Amine modification of calcium phosphate by low-pressure plasma for bone regeneration

. 2021 Sep 09 ; 11 (1) : 17870. [epub] 20210909

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34504247
Odkazy

PubMed 34504247
PubMed Central PMC8429709
DOI 10.1038/s41598-021-97460-8
PII: 10.1038/s41598-021-97460-8
Knihovny.cz E-zdroje

Regeneration of large bone defects caused by trauma or tumor resection remains one of the biggest challenges in orthopedic surgery. Because of the limited availability of autograft material, the use of artificial bone is prevalent; however, the primary role of currently available artificial bone is restricted to acting as a bone graft extender owing to the lack of osteogenic ability. To explore whether surface modification might enhance artificial bone functionality, in this study we applied low-pressure plasma technology as next-generation surface treatment and processing strategy to chemically (amine) modify the surface of beta-tricalcium phosphate (β-TCP) artificial bone using a CH4/N2/He gas mixture. Plasma-treated β-TCP exhibited significantly enhanced hydrophilicity, facilitating the deep infiltration of cells into interconnected porous β-TCP. Additionally, cell adhesion and osteogenic differentiation on the plasma-treated artificial bone surfaces were also enhanced. Furthermore, in a rat calvarial defect model, the plasma treatment afforded high bone regeneration capacity. Together, these results suggest that amine modification of artificial bone by plasma technology can provide a high osteogenic ability and represents a promising strategy for resolving current clinical limitations regarding the use of artificial bone.

Zobrazit více v PubMed

Buser Z, Brodke DS, Youssef JA, Meisel HJ, Myhre SL, Hashimoto R, Park JB, Tim Yoon S, Wang JC. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J. Neurosurg. Spine. 2016;25(4):509–516. doi: 10.3171/2016.1.SPINE151005. PubMed DOI

Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs. 2005;8(3):131–136. doi: 10.1007/s10047-005-0292-1. PubMed DOI

Nedela O, Slepicka P, Svorcik V. Surface modification of polymer substrates for biomedical applications. Materials (Basel) 2017;10(10):1115. doi: 10.3390/ma10101115. PubMed DOI PMC

Lee D, Moriguchi Y, Okada K, Myoui A, Yoshikawa H, Hamaguchi S. Improvement of hydrophilicity of interconnected porous hydroxyapatite by dielectric barrier discharge plasma treatment. IEEE Trans. Plasma Sci. 2011;39(11):2166–2167. doi: 10.1109/TPS.2011.2157840. DOI

Lee DS, Moriguchi Y, Myoui A, Yoshikawa H, Hamaguchi S. Efficient modification of the surface properties of interconnected porous hydroxyapatite by low-pressure low-frequency plasma treatment to promote its biological performance. J. Phys. D Appl. Phys. 2012;45:372001. doi: 10.1088/0022-3727/45/37/372001. DOI

Moriguchi Y, Lee DS, Chijimatsu R, Thamina K, Masuda K, Itsuki D, Yoshikawa H, Hamaguchi S, Myoui A. Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration. PLoS ONE. 2018;13(3):e0194303. doi: 10.1371/journal.pone.0194303. PubMed DOI PMC

Intranuovo F, Gristina R, Fracassi L, Lacitignola L, Crovace A, Favia P. Plasma processing of Scaffolds for tissue engineering and regenerative medicine. Plasma Chem. Plasma Process. 2016;36:269–280. doi: 10.1007/s11090-015-9667-0. DOI

Mwale F, Rampersad S, Ruiz J-C, Pierre-Luc Girard-Lauriault P-L, Petit A, Antoniou J, Lerouge S, Wertheimer M. Amine-rich cell-culture surfaces for research in orthopedic medicine. Plasma Med. 2011;1:115–133. doi: 10.1615/PlasmaMed.2011003130. DOI

Walsh WR, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, Yu Y, Irie H, Bruce W. Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials. 2008;29(3):266–271. doi: 10.1016/j.biomaterials.2007.09.035. PubMed DOI

Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, Ohgushi H, Yoshikawa H. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite. Biomaterials. 2005;26(1):73–79. doi: 10.1016/j.biomaterials.2004.02.010. PubMed DOI

Sugimoto S, Kiuchi M, Takechi S, Tanaka K, Goto S. Inverter plasma discharge system. Surf. Coat. Technol. 2001;136:65–68. doi: 10.1016/S0257-8972(00)01013-6. DOI

Takechi S, Sugimoto S, Kiuchi M, Tanaka K, Goto S. Operational parameter effects on inverter plasma performance. Surf. Coat. Technol. 2001;136:69–72. doi: 10.1016/S0257-8972(00)01014-8. DOI

Sugimoto S, Matsuda Y, Mori H. Carbon nanotube formation directly on the surface of stainless steel materials by plasma-assisted chemical vapor deposition. J. Plasma Fusion Res. Ser. 2009;8:522.

Donkó Z, Zajičková L, Sugimoto S, Harumningtyas AA, Hamaguchi S. Modeling characterisation of a bipolar pulsed discharge. Plasma Sources Sci. Technol. 2020;29(10):104001. doi: 10.1088/1361-6595/abb321. DOI

Tompkins HG, McGahan WA. Spectroscopic Ellipsometry and Reflectometry: A User's Guide. Wiley; 1999.

Hubert J, Poleunis C, Delcorte A, Laha P, Bossert J, Lambeets S, Ozkan A, Bertrand P, Terryn H, Reniers F. Plasma polymerization of C4Cl6 and C2H2Cl4 at atmospheric pressure. Polymer. 2013;54(16):4085–4092. doi: 10.1016/j.polymer.2013.05.068. DOI

Favia P, Stendardo MV, d'Agostino R. Selective grafting of amine groups on polyethylene by means of NH3−H2 RF glow discharges. Plasmas Polym. 1996;1(2):91–112. doi: 10.1007/BF02532821. DOI

Manakhov A, Michlíček M, Felten A, Pireaux J-J, Nečas D, Zajíčková L. XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach. Appl. Surf. Sci. 2017;394:578–585. doi: 10.1016/j.apsusc.2016.10.099. DOI

Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988;254(2):317–330. doi: 10.1007/BF00225804. PubMed DOI

Reyes CD, Garcia AJ. A centrifugation cell adhesion assay for high-throughput screening of biomaterial surfaces. J. Biomed. Mater. Res. A. 2003;67(1):328–333. doi: 10.1002/jbm.a.10122. PubMed DOI

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM. Cell Profiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC

Hart LM, Lauer JC, Selig M, Hanak M, Walters B, Rolauffs B. Shaping the Cell and the Future: Recent advancements in biophysical aspects relevant to regenerative medicine. J. Funct. Morphol. Kinesiol. 2018;3:2. doi: 10.3390/jfmk3010002. DOI

Council NR. Guide for the Care and Use of Laboratory Animals. 8. The National Academies Press; 2011. PubMed

Michlíček M, Hamaguchi S, Zajíčková L. Molecular dynamics simulation of amine groups formation during plasma processing of polystyrene surfaces. Plasma Sources Sci. Technol. 2020;29(10):105020. doi: 10.1088/1361-6595/abb2e8. DOI

Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone. 2016;83:197–209. doi: 10.1016/j.bone.2015.11.011. PubMed DOI PMC

Mankin HJ, Gebhardt MC, Jennings LC, Springfield DS, Tomford WW. Long-term results of allograft replacement in the management of bone tumors. Clin. Orthop. Relat. Res. 1996;324:86–97. doi: 10.1097/00003086-199603000-00011. PubMed DOI

Akita S, Tamai N, Myoui A, Nishikawa M, Kaito T, Takaoka K, Yoshikawa H. Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramics. Tissue Eng. 2004;10(5–6):789–795. doi: 10.1089/1076327041348338. PubMed DOI

Deng Y, Jiang C, Li C, Li T, Peng M, Wang J, Dai K. 3D printed scaffolds of calcium silicate-doped beta-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Sci. Rep. 2017;7(1):5588. doi: 10.1038/s41598-017-05196-1. PubMed DOI PMC

Nishikawa M, Myoui A, Ohgushi H, Ikeuchi M, Tamai N, Yoshikawa H. Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis. Cell Transplant. 2004;13(4):367–376. doi: 10.3727/000000004783983819. PubMed DOI

Zhang D, Gao P, Li Q, Li J, Li X, Liu X, Kang Y, Ren L. Engineering biomimetic periosteum with beta-TCP scaffolds to promote bone formation in calvarial defects of rats. Stem Cell Res. Ther. 2017;8(1):134. doi: 10.1186/s13287-017-0592-4. PubMed DOI PMC

Keselowsky BG, Collard DM, Garcia AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl. Acad. Sci. USA. 2005;102(17):5953–5957. doi: 10.1073/pnas.0407356102. PubMed DOI PMC

Lee MH, Ducheyne P, Lynch L, Boettiger D, Composto RJ. Effect of biomaterial surface properties on fibronectin-alpha5beta1 integrin interaction and cellular attachment. Biomaterials. 2006;27(9):1907–1916. doi: 10.1016/j.biomaterials.2005.11.003. PubMed DOI

Moursi AM, Globus RK, Damsky CH. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J. Cell Sci. 1997;110(Pt 18):2187–2196. doi: 10.1242/jcs.110.18.2187. PubMed DOI

Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A. 2003;66(2):247–259. doi: 10.1002/jbm.a.10537. PubMed DOI

Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials. 2004;25(28):5947–5954. doi: 10.1016/j.biomaterials.2004.01.062. PubMed DOI

Michael KE, Vernekar VN, Keselowsky BG, Meredith JC, Latour RA, García AJ. Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir. 2003;19:8033–8040. doi: 10.1021/la034810a. DOI

Kornberg L, Earp HS, Parsons JT, Schaller M, Juliano RL. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J. Biol. Chem. 1992;267(33):23439–23442. doi: 10.1016/S0021-9258(18)35853-8. PubMed DOI

Biggs MJ, Dalby MJ. Focal adhesions in osteoneogenesis. Proc. Inst. Mech. Eng. H. 2010;224(12):1441–1453. doi: 10.1243/09544119JEIM775. PubMed DOI PMC

Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Oreffo RO, Dalby MJ. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials. 2009;30(28):5094–5103. doi: 10.1016/j.biomaterials.2009.05.049. PubMed DOI

Ge C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 2007;176(5):709–718. doi: 10.1083/jcb.200610046. PubMed DOI PMC

Hamilton DW, Brunette DM. The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. Biomaterials. 2007;28(10):1806–1819. doi: 10.1016/j.biomaterials.2006.11.041. PubMed DOI

Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J. Cell Biochem. 2007;101(5):1266–1277. doi: 10.1002/jcb.21249. PubMed DOI

Klees RF, Salasznyk RM, Kingsley K, Williams WA, Boskey A, Plopper GE. Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Mol. Biol. Cell. 2005;16(2):881–890. doi: 10.1091/mbc.e04-08-0695. PubMed DOI PMC

Liu J, Zhao Z, Li J, Zou L, Shuler C, Zou Y, Huang X, Li M, Wang J. Hydrostatic pressures promote initial osteodifferentiation with ERK1/2 not p38 MAPK signaling involved. J. Cell Biochem. 2009;107(2):224–232. doi: 10.1002/jcb.22118. PubMed DOI

Rocca A, Marino A, Rocca V, Moscato S, de Vito G, Piazza V, Mazzolai B, Mattoli V, Ngo-Anh TJ, Ciofani G. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int. J. Nanomed. 2015;10:433–445. doi: 10.2217/nnm.14.188. PubMed DOI PMC

McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 2004;6(4):483–495. doi: 10.1016/S1534-5807(04)00075-9. PubMed DOI

Bhadriraju K, Yang M, Alom Ruiz S, Pirone D, Tan J, Chen CS. Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Exp. Cell Res. 2007;313(16):3616–3623. doi: 10.1016/j.yexcr.2007.07.002. PubMed DOI PMC

Shen Y, Liu W, Wen C, Pan H, Wang T, Darvell BW, Lu WW, Huang W. Bone regeneration: Importance of local pH—Strontium-doped borosilicate scaffold. J. Mater. Chem. 2012;22:8662–8670. doi: 10.1039/c2jm16141a. DOI

Shen Y, Liu W, Lin K, Pan H, Darvell BW, Peng S, Wen C, Deng L, Lu WW, Chang J. Interfacial pH: A critical factor for osteoporotic bone regeneration. Langmuir. 2011;27(6):2701–2708. doi: 10.1021/la104876w. PubMed DOI

Liu X, Feng Q, Bachhuka A, Vasilev K. Surface modification by allylamine plasma polymerization promotes osteogenic differentiation of human adipose-derived stem cells. ACS Appl. Mater. Interfaces. 2014;6(12):9733–9741. doi: 10.1021/am502170s. PubMed DOI

Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials. 2006;27(27):4783–4793. doi: 10.1016/j.biomaterials.2006.05.001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...