Cell-Tak coating interferes with DNA-based normalization of metabolic flux data
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35770473
PubMed Central
PMC9616583
DOI
10.33549/physiolres.934855
PII: 934855
Knihovny.cz E-zdroje
- MeSH
- DNA * MeSH
- membránové proteiny * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Cell-Tak MeSH Prohlížeč
- DNA * MeSH
- membránové proteiny * MeSH
Metabolic flux investigations of cells and tissue samples are a rapidly advancing tool in diverse research areas. Reliable methods of data normalization are crucial for an adequate interpretation of results and to avoid a misinterpretation of experiments and incorrect conclusions. The most common methods for metabolic flux data normalization are to cell number, DNA and protein. Data normalization may be affected by a variety of factors, such as density, healthy state, adherence efficiency, or proportional seeding of cells. The mussel-derived adhesive Cell-Tak is often used to immobilize poorly adherent cells. Here we demonstrate that this coating strongly affects the fluorescent detection of DNA leading to an incorrect and highly variable normalization of metabolic flux data. Protein assays are much less affected and cell counting can virtually completely remove the effect of the coating. Cell-Tak coating also affects cell shape in a cell line-specific manner and may change cellular metabolism. Based on these observations we recommend cell counting as a gold standard normalization method for Seahorse metabolic flux measurements with protein content as a reasonable alternative.
Zobrazit více v PubMed
Trnka J, Elkalaf M, Anděl M. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak. PLoS One. 2015;10(4):e0121837. doi: 10.1371/journal.pone.0121837. PubMed DOI PMC
Elkalaf M, Tuma P, Weiszenstein M, Polák J, Trnka J. Mitochondrial Probe Methyltriphenylphosphonium (TPMP) Inhibits the Krebs Cycle Enzyme 2-Oxoglutarate Dehydrogenase. PLoS One. 2016;11(8):e0161413. doi: 10.1371/journal.pone.0161413. PubMed DOI PMC
Moráň L, Pivetta T, Masuri S, Vašíčková K, Walter F, Prehn J, Elkalaf M, Trnka J, Havel J, Vaňhara P. Mixed copper(ii)-phenanthroline complexes induce cell death of ovarian cancer cells by evoking the unfolded protein response. Metallomics. 2019;11(9):1481–1489. doi: 10.1039/C9MT00055K. PubMed DOI
Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J Biol Chem. 2017;292(17):7189–7207. doi: 10.1074/jbc.M116.774471. PubMed DOI PMC
Jedlička J, Kunc R, Kuncová J. Mitochondrial respiration of human platelets in young adult and advanced age – seahorse or O2k ? Physiol Res. 2021;70(S3):S369–S379. doi: 10.33549/physiolres.934812. PubMed DOI PMC
Labuschagne CF, Cheung EC, Blagih J, Domart MC, Vousden KH. Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab. 2019;30(4):720–734.e5. doi: 10.1016/j.cmet.2019.07.014. PubMed DOI PMC
Ratter JM, Rooijackers HMM, Hooiveld GJ, Hijmans AGM, de Galan BE, Tack CJ, Stienstra R. In vitro and in vivo effects of lactate on metabolism and cytokine production of human primary PBMCs and monocytes. Front Immunol. 2018;9(November):2564. doi: 10.3389/fimmu.2018.02564. PubMed DOI PMC
Dar S, Chhina J, Mert I, Chitale D, Buekers T, Kaur H, Giri S, Munkarah A, Rattan R. Bioenergetic Adaptations in Chemoresistant Ovarian Cancer Cells. Sci Rep. 2017;7(1):1–17. doi: 10.1038/s41598-017-09206-0. PubMed DOI PMC
Panina SB, Baran N, Brasil da Costa FH, Konopleva M, Kirienko NV. A mechanism for increased sensitivity of acute myeloid leukemia to mitotoxic drugs. Cell Death Dis. 2019;10(8):617. doi: 10.1038/s41419-019-1851-3. PubMed DOI PMC
Little AC, Kovalenko I, Goo LE, Hong HS, Kerk SA, Yates JA, Purohit V, Lombard DB, Merajver SD, Lyssiotis CA. High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions. Commun Biol. 2020;3(1):1–10. doi: 10.1038/s42003-020-0988-z. PubMed DOI PMC
Rainaldi G, Calcabrini A, Santini MT. Positively charged polymer polylysine-induced cell adhesion molecule redistribution in K562 cells. J Mater Sci Mater Med. 1998;9(12):755–760. doi: 10.1023/a:1008915305681. PubMed DOI
Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28(20):3074–3082. doi: 10.1038/s41419-019-1851-3. PubMed DOI
Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, Shin H. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules. 2015;16(9):2541–2555. doi: 10.1021/acs.biomac.5b00852. PubMed DOI
Waite JH, Tanzer ML. Polyphenolic substance of Mytilus edulis: Novel adhesive containing L-dopa and hydroxyproline. Science. 1981;212(4498):1038–1040. doi: 10.1126/science.212.4498.1038. PubMed DOI
Silverman HG, Roberto FF. Understanding marine mussel adhesion. Mar Biotechnol. 2007;9(6):661–681. doi: 10.1007/s10126-007-9053-x. PubMed DOI PMC
Bandara N, Zeng H, Wu J. Marine mussel adhesion: Biochemistry, mechanisms, and biomimetics. J Adhes Sci Technol. 2013;27:2139–2162. doi: 10.1080/01694243.2012.697703. DOI
Benedict CV, Picciano PT. (ACS Symposium Series).Adhesives from Marine Mussels. 1989;385(33):465–483. doi: 10.1021/bk-1989-0385.ch033. DOI
Hwang DS, Yoo HJ, Jun JH, Moon WK, Cha HJ. Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl Environ Microbiol. 2004;70(6):3352–3359. doi: 10.1128/AEM.70.6.3352-3359.2004. PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Notter MFD. Selective attachment of neural cells to specific substrates including Cell-Tak, a new cellular adhesive. Exp Cell Res. 1988;177(2):237–246. doi: 10.1016/0014-4827(88)90458-2. PubMed DOI