1-00151. DOI
Carl F, Steve C, Brian W, Marten S, Thomas E, Lance G, et al. Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annual Review of Ecology, Evolution, and Systematics. 2004;35(1):557–81. doi: 10.1146/annurev.ecolsys.35.021103.105711. DOI
Relman DA. The human microbiome: ecosystem resilience and health. Nutr Rev. 2012;70(Suppl 1):S2–9. doi: 10.1111/j.1753-4887.2012.00489.x. PubMed DOI PMC
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30. doi: 10.1038/nature11550. PubMed DOI PMC
Pimm SL. Ecological Issues in the Conservation of Species and Communities. University of Chicago Press; 1991. The Balance of Nature?
Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15(10):630–8. doi: 10.1038/nrmicro.2017.58. PubMed DOI
Holling CS. Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics. 1973;4(1):1–23. doi: 10.1146/annurev.es.04.110173.000245. DOI
Moustafa A, Li W, Anderson EL, Wong EHM, Dulai PS, Sandborn WJ, et al. Genetic risk, dysbiosis, and treatment stratification using host genome and gut microbiome in inflammatory bowel disease. Clin Transl Gastroenterol. 2018;9(1):e132. doi: 10.1038/ctg.2017.58. PubMed DOI PMC
van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15. doi: 10.1056/NEJMoa1205037. PubMed DOI
McNaughton SJ. Diversity and Stability of Ecological Communities: A Comment on the Role of Empiricism in Ecology. The American Naturalist. 1977;111(979):515–25. doi: 10.1086/283181. DOI
Naeem S, Li S. Biodiversity enhances ecosystem reliability. Nature. 1997;390(6659):507–9. doi: 10.1038/37348. DOI
Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A. 1999;96(4):1463–8. doi: 10.1073/pnas.96.4.1463. PubMed DOI PMC
Huber M, Knottnerus JA, Green L, van der Horst H, Jadad AR, Kromhout D, et al. How should we define health? BMJ. 2011;343:d4163. doi: 10.1136/bmj.d4163. PubMed DOI
Oleribe OO, Ukwedeh O, Burstow NJ, Gomaa AI, Sonderup MW, Cook N, et al. Health: redefined. Pan Afr Med J. 2018;30:292. doi: 10.11604/pamj.2018.30.292.15436. PubMed DOI PMC
Stokes J, 3rd, Noren J, Shindell S. Definition of terms and concepts applicable to clinical preventive medicine. J Community Health. 1982;8(1):33–41. doi: 10.1007/BF01324395. PubMed DOI
Dietert RR. Microbiome First Medicine in Health and Safety. Biomedicines. 2021;9(9) doi: 10.3390/biomedicines9091099. PubMed DOI PMC
David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014;15(7):R89. doi: 10.1186/gb-2014-15-7-r89. PubMed DOI PMC
Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449(7164):811–8. doi: 10.1038/nature06245. PubMed DOI PMC
Larsen OFA, van de Burgwal LHM. On the Verge of a Catastrophic Collapse? The Need for a Multi-Ecosystem Approach to Microbiome Studies. Front Microbiol. 2021;12:784797. doi: 10.3389/fmicb.2021.784797. PubMed DOI PMC
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. doi: 10.1073/pnas.1005963107. PubMed DOI PMC
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7. doi: 10.1038/nature11053. PubMed DOI PMC
Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16(9):567–76. doi: 10.1038/s41579-018-0024-1. PubMed DOI
Bach JF. Revisiting the Hygiene Hypothesis in the Context of Autoimmunity. Front Immunol. 2020;11:615192. doi: 10.3389/fimmu.2020.615192. PubMed DOI PMC
Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84. doi: 10.1038/nature11319. PubMed DOI
Voorhies AAL, HA The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions. Front Astron Space Sci. 2016;3(23):1–7. doi: 10.3389/fspas.2016.00023. DOI
Bach JF. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol. 2018;18(2):105–20. doi: 10.1038/nri.2017.111. PubMed DOI
Rook GA. Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology. 2009;126(1):3–11. doi: 10.1111/j.1365-2567.2008.03007.x. PubMed DOI PMC
von Hertzen L, Hanski I, Haahtela T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep. 2011;12(11):1089–93. doi: 10.1038/embor.2011.195. PubMed DOI PMC
Kostovcikova K, Coufal S, Galanova N, Fajstova A, Hudcovic T, Kostovcik M, et al. Diet rich in animal protein promotes pro-inflammatory macrophage response and exacerbates colitis in mice. Front Immunol. 2019;10:919. doi: 10.3389/fimmu.2019.00919. PubMed DOI PMC
Zhang X, Dong Y, Sun G, Hasan AA, Tian M, Zeng S, et al. Paternal programming of liver function and lipid profile induced by a paternal pre-conceptional unhealthy diet: potential association with altered gut microbiome composition. Kidney Blood Press Res. 2019;44(1):133–48. doi: 10.1159/000497487. PubMed DOI
Sun CY, Zheng ZL, Chen CW, Lu BW, Liu D. Targeting gut microbiota with natural polysaccharides: effective interventions against high-fat diet-induced metabolic diseases. Front Microbiol. 2022;13:859206. doi: 10.3389/fmicb.2022.859206. PubMed DOI PMC
Panelli S, Epis S, Cococcioni L, Perini M, Paroni M, Bandi C, et al. Inflammatory bowel diseases, the hygiene hypothesis and the other side of the microbiota: Parasites and fungi. Pharmacol Res. 2020;159:104962. doi: 10.1016/j.phrs.2020.104962. PubMed DOI
Fyhrquist N. The human microbiota and its relationship with allergies. Gastroenterol Clin North Am. 2019;48(3):377–87. doi: 10.1016/j.gtc.2019.04.005. PubMed DOI
Olunoiki E, Rehner J, Bischoff M, Koshel E, Vogt T, Reichrath J, et al. Characteristics of the Skin Microbiome in Selected Dermatological Conditions: A Narrative Review. Life (Basel) 2022;12(9) doi: 10.3390/life12091420. PubMed DOI PMC
Tramper-Stranders G, Ambrozej D, Arcolaci A, Atanaskovic-Markovic M, Boccabella C, Bonini M, et al. Dangerous liaisons: Bacteria, antimicrobial therapies, and allergic diseases. Allergy. 2021;76(11):3276–91. doi: 10.1111/all.15046. PubMed DOI
Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020;53:101340. doi: 10.1016/j.smrv.2020.101340. PubMed DOI
Frazier K, Chang EB. Intersection of the Gut Microbiome and Circadian Rhythms in Metabolism. Trends Endocrinol Metab. 2020;31(1):25–36. doi: 10.1016/j.tem.2019.08.013. PubMed DOI PMC
Pickard JM, Zeng MY, Caruso R, Nunez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70–89. doi: 10.1111/imr.12567. PubMed DOI PMC
Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. doi: 10.1126/science.1241214. PubMed DOI PMC
Datar A, Nicosia N. Assessing Social Contagion in Body Mass Index, Overweight, and Obesity Using a Natural Experiment. JAMA Pediatr. 2018;172(3):239–46. doi: 10.1001/jamapediatrics.2017.4882. PubMed DOI PMC
Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med. 2007;357(4):370–9. doi: 10.1056/NEJMsa066082. PubMed DOI
Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716–25. doi: 10.1136/gutjnl-2018-316723. PubMed DOI PMC
Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290(9):5647–60. doi: 10.1074/jbc.M114.618249. PubMed DOI PMC
Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745–57. doi: 10.1016/j.cell.2011.04.022. PubMed DOI PMC
Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C, et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature. 2016;540(7634):544–51. doi: 10.1038/nature20796. PubMed DOI
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14. doi: 10.1126/scitranslmed.3000322. PubMed DOI PMC
Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. Cell. 2020;180(2):221–32. doi: 10.1016/j.cell.2019.12.025. PubMed DOI
Bajaj JS, Ng SC, Schnabl B. Promises of microbiome-based therapies. J Hepatol. 2022;76(6):1379–91. doi: 10.1016/j.jhep.2021.12.003. PubMed DOI PMC
Marotz CA, Zarrinpar A. Treating Obesity and Metabolic Syndrome with Fecal Microbiota Transplantation. Yale J Biol Med. 2016;89(3):383–8. PubMed PMC
Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis. 2015;2(1):ofv004. doi: 10.1093/ofid/ofv004. PubMed DOI PMC
Rosier BT, Marsh PD, Mira A. Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. J Dent Res. 2018;97(4):371–80. doi: 10.1177/0022034517742139. PubMed DOI
Chaban B, Links MG, Jayaprakash TP, Wagner EC, Bourque DK, Lohn Z, et al. Characterization of the vaginal microbiota of healthy Canadian women through the menstrual cycle. Microbiome. 2014;2:23. doi: 10.1186/2049-2618-2-23. PubMed DOI PMC
Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59–64. doi: 10.1038/nature13786. PubMed DOI PMC
Nagpal R, Yadav H. Bacterial Translocation from the Gut to the Distant Organs: An Overview. Ann Nutr Metab. 2017;71(Suppl 1):11–6. doi: 10.1159/000479918. PubMed DOI
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC
O’Toole PW, Jeffery IB. Gut microbiota and aging. Science. 2015;350(6265):1214–5. doi: 10.1126/science.aac8469. PubMed DOI
Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90. doi: 10.1186/s12866-016-0708-5. PubMed DOI PMC
Salazar N, Gonzalez S, Nogacka AM, Rios-Covian D, Arboleya S, Gueimonde M, et al. Microbiome: Effects of Ageing and Diet. Curr Issues Mol Biol. 2020;36:33–62. doi: 10.21775/cimb.036.033. PubMed DOI
Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, et al. Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging. 2018;4(4):267–85. doi: 10.3233/NHA-170030. PubMed DOI PMC
Rios-Covian D, Gonzalez S, Nogacka AM, Arboleya S, Salazar N, Gueimonde M, et al. An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Front Microbiol. 2020;11:973. doi: 10.3389/fmicb.2020.00973. PubMed DOI PMC
Trivedi B. Microbiome: The surface brigade. Nature. 2012;492(7429):S60–1. doi: 10.1038/492S60a. PubMed DOI
Bay L, Barnes CJ, Fritz BG, Thorsen J, Restrup MEM, Rasmussen L, et al. Universal Dermal Microbiome in Human Skin. mBio. 2020;11(1) doi: 10.1128/mBio.02945-19. PubMed DOI PMC
Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85(2):162–9. doi: 10.1067/mpr.2001.113778. PubMed DOI
Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533. PubMed DOI PMC
Berthelot JM, Bandiaky ON, Le Goff B, Amador G, Chaux AG, Soueidan A, et al. Another Look at the Contribution of Oral Microbiota to the Pathogenesis of Rheumatoid Arthritis: A Narrative Review. Microorganisms. 2021;10(1) doi: 10.3390/microorganisms10010059. PubMed DOI PMC
Khan I, Khan I, Jianye Z, Xiaohua Z, Khan M, Hilal MG, et al. Exploring blood microbial communities and their influence on human cardiovascular disease. J Clin Lab Anal. 2022;36(4):e24354. doi: 10.1002/jcla.24354. PubMed DOI PMC
Martinez M, Postolache TT, Garcia-Bueno B, Leza JC, Figuero E, Lowry CA, et al. The role of the oral microbiota related to periodontal diseases in anxiety, mood and trauma- and stress-related disorders. Front Psychiatry. 2021;12:814177. doi: 10.3389/fpsyt.2021.814177. PubMed DOI PMC
Newman KL, Kamada N. Pathogenic associations between oral and gastrointestinal diseases. Trends Mol Med. 2022 doi: 10.1016/j.molmed.2022.05.006. PubMed DOI PMC
Sumida K, Han Z, Chiu CY, Mims TS, Bajwa A, Demmer RT, et al. Circulating Microbiota in Cardiometabolic Disease. Front Cell Infect Microbiol. 2022;12:892232. doi: 10.3389/fcimb.2022.892232. PubMed DOI PMC
Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44. doi: 10.1038/nri3785. PubMed DOI PMC
Salem I, Ramser A, Isham N, Ghannoum MA. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front Microbiol. 2018;9:1459. doi: 10.3389/fmicb.2018.01459. PubMed DOI PMC
Sanchez-Pellicer P, Navarro-Moratalla L, Nunez-Delegido E, Ruzafa-Costas B, Aguera-Santos J, Navarro-Lopez V. Acne, Microbiome, and Probiotics: The Gut-Skin Axis. Microorganisms. 2022;10(7) doi: 10.3390/microorganisms10071303. PubMed DOI PMC
Chhibber-Goel J, Singhal V, Bhowmik D, Vivek R, Parakh N, Bhargava B, et al. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. NPJ Biofilms Microbiomes. 2016;2:7. doi: 10.1038/s41522-016-0009-7. PubMed DOI PMC
Williams JE, Carrothers JM, Lackey KA, Beatty NF, Brooker SL, Peterson HK, et al. Strong Multivariate Relations Exist Among Milk, Oral, and Fecal Microbiomes in Mother-Infant Dyads During the First Six Months Postpartum. J Nutr. 2019;149(6):902–14. doi: 10.1093/jn/nxy299. PubMed DOI PMC
Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimers Dis. 2013;36(4):665–77. doi: 10.3233/JAD-121918. PubMed DOI
Xu B, Han YW. Oral bacteria, oral health, and adverse pregnancy outcomes. Periodontol 2000. 2022;89(1):181–9. doi: 10.1111/prd.12436. PubMed DOI
Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu WK, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015;6:8727. doi: 10.1038/ncomms9727. PubMed DOI PMC
Mitsuhashi K, Nosho K, Sukawa Y, Matsunaga Y, Ito M, Kurihara H, et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 2015;6(9):7209–20. doi: 10.18632/oncotarget.3109. PubMed DOI PMC
Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905. doi: 10.1038/nm.3914. PubMed DOI
Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I, Narushima S, et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science. 2017;358(6361):359–65. doi: 10.1126/science.aan4526. PubMed DOI PMC
Schmidt TS, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, et al. Extensive transmission of microbes along the gastrointestinal tract. Elife. 2019:8. doi: 10.7554/eLife.42693. PubMed DOI PMC
Olsen I, van Winkelhoff AJ. Acute focal infections of dental origin. Periodontol 2000. 2014;65(1):178–89. doi: 10.1111/prd.12018. PubMed DOI
Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, et al. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021;13(9) doi: 10.3390/cancers13092124. PubMed DOI PMC
Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, et al. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One. 2012;7(6):e37919. doi: 10.1371/journal.pone.0037919. PubMed DOI PMC
Lenartova M, Tesinska B, Janatova T, Hrebicek O, Mysak J, Janata J, et al. The Oral Microbiome in Periodontal Health. Front Cell Infect Microbiol. 2021;11:629723. doi: 10.3389/fcimb.2021.629723. PubMed DOI PMC
Jahani-Sherafat S, Alebouyeh M, Moghim S, Ahmadi Amoli H, Ghasemian-Safaei H. Role of gut microbiota in the pathogenesis of colorectal cancer; a review article. Gastroenterol Hepatol Bed Bench. 2018;11(2):101–9. PubMed PMC
Lawrence GW, Begley M, Cotter PD, Guinane CM. Potential Use of Biotherapeutic Bacteria to Target Colorectal Cancer-Associated Taxa. Int J Mol Sci. 2020;21(3) doi: 10.3390/ijms21030924. PubMed DOI PMC
Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6(2):320–9. doi: 10.1038/ismej.2011.109. PubMed DOI PMC
Ranjbar M, Salehi R, Haghjooy Javanmard S, Rafiee L, Faraji H, Jafarpor S, et al. The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A systematic review. Cancer Cell Int. 2021;21(1):194. doi: 10.1186/s12935-021-01886-z. PubMed DOI PMC
Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10(8):575–82. doi: 10.1038/nrmicro2819. PubMed DOI
Xing J, Fang Y, Zhang W, Zhang H, Tang D, Wang D. Bacterial driver-passenger model in biofilms: a new mechanism in the development of colorectal cancer. Clin Transl Oncol. 2022;24(5):784–95. doi: 10.1007/s12094-021-02738-y. PubMed DOI
Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306. doi: 10.1101/gr.126516.111. PubMed DOI PMC
Avril M, DePaolo RW. “Driver-passenger” bacteria and their metabolites in the pathogenesis of colorectal cancer. Gut Microbes. 2021;13(1):1941710. doi: 10.1080/19490976.2021.1941710. PubMed DOI PMC
Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell. 2019;178(4):795–806 e12. doi: 10.1016/j.cell.2019.07.008. PubMed DOI PMC
Kim YI, Park JE, Brand DD, Fitzpatrick EA, Yi AK. Protein kinase D1 is essential for the proinflammatory response induced by hypersensitivity pneumonitis-causing thermophilic actinomycetes Saccharopolyspora rectivirgula. J Immunol. 2010;184(6):3145–56. doi: 10.4049/jimmunol.0903718. PubMed DOI PMC
Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351(6275):854–7. doi: 10.1126/science.aad8588. PubMed DOI
Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654. doi: 10.1038/ncomms4654. PubMed DOI PMC
Dahl WJ, Rivero Mendoza D, Lambert JM. Diet, nutrients and the microbiome. Prog Mol Biol Transl Sci. 2020;171:237–63. doi: 10.1016/bs.pmbts.2020.04.006. PubMed DOI
Yue SJ, Liu J, Wang AT, Meng XT, Yang ZR, Peng C, et al. Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids. Am J Physiol Endocrinol Metab. 2019;316(1):E73–E85. doi: 10.1152/ajpendo.00256.2018. PubMed DOI
Gojda J, Cahova M. Gut Microbiota as the Link between Elevated BCAA Serum Levels and Insulin Resistance. Biomolecules. 2021;11(10) doi: 10.3390/biom11101414. PubMed DOI PMC
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26. doi: 10.1016/j.cmet.2009.02.002. PubMed DOI PMC
Katagiri R, Goto A, Nakagawa T, Nishiumi S, Kobayashi T, Hidaka A, et al. Increased Levels of Branched-Chain Amino Acid Associated With Increased Risk of Pancreatic Cancer in a Prospective Case-Control Study of a Large Cohort. Gastroenterology. 2018;155(5):1474–82 e1. doi: 10.1053/j.gastro.2018.07.033. PubMed DOI
Wensel CR, Pluznick JL, Salzberg SL, Sears CL. Next-generation sequencing: insights to advance clinical investigations of the microbiome. J Clin Invest. 2022;132(7) doi: 10.1172/JCI154944. PubMed DOI PMC
Zierer J, Jackson MA, Kastenmuller G, Mangino M, Long T, Telenti A, et al. The fecal metabolome as a functional readout of the gut microbiome. Nat Genet. 2018;50(6):790–5. doi: 10.1038/s41588-018-0135-7. PubMed DOI PMC
Schloss PD. Identifying and Overcoming Threats to Reproducibility, Replicability, Robustness, and Generalizability in Microbiome Research. mBio. 2018;9(3) doi: 10.1128/mBio.00525-18. PubMed DOI PMC
Greathouse KL, Sinha R, Vogtmann E. DNA extraction for human microbiome studies: the issue of standardization. Genome Biol. 2019;20(1):212. doi: 10.1186/s13059-019-1843-8. PubMed DOI PMC
Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F, et al. Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol. 2017;35(11):1069–76. doi: 10.1038/nbt.3960. PubMed DOI
O’Sullivan DM, Doyle RM, Temisak S, Redshaw N, Whale AS, Logan G, et al. An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities. Sci Rep. 2021;11(1):10590. doi: 10.1038/s41598-021-89881-2. PubMed DOI PMC
Clausen DS, Willis AD. Evaluating replicability in microbiome data. Biostatistics. 2022;23(4):1099–114. doi: 10.1093/biostatistics/kxab048. PubMed DOI PMC
Sinha R, Abu-Ali G, Vogtmann E, Fodor AA, Ren B, Amir A, et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat Biotechnol. 2017;35(11):1077–86. doi: 10.1038/nbt.3981. PubMed DOI PMC
Mirzayi C, Renson A, Massive A, Zohra F, et al. Quality Control S, Genomic Standards C. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med. 2021;27(11):1885–92. doi: 10.1038/s41591-021-01552-x. PubMed DOI PMC
Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK, Allward N, et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat Commun. 2022;13(1):342. https://doi.org/10.1038/s41467-022-28401-w, https://doi.org/10.1038/s41467-022-28401-whttps://doi.org/10.1038/s41467-022-28034-z. PubMed DOI PMC
Mancabelli L, Tarracchini C, Milani C, Lugli GA, Fontana F, Turroni F, et al. Vaginotypes of the human vaginal microbiome. Environ Microbiol. 2021;23(3):1780–92. doi: 10.1111/1462-2920.15441. PubMed DOI
Verstraelen H, Vieira-Baptista P, De Seta F, Ventolini G, Lonnee-Hoffmann R, Lev-Sagie A. The Vaginal Microbiome: I. Research Development, Lexicon, Defining “Normal” and the Dynamics Throughout Women’s Lives. J Low Genit Tract Dis. 2022;26(1):73–8. doi: 10.1097/LGT.0000000000000643. PubMed DOI PMC
Dominguez-Bello MG. Gestational shaping of the maternal vaginal microbiome. Nat Med. 2019;25(6):882–3. doi: 10.1038/s41591-019-0483-6. PubMed DOI
Auriemma RS, Scairati R, Del Vecchio G, Liccardi A, Verde N, Pirchio R, et al. The Vaginal Microbiome: A Long Urogenital Colonization Throughout Woman Life. Front Cell Infect Microbiol. 2021;11:686167. doi: 10.3389/fcimb.2021.686167. PubMed DOI PMC
Haque MM, Merchant M, Kumar PN, Dutta A, Mande SS. First-trimester vaginal microbiome diversity: A potential indicator of preterm delivery risk. Sci Rep. 2017;7(1):16145. doi: 10.1038/s41598-017-16352-y. PubMed DOI PMC
Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7. doi: 10.1073/pnas.1002611107. PubMed DOI PMC
Deo PN, Deshmukh R. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol. 2019;23(1):122–8. doi: 10.4103/jomfp.JOMFP_77_18. PubMed DOI PMC
Escapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon KP. New Insights into Human Nostril Microbiome from the Expanded Human Oral Microbiome Database (eHOMD): a Resource for the Microbiome of the Human Aerodigestive Tract. mSystems. 2018;3(6) doi: 10.1128/mSystems.00187-18. PubMed DOI PMC
Najmanova L, Sabova L, Lenartova M, Janatova T, Mysak J, Vetrovsky T, et al. R/G Value-A Numeric Index of Individual Periodontal Health and Oral Microbiome Dynamics. Front Cell Infect Microbiol. 2021;11:602643. doi: 10.3389/fcimb.2021.602643. PubMed DOI PMC