Complex Mitochondrial Dysfunction Induced by TPP+-Gentisic Acid and Mitochondrial Translation Inhibition by Doxycycline Evokes Synergistic Lethality in Breast Cancer Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32053908
PubMed Central
PMC7072465
DOI
10.3390/cells9020407
PII: cells9020407
Knihovny.cz E-zdroje
- Klíčová slova
- decyl polyhydroxybenzoate triphenylphosphonium derivatives, doxycycline, inhibition of alpha-ketoglutarate dehydrogenase complex, inhibition of the electron transport chain, mitochondrial ribosome inhibition, mitochondrially targeted,
- MeSH
- antitumorózní látky farmakologie MeSH
- apoptóza účinky léků MeSH
- doxycyklin farmakologie MeSH
- gentisáty chemie farmakologie MeSH
- heterocyklické sloučeniny chemie farmakologie MeSH
- ketoglutarátdehydrogenasový komplex antagonisté a inhibitory genetika MeSH
- kinasy AMP aktivovaných proteinkinas MeSH
- lidé MeSH
- mitochondrie účinky léků patologie MeSH
- nádory prsu farmakoterapie genetika patologie MeSH
- organofosforové sloučeniny chemie farmakologie MeSH
- oxidativní fosforylace účinky léků MeSH
- proliferace buněk účinky léků MeSH
- proteinkinasy genetika MeSH
- proteosyntéza účinky léků MeSH
- ribozomy účinky léků MeSH
- synergismus léků MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2,5-dihydroxybenzoic acid MeSH Prohlížeč
- antitumorózní látky MeSH
- doxycyklin MeSH
- gentisáty MeSH
- heterocyklické sloučeniny MeSH
- ketoglutarátdehydrogenasový komplex MeSH
- kinasy AMP aktivovaných proteinkinas MeSH
- organofosforové sloučeniny MeSH
- proteinkinasy MeSH
- tris(o-phenylenedioxy)cyclotriphosphazene MeSH Prohlížeč
The mitochondrion has emerged as a promising therapeutic target for novel cancer treatments because of its essential role in tumorigenesis and resistance to chemotherapy. Previously, we described a natural compound, 10-((2,5-dihydroxybenzoyl)oxy)decyl) triphenylphosphonium bromide (GA-TPP+C10), with a hydroquinone scaffold that selectively targets the mitochondria of breast cancer (BC) cells by binding to the triphenylphosphonium group as a chemical chaperone; however, the mechanism of action remains unclear. In this work, we showed that GA-TPP+C10 causes time-dependent complex inhibition of the mitochondrial bioenergetics of BC cells, characterized by (1) an initial phase of mitochondrial uptake with an uncoupling effect of oxidative phosphorylation, as previously reported, (2) inhibition of Complex I-dependent respiration, and (3) a late phase of mitochondrial accumulation with inhibition of α-ketoglutarate dehydrogenase complex (αKGDHC) activity. These events led to cell cycle arrest in the G1 phase and cell death at 24 and 48 h of exposure, and the cells were rescued by the addition of the cell-penetrating metabolic intermediates l-aspartic acid β-methyl ester (mAsp) and dimethyl α-ketoglutarate (dm-KG). In addition, this unexpected blocking of mitochondrial function triggered metabolic remodeling toward glycolysis, AMPK activation, increased expression of proliferator-activated receptor gamma coactivator 1-alpha (pgc1α) and electron transport chain (ETC) component-related genes encoded by mitochondrial DNA and downregulation of the uncoupling proteins ucp3 and ucp4, suggesting an AMPK-dependent prosurvival adaptive response in cancer cells. Consistent with this finding, we showed that inhibition of mitochondrial translation with doxycycline, a broad-spectrum antibiotic that inhibits the 28 S subunit of the mitochondrial ribosome, in the presence of GA-TPP+C10 significantly reduces the mt-CO1 and VDAC protein levels and the FCCP-stimulated maximal electron flux and promotes selective and synergistic cytotoxic effects on BC cells at 24 h of treatment. Based on our results, we propose that this combined strategy based on blockage of the adaptive response induced by mitochondrial bioenergetic inhibition may have therapeutic relevance in BC.
Institute of Biotechnology Czech Academy of Sciences 25250 Prague Czech Republic
School of Pharmacy Faculty of Medicine Andrés Bello National University Santiago 8370149 Chile
Zobrazit více v PubMed
LeBleu V.S., O’Connell J.T., Gonzalez Herrera K.N., Wikman H., Pantel K., Haigis M.C., de Carvalho F.M., Damascena A., Domingos Chinen L.T., Rocha R.M., et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 2014;16:992–1003. doi: 10.1038/ncb3039. PubMed DOI PMC
Bajzikova M., Kovarova J., Coelho A.R., Boukalova S., Oh S., Rohlenova K., Svec D., Hubackova S., Endaya B., Judasova K., et al. Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metab. 2018 doi: 10.1016/j.cmet.2018.10.014. PubMed DOI PMC
Maiuri M.C., Kroemer G. Essential role for oxidative phosphorylation in cancer progression. Cell Metab. 2015;21:11–12. doi: 10.1016/j.cmet.2014.12.013. PubMed DOI
Porporato P.E., Payen V.L., Perez-Escuredo J., De Saedeleer C.J., Danhier P., Copetti T., Dhup S., Tardy M., Vazeille T., Bouzin C., et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8:754–766. doi: 10.1016/j.celrep.2014.06.043. PubMed DOI
Tan A.S., Baty J.W., Dong L.F., Bezawork-Geleta A., Endaya B., Goodwin J., Bajzikova M., Kovarova J., Peterka M., Yan B., et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21:81–94. doi: 10.1016/j.cmet.2014.12.003. PubMed DOI
Dong L.F., Kovarova J., Bajzikova M., Bezawork-Geleta A., Svec D., Endaya B., Sachaphibulkij K., Coelho A.R., Sebkova N., Ruzickova A., et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife. 2017 doi: 10.7554/eLife.22187.001. PubMed DOI PMC
Berridge M.V., McConnell M.J., Grasso C., Bajzikova M., Kovarova J., Neuzil J. Horizontal transfer of mitochondria between mammalian cells: Beyond co-culture approaches. Curr. Opin. Genet. Dev. 2016;38:75–82. doi: 10.1016/j.gde.2016.04.003. PubMed DOI
Scarpulla R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. ET Biophys. Acta. 2011;1813:1269–1278. doi: 10.1016/j.bbamcr.2010.09.019. PubMed DOI PMC
Birsoy K., Possemato R., Lorbeer F.K., Bayraktar E.C., Thiru P., Yucel B., Wang T., Chen W.W., Clish C.B., Sabatini D.M. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature. 2014;508:108. doi: 10.1038/nature13110. PubMed DOI PMC
Urra F.A., Weiss-López B., Araya-Maturana R. Determinants of Anti-Cancer Effect of Mitochondrial Electron Transport Chain Inhibitors: Bioenergetic Profile and Metabolic Flexibility of Cancer Cells. Curr. Pharm. Des. 2016;22:5998–6008. doi: 10.2174/1381612822666160719122626. PubMed DOI
Lehuédé C., Dupuy F., Rabinovitch R., Jones R.G., Siegel P.M. Metabolic Plasticity as a Determinant of Tumor Growth and Metastasis. Cancer Res. 2016;76:5201–5208. doi: 10.1158/0008-5472.CAN-16-0266. PubMed DOI
van Weverwijk A., Koundouros N., Iravani M., Ashenden M., Gao Q., Poulogiannis G., Jungwirth U., Isacke C.M. Metabolic adaptability in metastatic breast cancer by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation. Nat. Commun. 2019;10:2698. doi: 10.1038/s41467-019-10592-4. PubMed DOI PMC
Zaal E.A., Berkers C.R. The Influence of Metabolism on Drug Response in Cancer. Front. Oncol. 2018;8 doi: 10.3389/fonc.2018.00500. PubMed DOI PMC
Ghosh J.C., Siegelin M.D., Vaira V., Faversani A., Tavecchio M., Chae Y.C., Lisanti S., Rampini P., Giroda M., Caino M.C., et al. Adaptive Mitochondrial Reprogramming and Resistance to PI3K Therapy. JNCI J. Natl. Cancer Inst. 2015;107 doi: 10.1093/jnci/dju502. PubMed DOI PMC
Fulda S., Galluzzi L., Kroemer G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 2010;9:447–464. doi: 10.1038/nrd3137. PubMed DOI
Boukalova S., Rohlenova K., Rohlena J., Neuzil J. Mitocans: Mitochondrially Targeted Anti-cancer Drugs. In: Oliveira P.J., editor. Mitochondrial Biology and Experimental Therapeutics. Springer International Publishing; Cham, Switzerland: 2018. DOI
Modica-Napolitano J.S., Aprille J.R. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv. Drug Deliv. Rev. 2001;49:63–70. doi: 10.1016/S0169-409X(01)00125-9. PubMed DOI
Battogtokh G., Cho Y.-Y., Lee J.Y., Lee H.S., Kang H.C. Mitochondrial-Targeting Anticancer Agent Conjugates and Nanocarrier Systems for Cancer Treatment. Front. Pharmacol. 2018;9 doi: 10.3389/fphar.2018.00922. PubMed DOI PMC
Jara J.A., Castro-Castillo V., Saavedra-Olavarria J., Peredo L., Pavanni M., Jana F., Letelier M.E., Parra E., Becker M.I., Morello A., et al. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J. Med. Chem. 2014;57:2440–2454. doi: 10.1021/jm500174v. PubMed DOI
Sandoval-Acuna C., Fuentes-Retamal S., Guzman-Rivera D., Peredo-Silva L., Madrid-Rojas M., Rebolledo S., Castro-Castillo V., Pavani M., Catalan M., Maya J.D., et al. Destabilization of mitochondrial functions as a target against breast cancer progression: Role of TPP(+)-linked-polyhydroxybenzoates. Toxicol. Appl. Pharmacol. 2016;309:2–14. doi: 10.1016/j.taap.2016.08.018. PubMed DOI
Peredo-Silva L., Fuentes-Retamal S., Sandoval-Acuna C., Pavani M., Maya J.D., Castro-Castillo V., Madrid-Rojas M., Rebolledo S., Kemmerling U., Parra E., et al. Derivatives of alkyl gallate triphenylphosphonium exhibit antitumor activity in a syngeneic murine model of mammary adenocarcinoma. Toxicol. Appl. Pharmacol. 2017;329:334–346. doi: 10.1016/j.taap.2017.06.017. PubMed DOI
Chopra I., Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. MMBR. 2001;65:232–260. doi: 10.1128/MMBR.65.2.232-260.2001. PubMed DOI PMC
Roberts M.C. Tetracycline therapy: Update. Clin. Infect. Dis. 2003;36:462–467. doi: 10.1086/367622. PubMed DOI
Lamb R., Ozsvari B., Lisanti C.L., Tanowitz H.B., Howell A., Martinez-Outschoorn U.E., Sotgia F., Lisanti M.P. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget. 2015;6:4569–4584. doi: 10.18632/oncotarget.3174. PubMed DOI PMC
Ozsvari B., Fiorillo M., Bonuccelli G., Cappello A.R., Frattaruolo L., Sotgia F., Trowbridge R., Foster R., Lisanti M.P. Mitoriboscins: Mitochondrial-based therapeutics targeting cancer stem cells (CSCs), bacteria and pathogenic yeast. Oncotarget. 2017;8:67457–67472. doi: 10.18632/oncotarget.19084. PubMed DOI PMC
Tallarida R.J. Drug Synergism: Its Detection and Applications. J. Pharmacol. Exp. Ther. 2001;298:865–872. PubMed
Franken N.A.P., Rodermond H.M., Stap J., Haveman J., van Bree C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006;1:2315–2319. doi: 10.1038/nprot.2006.339. PubMed DOI
Urra F.A., Martinez-Cifuentes M., Pavani M., Lapier M., Jana-Prado F., Parra E., Maya J.D., Pessoa-Mahana H., Ferreira J., Araya-Maturana R. An ortho-carbonyl substituted hydroquinone derivative is an anticancer agent that acts by inhibiting mitochondrial bioenergetics and by inducing G(2)/M-phase arrest in mammary adenocarcinoma TA3. Toxicol. Appl. Pharmacol. 2013;267:218–227. doi: 10.1016/j.taap.2012.12.023. PubMed DOI
Urra F.A., Munoz F., Cordova-Delgado M., Ramirez M.P., Pena-Ahumada B., Rios M., Cruz P., Ahumada-Castro U., Bustos G., Silva-Pavez E., et al. FR58P1a; a new uncoupler of OXPHOS that inhibits migration in triple-negative breast cancer cells via Sirt1/AMPK/beta1-integrin pathway. Sci. Rep. 2018;8:13190. doi: 10.1038/s41598-018-31367-9. PubMed DOI PMC
Truksa J., Dong L.F., Rohlena J., Stursa J., Vondrusova M., Goodwin J., Nguyen M., Kluckova K., Rychtarcikova Z., Lettlova S., et al. Mitochondrially targeted vitamin E succinate modulates expression of mitochondrial DNA transcripts and mitochondrial biogenesis. Antioxid. Redox Signal. 2015;22:883–900. doi: 10.1089/ars.2013.5594. PubMed DOI
Weigel M.T., Dahmke L., Schem C., Bauerschlag D.O., Weber K., Niehoff P., Bauer M., Strauss A., Jonat W., Maass N., et al. In vitro effects of imatinib mesylate on radiosensitivity and chemosensitivity of breast cancer cells. BMC Cancer. 2010;10:412. doi: 10.1186/1471-2407-10-412. PubMed DOI PMC
Tomková V., Sandoval-Acuña C., Torrealba N., Truksa J. Mitochondrial fragmentation, elevated mitochondrial superoxide and respiratory supercomplexes disassembly is connected with the tamoxifen-resistant phenotype of breast cancer cells. Free Radic. Biol. Med. 2019;143:510–521. doi: 10.1016/j.freeradbiomed.2019.09.004. PubMed DOI
Porteous C.M., Menon D.K., Aigbirhio F.I., Smith R.A., Murphy M.P. P-glycoprotein (Mdr1a/1b) and breast cancer resistance protein (Bcrp) decrease the uptake of hydrophobic alkyl triphenylphosphonium cations by the brain. Biochim. ET Biophys. Acta. 2013;1830:3458–3465. doi: 10.1016/j.bbagen.2013.02.005. PubMed DOI PMC
Robey R.W., Pluchino K.M., Hall M.D., Fojo A.T., Bates S.E., Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer. 2018;18:452–464. doi: 10.1038/s41568-018-0005-8. PubMed DOI PMC
Kumar V., Aneesh Kumar A., Sanawar R., Jaleel A., Santhosh Kumar T.R., Kartha C.C. Chronic Pressure Overload Results in Deficiency of Mitochondrial Membrane Transporter ABCB7 Which Contributes to Iron Overload, Mitochondrial Dysfunction, Metabolic Shift and Worsens Cardiac Function. Sci. Rep. 2019;9:13170. doi: 10.1038/s41598-019-49666-0. PubMed DOI PMC
Schaedler T.A., Faust B., Shintre C.A., Carpenter E.P., Srinivasan V., van Veen H.W., Balk J. Structures and functions of mitochondrial ABC transporters. Biochem. Soc. Trans. 2015;43:943–951. doi: 10.1042/BST20150118. PubMed DOI
Elkalaf M., Tůma P., Weiszenstein M., Polák J., Trnka J. Mitochondrial Probe Methyltriphenylphosphonium (TPMP) Inhibits the Krebs Cycle Enzyme 2-Oxoglutarate Dehydrogenase. PLoS ONE. 2016;11:e0161413. doi: 10.1371/journal.pone.0161413. PubMed DOI PMC
Trnka J., Elkalaf M., Anděl M. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak. PLoS ONE. 2015;10:e0121837. doi: 10.1371/journal.pone.0121837. PubMed DOI PMC
De Francesco E.M., Ozsvari B., Sotgia F., Lisanti M.P. Dodecyl-TPP Targets Mitochondria and Potently Eradicates Cancer Stem Cells (CSCs): Synergy With FDA-Approved Drugs and Natural Compounds (Vitamin C and Berberine) Front. Oncol. 2019;9:615. doi: 10.3389/fonc.2019.00615. PubMed DOI PMC
Birsoy K., Wang T., Chen W.W., Freinkman E., Abu-Remaileh M., Sabatini D.M. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell. 2015;162:540–551. doi: 10.1016/j.cell.2015.07.016. PubMed DOI PMC
Sullivan L.B., Gui D.Y., Hosios A.M., Bush L.N., Freinkman E., Vander Heiden M.G. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells. Cell. 2015;162:552–563. doi: 10.1016/j.cell.2015.07.017. PubMed DOI PMC
Urra F.A., Munoz F., Lovy A., Cardenas C. The Mitochondrial Complex(I)ty of Cancer. Front. Oncol. 2017;7:118. doi: 10.3389/fonc.2017.00118. PubMed DOI PMC
Patel D., Menon D., Bernfeld E., Mroz V., Kalan S., Loayza D., Foster D.A. Aspartate Rescues S-phase Arrest Caused by Suppression of Glutamine Utilization in KRas-driven Cancer Cells. J. Biol. Chem. 2016;291:9322–9329. doi: 10.1074/jbc.M115.710145. PubMed DOI PMC
Saqcena M., Mukhopadhyay S., Hosny C., Alhamed A., Chatterjee A., Foster D.A. Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs. Oncogene. 2015;34:2672–2680. doi: 10.1038/onc.2014.207. PubMed DOI PMC
Toyama E.Q., Herzig S., Courchet J., Lewis T.L., Jr., Losón O.C., Hellberg K., Young N.P., Chen H., Polleux F., Chan D.C., et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science (N. Y.) 2016;351:275–281. doi: 10.1126/science.aab4138. PubMed DOI PMC
Hardie D.G., Ross F.A., Hawley S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012;13:251–262. doi: 10.1038/nrm3311. PubMed DOI PMC
Atlante S., Visintin A., Marini E., Savoia M., Dianzani C., Giorgis M., Sürün D., Maione F., Schnütgen F., Farsetti A., et al. α-ketoglutarate dehydrogenase inhibition counteracts breast cancer-associated lung metastasis. Cell Death Dis. 2018;9:756. doi: 10.1038/s41419-018-0802-8. PubMed DOI PMC
Fiorillo M., Sotgia F., Sisci D., Cappello A.R., Lisanti M.P. Mitochondrial “power” drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer. Oncotarget. 2017;8:20309–20327. doi: 10.18632/oncotarget.15852. PubMed DOI PMC
Deblois G., Smith H.W., Tam I.S., Gravel S.-P., Caron M., Savage P., Labbé D.P., Bégin L.R., Tremblay M.L., Park M., et al. ERRα mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat. Commun. 2016;7:12156. doi: 10.1038/ncomms12156. PubMed DOI PMC
Park S., Chang C.-Y., Safi R., Liu X., Baldi R., Jasper J.S., Anderson G.R., Liu T., Rathmell J.C., Dewhirst M.W., et al. ERRα-Regulated Lactate Metabolism Contributes to Resistance to Targeted Therapies in Breast Cancer. Cell Rep. 2016;15:323–335. doi: 10.1016/j.celrep.2016.03.026. PubMed DOI PMC
Fiorillo M., Sotgia F., Lisanti M.P. “Energetic” Cancer Stem Cells (e-CSCs): A New Hyper-Metabolic and Proliferative Tumor Cell Phenotype, Driven by Mitochondrial Energy. Front. Oncol. 2019;8 doi: 10.3389/fonc.2018.00677. PubMed DOI PMC
Zacksenhaus E., Shrestha M., Liu J.C., Vorobieva I., Chung P.E.D., Ju Y., Nir U., Jiang Z. Mitochondrial OXPHOS Induced by RB1 Deficiency in Breast Cancer: Implications for Anabolic Metabolism, Stemness, and Metastasis. Trends Cancer. 2017;3:768–779. doi: 10.1016/j.trecan.2017.09.002. PubMed DOI
Fantin V.R., Berardi M.J., Scorrano L., Korsmeyer S.J., Leder P. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell. 2002;2:29–42. doi: 10.1016/S1535-6108(02)00082-X. PubMed DOI
Reedy J.L., Hedlund D.K., Gabr M.T., Henning G.M., Pigge F.C., Schultz M.K. Synthesis and Evaluation of Tetraarylethylene-based Mono-, Bis-, and Tris(pyridinium) Derivatives for Image-Guided Mitochondria-Specific Targeting and Cytotoxicity of Metastatic Melanoma Cells. Bioconjug. Chem. 2016;27:2424–2430. doi: 10.1021/acs.bioconjchem.6b00394. PubMed DOI PMC
Xu J., He H., Zhou L.-J., Liu Y.-Z., Li D.-W., Jiang F.-L., Liu Y. Pyridinium and indole orientation determines the mitochondrial uncoupling and anti-cancer efficiency of F16. Eur. J. Med. Chem. 2018;154:305–313. doi: 10.1016/j.ejmech.2018.05.036. PubMed DOI
Murphy M.P. Targeting lipophilic cations to mitochondria. Biochim. ET Biophys. Acta (BBA) Bioenerg. 2008;1777:1028–1031. doi: 10.1016/j.bbabio.2008.03.029. PubMed DOI
Cheng G., Zielonka J., Ouari O., Lopez M., McAllister D., Boyle K., Barrios C.S., Weber J.J., Johnson B.D., Hardy M., et al. Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells. Cancer Res. 2016;76:3904–3915. doi: 10.1158/0008-5472.CAN-15-2534. PubMed DOI PMC
Cheng G., Zielonka J., Hardy M., Ouari O., Chitambar C.R., Dwinell M., Kalyanaraman B. Synergistic inhibition of tumor cell proliferation by metformin and mito-metformin in the presence of iron chelators. Oncotarget. 2019;10:3518–3532. PubMed PMC
Cheng G., Zhang Q., Pan J., Lee Y., Ouari O., Hardy M., Zielonka M., Myers C.R., Zielonka J., Weh K., et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat. Commun. 2019;10:2205. doi: 10.1038/s41467-019-10042-1. PubMed DOI PMC
Plaza C., Pavani M., Faundez M., Maya J., Morello A., Becker M., De Ioannes A., Cumsille M., Ferreira J. Inhibitory effect of nordihydroguaiaretic acid and its tetra-acetylated derivative on respiration and growth of adenocarcinoma TA3 and its multiresistant variant TA3MTX-R. Vivo. 2008;22:353–361. PubMed
Jaña F., Faini F., Lapier M., Pavani M., Kemmerling U., Morello A., Maya J.D., Jara J., Parra E., Ferreira J. Tumor cell death induced by the inhibition of mitochondrial electron transport: The effect of 3-hydroxybakuchiol. Toxicol. Appl. Pharmacol. 2013;272:356–364. doi: 10.1016/j.taap.2013.06.005. PubMed DOI
Frey C., Pavani M., Cordano G., Muñoz S., Rivera E., Medina J., Morello A., Diego Maya J., Ferreira J. Comparative cytotoxicity of alkyl gallates on mouse tumor cell lines and isolated rat hepatocytes. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007;146:520–527. doi: 10.1016/j.cbpa.2006.03.007. PubMed DOI
Qi F., Pradhan R.K., Dash R.K., Beard D.A. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase. BMC Biochem. 2011;12:53. doi: 10.1186/1471-2091-12-53. PubMed DOI PMC
Vatrinet R., Leone G., De Luise M., Girolimetti G., Vidone M., Gasparre G., Porcelli A.M. The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab. 2017;5:3. doi: 10.1186/s40170-017-0165-0. PubMed DOI PMC
Porpaczy Z., Sumegi B., Alkonyi I. Interaction between NAD-dependent isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase complex, and NADH:ubiquinone oxidoreductase. J. Biol. Chem. 1987;262:9509–9514. PubMed
Sumegi B., Srere P.A. Complex I binds several mitochondrial NAD-coupled dehydrogenases. J. Biol. Chem. 1984;259:15040–15045. PubMed
Van Vranken J.G., Rutter J. You Down With ETC? Yeah, You Know D! Cell. 2015;162:471–473. doi: 10.1016/j.cell.2015.07.027. PubMed DOI
Avagliano A., Ruocco M.R., Aliotta F., Belviso I., Accurso A., Masone S., Montagnani S., Arcucci A. Mitochondrial Flexibility of Breast Cancers: A Growth Advantage and a Therapeutic Opportunity. Cells. 2019;8:401. doi: 10.3390/cells8050401. PubMed DOI PMC
Cannino G., Ciscato F., Masgras I., Sánchez-Martín C., Rasola A. Metabolic Plasticity of Tumor Cell Mitochondria. Front. Oncol. 2018;8:333. doi: 10.3389/fonc.2018.00333. PubMed DOI PMC
Jia D., Lu M., Jung K.H., Park J.H., Yu L., Onuchic J.N., Kaipparettu B.A., Levine H. Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways. Proc. Natl. Acad. Sci. USA. 2019;116:3909–3918. doi: 10.1073/pnas.1816391116. PubMed DOI PMC
Liemburg-Apers D.C., Wagenaars J.A.L., Smeitink J.A.M., Willems P.H.G.M., Koopman W.J.H. Acute stimulation of glucose influx upon mitoenergetic dysfunction requires LKB1, AMPK, Sirt2 and mTOR–RAPTOR. J. Cell Sci. 2016;129:4411. doi: 10.1242/jcs.194480. PubMed DOI
Cheng G., Zielonka J., Dranka B.P., McAllister D., Mackinnon A.C., Jr., Joseph J., Kalyanaraman B. Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res. 2012;72:2634–2644. doi: 10.1158/0008-5472.CAN-11-3928. PubMed DOI PMC
Cheng G., Zielonka J., McAllister D.M., Mackinnon A.C., Jr., Joseph J., Dwinell M.B., Kalyanaraman B. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer. 2013;13:285. doi: 10.1186/1471-2407-13-285. PubMed DOI PMC
Dilip A., Cheng G., Joseph J., Kunnimalaiyaan S., Kalyanaraman B., Kunnimalaiyaan M., Gamblin T.C. Mitochondria-targeted antioxidant and glycolysis inhibition: Synergistic therapy in hepatocellular carcinoma. Anticancer Drugs. 2013;24:881–888. doi: 10.1097/CAD.0b013e32836442c6. PubMed DOI PMC
Cheng G., Zielonka J., McAllister D., Hardy M., Ouari O., Joseph J., Dwinell M.B., Kalyanaraman B. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism. Cancer Lett. 2015;365:96–106. doi: 10.1016/j.canlet.2015.05.016. PubMed DOI PMC
Kim J.Y., Kim J.-K., Kim H. ABCB7 simultaneously regulates apoptotic and non-apoptotic cell death by modulating mitochondrial ROS and HIF1α-driven NFκB signaling. Oncogene. 2019 doi: 10.1038/s41388-019-1118-6. PubMed DOI
Ahler E., Sullivan W.J., Cass A., Braas D., York A.G., Bensinger S.J., Graeber T.G., Christofk H.R. Doxycycline alters metabolism and proliferation of human cell lines. PLoS ONE. 2013;8:e64561. doi: 10.1371/journal.pone.0064561. PubMed DOI PMC
Houtkooper R.H., Mouchiroud L., Ryu D., Moullan N., Katsyuba E., Knott G., Williams R.W., Auwerx J. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497:451–457. doi: 10.1038/nature12188. PubMed DOI PMC
Moullan N., Mouchiroud L., Wang X., Ryu D., Williams E.G., Mottis A., Jovaisaite V., Frochaux M.V., Quiros P.M., Deplancke B., et al. Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Rep. 2015;10:1681–1691. doi: 10.1016/j.celrep.2015.02.034. PubMed DOI PMC