Electrical Impedance Tomography Can Be Used to Quantify Lung Hyperinflation during HFOV: The Pilot Study in Pigs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS19/203/OHK4/3T/17
Grant Agency of the Czech Technical University in Prague
SGS20/202/OHK4/3T/17
Grant Agency of the Czech Technical University in Prague
PubMed
36140483
PubMed Central
PMC9497761
DOI
10.3390/diagnostics12092081
PII: diagnostics12092081
Knihovny.cz E-zdroje
- Klíčová slova
- dynamic hyperinflation, dynamic hypoinflation, electrical impedance tomography, high-frequency oscillatory ventilation,
- Publikační typ
- časopisecké články MeSH
Dynamic hyperinflation is reported as a potential risk during high-frequency oscillatory ventilation (HFOV), and its existence has been documented both by physical models and by CT. The aim of this study is to determine the suitability of electrical impendence tomography (EIT) for the measurement of dynamic lung hyperinflation and hypoinflation during HFOV. Eleven healthy pigs were anaesthetized and ventilated using HFOV. The difference between the airway pressure at the airway opening and alveolar space was measured by EIT and esophageal balloons at three mean airway pressures (12, 18 and 24 cm H2O) and two inspiratory to expiratory time ratios (1:1, 1:2). The I:E ratio was the primary parameter associated with differences between airway and alveolar pressures. All animals showed hyperinflation at a 1:1 ratio (median 1.9 cm H2O) and hypoinflation at a 1:2 (median -4.0 cm H2O) as measured by EIT. EIT measurements had a linear correlation to esophageal balloon measurements (r2 = -0.915, p = 0.0085). EIT measurements were slightly higher than that of the esophageal balloon transducer with the mean difference of 0.57 cm H2O. Presence of a hyperinflation or hypoinflation was also confirmed independently by chest X-ray. We found that dynamic hyperinflation developed during HFOV may be detected and characterized noninvasively by EIT.
Zobrazit více v PubMed
Ranieri V., Rubenfeld G., Thompson B., Ferguson N., Caldwell E., Fan E., Camporota L., Slutsky A. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA. 2012;307:2526–2533. PubMed
Gattinoni L., Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31:776–784. doi: 10.1007/s00134-005-2627-z. PubMed DOI
Froese A. High-frequency oscillatory ventilation for adult respiratory distress syndrome. Crit. Care Med. 1997;25:906–908. doi: 10.1097/00003246-199706000-00004. PubMed DOI
Imai Y., Nakaqawa S., Ito Y., Kawano T., Slutsky A., Miyasaka K. Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J. Appl. Physiol. 2001;91:1836–1844. doi: 10.1152/jappl.2001.91.4.1836. PubMed DOI
Yoder B., Siler-Khodr T., Winter V., Coalson J. High-frequency Oscillatory Ventilation. Am. J. Respir. Crit. Care Med. 2000;162:1867–1876. doi: 10.1164/ajrccm.162.5.9912145. PubMed DOI
Simon B., Weinmann G., Mitzner W. Mean airway pressure and alveolar pressure during high-frequency ventilation. J. Appl. Physiol. 1984;57:1069–1078. doi: 10.1152/jappl.1984.57.4.1069. PubMed DOI
Easley R., Lancaster C., Fuld M., Custer J., Hager D., Kaczka D., Simon B. Total and regional lung volume changes during high-frequency oscillatory ventilation (HFOV) of the normal lung. Respir. Physiol. 2009;165:54–60. PubMed PMC
Gerstmann D., Fouke J., Winter D., Taylor A., deLemos R. Proximal, Tracheal, and Alveolar Pressures during High-Frequency Oscillatory Ventilation in a Normal Rabbit Model. Pediatric Res. 1990;28:367–373. doi: 10.1203/00006450-199010000-00013. PubMed DOI
Kimball W., Leith D., Robins A. Dynamic Hyperinflation and Ventilator Dependence in Chronic Obstructive Pulmonary Disease. Am. Rev. Respir. Dis. 1982;126:991–995. PubMed
Pepe P., Marini J. Occult Positive End-Expiratory Pressure in Mechanically Ventilated Patients with Air-Flow Obstruction—The Auto-PEEP Effect. Am. Rev. Respir. Dis. 1982;126:166–170. PubMed
Bergman N. Intrapulmonary Gas Trapping during Mechanical Ventilation at Rapid Frequencies. Anesthesiology. 1972;37:626–633. doi: 10.1097/00000542-197212000-00011. PubMed DOI
Blanch L., Bernabé F. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir. Care. 2005;50:110–123. PubMed
Solway J., Rossing T., Saari A., Drazen J. Expiratory flow limitation and dynamic pulmonary hyperinflation during high-frequency ventilation. J. Appl. Physiol. 1986;60:2071–2078. doi: 10.1152/jappl.1986.60.6.2071. PubMed DOI
Allen J., Franz I., III, Fredberg J. Heterogeneity of mean alveolar pressure during high-frequency oscillations. J. Appl. Physiol. 1987;62:223–228. doi: 10.1152/jappl.1987.62.1.223. PubMed DOI
Pillow J., Neil H., Wilkinson M., Ramsden C. Effect of I/E ratio on mean alveolar pressure during high-frequency oscillatory ventilation. J. Appl. Physiol. 1999;87:407–414. doi: 10.1152/jappl.1999.87.1.407. PubMed DOI
Milic-Emili J., Robatto F., Bates J. Respiratoy Mechanics in Anaesthesia. Br. J. Anaesth. 1990;65:4–12. doi: 10.1093/bja/65.1.4-a. PubMed DOI
Adler A., Shinozuka N., Berthiaume Y., Gardo R., Bates J. Electrical impedance tomography can monitor dynamic hyperinflation in dogs. J. Appl. Physiol. 1998;84:726–732. doi: 10.1152/jappl.1998.84.2.726. PubMed DOI
Leonhardt S., Lachmann B. Electrical impedance tomography: The holy grail of ventilation and perfusion monitoring? Intensive Care Med. 2012;38:1917–1929. doi: 10.1007/s00134-012-2684-z. PubMed DOI
Putensen C., Hentze B., Muenster S., Muders T. Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. J. Clin. Med. 2019;8:1176. doi: 10.3390/jcm8081176. PubMed DOI PMC
Goffi A., Ferguson N. High-frequency oscillatory ventilation for early acute respiratory distress syndrome in adults. Curr. Opin. Crit. Care. 2014;20:77–85. doi: 10.1097/MCC.0000000000000060. PubMed DOI
Sobota V., Müller M., Roubík K. Intravenous administration of normal saline may be misinterpreted as a change of end-expiratory lung volume when using electrical impedance tomography. Sci. Rep. 2019;9:5775. doi: 10.1038/s41598-019-42241-7. PubMed DOI PMC
Otáhal M., Mlček M., Vítková I., Kittnar O. A Novel Experimental Model of Acute Respiratory Distress Syndrome in Pig. Physiol. Res. 2016;65:S643–S651. doi: 10.33549/physiolres.933539. PubMed DOI
Roubík K. Measuring and evaluating system designed for high frequency oscillatory ventilation monitoring. Biomed. Eng.-Biomed. Tech. 2014;59:S979.
Roubík K., Ráfl J., van Heerde M., Markhorst D. Design and Control of a Demand Flow System Assuring Spontaneous Breathing of a Patient Connected to an HFO Ventilator. IEEE Trans. Biomed. Eng. 2011;58:3225–3233. doi: 10.1109/TBME.2011.2165541. PubMed DOI
Meyers M., Rodrigues N., Ari A. High-frequency oscillatory ventilation: A narrative review. Can. J. Respir. Ther. 2019;55:40–46. doi: 10.29390/cjrt-2019-004. PubMed DOI PMC
Pachl J., Roubik K., Waldauf P., Fric M., Zabrodsky V. Normocapnic High-Frequency Oscillatory Ventilation Affects Differently Extrapulmonary and Pulmonary froms of Acute Respiratory Distress Syndrome in Adults. Physiol. Res. 2006;55:15–24. doi: 10.33549/physiolres.930775. PubMed DOI
Pillow J. High-frequency oscillatory ventilation: Mechanisms of gas exchange and lung mechanics. Crit. Care Med. 2005;33:S135–S141. doi: 10.1097/01.CCM.0000155789.52984.B7. PubMed DOI
Rožánek M., Horáková Z., Čadek O., Kučera M., Roubík K. Damping of the dynamic pressure amplitude in the ventilatory circuit during high-frequency oscillatory ventilation. Biomed. Eng. Biomed. Tech. 2012;57:53–56. doi: 10.1515/bmt-2012-4481. PubMed DOI
Young D., Lamb S., Shah S., MacKenzie I., Tunnicliffe W., Lall R., Rowan K., Cuthbertson B. High-Frequency Oscillation for Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2013;368:806–813. doi: 10.1056/NEJMoa1215716. PubMed DOI
Ferguson N., Cook D., Guyatt G., Mehta S., Hand L., Austin P., Zhou Q., Matte A., Walter S., Lamontagne F., et al. High-Frequency Oscillation in Early Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2013;368:795–805. doi: 10.1056/NEJMoa1215554. PubMed DOI