Intravenous administration of normal saline may be misinterpreted as a change of end-expiratory lung volume when using electrical impedance tomography
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30962469
PubMed Central
PMC6453964
DOI
10.1038/s41598-019-42241-7
PII: 10.1038/s41598-019-42241-7
Knihovny.cz E-zdroje
- MeSH
- artefakty * MeSH
- dechový objem MeSH
- elektrická impedance * MeSH
- intravenózní infuze škodlivé účinky MeSH
- plíce diagnostické zobrazování fyziologie MeSH
- prasata MeSH
- solný roztok aplikace a dávkování škodlivé účinky MeSH
- tomografie metody normy MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- solný roztok MeSH
Electrical impedance tomography (EIT) is a noninvasive imaging modality that allows real-time monitoring of regional lung ventilation. The aim of the study is to investigate whether fast saline infusion causes changes in lung impedance that could affect the interpretation of EIT data. Eleven pigs were anaesthetized and mechanically ventilated. A bolus of 500 mL of normal saline was administered rapidly. Two PEEP steps were performed to allow quantification of the effect of normal saline on lung impedance. The mean change of end-expiratory lung impedance (EELI) caused by the saline bolus was equivalent to a virtual decrease of end-expiratory lung volume (EELV) by 227 (188-250) mL and decremental PEEP step of 4.40 (3.95-4.59) cmH2O (median and interquartile range). In contrast to the changes of PEEP, the administration of normal saline did not cause any significant differences in measured EELV, regional distribution of lung ventilation determined by EIT or in extravascular lung water and intrathoracic blood volume. In conclusion, EELI can be affected by the changes of EELV as well as by the administration of normal saline. These two phenomena can be distinguished by analysis of regional distribution of lung ventilation.
Zobrazit více v PubMed
Frerichs I, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the Translational EIT development study group. Thorax. 2017;72:83–93. doi: 10.1136/thoraxjnl-2016-208357. PubMed DOI PMC
Wrigge H, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit. Care Med. 2008;36:903–909. doi: 10.1097/CCM.0B013E3181652EDD. PubMed DOI
Wolf GK, et al. Reversal of dependent lung collapse predicts response to lung recruitment in children with early acute lung injury. Pediatr. Crit. Care Med. 2012;13:509–515. doi: 10.1097/PCC.0b013e318245579c. PubMed DOI
Muders T, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit. Care Med. 2012;40:903–911. doi: 10.1097/CCM.0b013e318236f452. PubMed DOI
Odenstedt H, et al. Slow moderate pressure recruitment maneuver minimizes negative circulatory and lung mechanic side effects: evaluation of recruitment maneuvers using electric impedance tomography. Intensive Care Med. 2005;31:1706–1714. doi: 10.1007/s00134-005-2799-6. PubMed DOI
Lowhagen K, Lindgren S, Odenstedt H, Stenqvist O, Lundin S. Prolonged moderate pressure recruitment manoeuvre results in lower optimal positive end-expiratory pressure and plateau pressure. Acta Anaesthesiol. Scand. 2011;55:175–184. doi: 10.1111/j.1399-6576.2010.02366.x. PubMed DOI
Erlandsson K, Odenstedt H, Lundin S, Stenqvist O. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anaesthesiol. Scand. 2006;50:833–9. doi: 10.1111/j.1399-6576.2006.01079.x. PubMed DOI
Becher TH, et al. Assessment of respiratory system compliance with electrical impedance tomography using a positive end-expiratory pressure wave maneuver during pressure support ventilation: a pilot clinical study. Crit. Care. 2014;18:679. doi: 10.1186/s13054-014-0679-6. PubMed DOI PMC
Blankman P, Hasan D, Erik GJ, Gommers D. Detection of the ‘best’ positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial. Crit. Care. 2014;18:R95. doi: 10.1186/cc13866. PubMed DOI PMC
Kushner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. Am. Journal Clin. Nutr. 1986;44:417–424. doi: 10.1093/ajcn/44.3.417. PubMed DOI
Tang W, Ridout D, Modi N. Assessment of total body water using bioelectrical impedance analysis in neonates receiving intensive care. Arch. Dis. Child Fetal Neonatal. Ed. 1997;77:F123–F126. doi: 10.1136/fn.77.2.F123. PubMed DOI PMC
Sadleir RJ, Fox RA. Detection and quantification of intraperitoneal fluid using electrical impedance tomography. IEEE Trans. Biomed. Eng. 2001;48:484–491. doi: 10.1109/10.915715. PubMed DOI
Tucker AS, Ross EA, Paugh-Miller J, Sadleir RJ. In vivo quantification of accumulating abdominal fluid using an electrical impedance tomography hemiarray. Physiol. Meas. 2011;32:151–165. doi: 10.1088/0967-3334/32/2/001. PubMed DOI
Noble TJ, Harris ND, Morice AH, Milnes P, Brown BH. Diuretic induced change in lung water assessed by electrical impedance tomography. Physiol. Meas. 2000;21:155–163. doi: 10.1088/0967-3334/21/1/319. PubMed DOI
Bodenstein M, et al. Influence of crystalloid and colloid fluid infusion and blood withdrawal on pulmonary bioimpedance in an animal model of mechanical ventilation. Physiol Meas. 2012;33:1225–1236. doi: 10.1088/0967-3334/33/7/1225. PubMed DOI
Laghi, F. & Tobin, M. J. Indications for mechanical ventilation in Principles and practice of mechanical ventilation (ed. Tobin, M. J.) 115 (The McGraw-Hill Companies, Inc., 2013).
Frerichs I, et al. Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT Imaging. IEEE Trans. Med. Imaging. 2002;18:6. PubMed PMC
Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6. PubMed DOI
Frerichs I, et al. Patient examinations using electrical impedance tomography – sources of interference in the intensive care unit. Physiol. Meas. 2011;32:L1–10. doi: 10.1088/0967-3334/32/12/F01. PubMed DOI
Costa ELV, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35:1132–1137. doi: 10.1007/s00134-009-1447-y. PubMed DOI
Karsten J, Grusnick C, Paarmann H, Heringlake M, Heinze H. Positive end-expiratory pressure titration at bedside using electrical impedance tomography in post-operative cardiac surgery patients. Acta Anaesthesiol. Scand. 2015;59:723–732. doi: 10.1111/aas.12518. PubMed DOI
Bikker IG, Leonhardt S, Bakker J, Gommers D. Lung volume calculated from electrical impedance tomography in ICU patients at different PEEP levels. Intensive Care Med. 2009;35:1362–7. doi: 10.1007/s00134-009-1512-6. PubMed DOI PMC
Grivans C, Lundin S, Stenquist O, Lindgren S. Positive end-expiratory pressure-induced changes in end-expiratory lung volume measured by spirometry and electric impedance tomography. Acta Anaesthesiol. Scand. 2011;55:1068–1077. doi: 10.1111/j.1399-6576.2011.02511.x. PubMed DOI
Markhorst DG, Groeneveld AB, Heethaar RM, Zonneveld E, van Genderingen HR. Assessing effects of PEEP and global expiratory lung volume on regional electrical impedance tomography. J. Med. Eng. Technol. 2009;33:281–287. doi: 10.1080/03091900802451240. PubMed DOI
Trepte CJC, et al. Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury. Crit. Care. 2016;20:18. doi: 10.1186/s13054-015-1173-5. PubMed DOI PMC
Otáhal M, Mlček M, Vítková I, Kittnar O. A novel experimental model of acute respiratory distress syndrome in pig. Physiol. Res. 2016;65:S643–S651. PubMed
Pomprapa A, et al. Automatic protective ventilation using the ARDSNet protocol with the additional monitoring of electrical impedance tomography. Crit. Care. 2014;18:R128. doi: 10.1186/cc13937. PubMed DOI PMC
Suchomel J, Sobota V. A model of end-expiratory lung impedance dependency on total extracellular body water. J. Phys.: Conf. Ser. 2013;434:012011.