Amine modification of calcium phosphate by low-pressure plasma for bone regeneration
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34504247
PubMed Central
PMC8429709
DOI
10.1038/s41598-021-97460-8
PII: 10.1038/s41598-021-97460-8
Knihovny.cz E-zdroje
- MeSH
- biokompatibilní materiály metabolismus MeSH
- buněčná diferenciace fyziologie MeSH
- fosforečnany vápenaté metabolismus MeSH
- kostní náhrady metabolismus terapeutické užití MeSH
- krysa rodu Rattus MeSH
- osteogeneze fyziologie MeSH
- regenerace kostí fyziologie MeSH
- transplantace kostí metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-tricalcium phosphate MeSH Prohlížeč
- biokompatibilní materiály MeSH
- calcium phosphate MeSH Prohlížeč
- fosforečnany vápenaté MeSH
- kostní náhrady MeSH
Regeneration of large bone defects caused by trauma or tumor resection remains one of the biggest challenges in orthopedic surgery. Because of the limited availability of autograft material, the use of artificial bone is prevalent; however, the primary role of currently available artificial bone is restricted to acting as a bone graft extender owing to the lack of osteogenic ability. To explore whether surface modification might enhance artificial bone functionality, in this study we applied low-pressure plasma technology as next-generation surface treatment and processing strategy to chemically (amine) modify the surface of beta-tricalcium phosphate (β-TCP) artificial bone using a CH4/N2/He gas mixture. Plasma-treated β-TCP exhibited significantly enhanced hydrophilicity, facilitating the deep infiltration of cells into interconnected porous β-TCP. Additionally, cell adhesion and osteogenic differentiation on the plasma-treated artificial bone surfaces were also enhanced. Furthermore, in a rat calvarial defect model, the plasma treatment afforded high bone regeneration capacity. Together, these results suggest that amine modification of artificial bone by plasma technology can provide a high osteogenic ability and represents a promising strategy for resolving current clinical limitations regarding the use of artificial bone.
Zobrazit více v PubMed
Buser Z, Brodke DS, Youssef JA, Meisel HJ, Myhre SL, Hashimoto R, Park JB, Tim Yoon S, Wang JC. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J. Neurosurg. Spine. 2016;25(4):509–516. doi: 10.3171/2016.1.SPINE151005. PubMed DOI
Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs. 2005;8(3):131–136. doi: 10.1007/s10047-005-0292-1. PubMed DOI
Nedela O, Slepicka P, Svorcik V. Surface modification of polymer substrates for biomedical applications. Materials (Basel) 2017;10(10):1115. doi: 10.3390/ma10101115. PubMed DOI PMC
Lee D, Moriguchi Y, Okada K, Myoui A, Yoshikawa H, Hamaguchi S. Improvement of hydrophilicity of interconnected porous hydroxyapatite by dielectric barrier discharge plasma treatment. IEEE Trans. Plasma Sci. 2011;39(11):2166–2167. doi: 10.1109/TPS.2011.2157840. DOI
Lee DS, Moriguchi Y, Myoui A, Yoshikawa H, Hamaguchi S. Efficient modification of the surface properties of interconnected porous hydroxyapatite by low-pressure low-frequency plasma treatment to promote its biological performance. J. Phys. D Appl. Phys. 2012;45:372001. doi: 10.1088/0022-3727/45/37/372001. DOI
Moriguchi Y, Lee DS, Chijimatsu R, Thamina K, Masuda K, Itsuki D, Yoshikawa H, Hamaguchi S, Myoui A. Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration. PLoS ONE. 2018;13(3):e0194303. doi: 10.1371/journal.pone.0194303. PubMed DOI PMC
Intranuovo F, Gristina R, Fracassi L, Lacitignola L, Crovace A, Favia P. Plasma processing of Scaffolds for tissue engineering and regenerative medicine. Plasma Chem. Plasma Process. 2016;36:269–280. doi: 10.1007/s11090-015-9667-0. DOI
Mwale F, Rampersad S, Ruiz J-C, Pierre-Luc Girard-Lauriault P-L, Petit A, Antoniou J, Lerouge S, Wertheimer M. Amine-rich cell-culture surfaces for research in orthopedic medicine. Plasma Med. 2011;1:115–133. doi: 10.1615/PlasmaMed.2011003130. DOI
Walsh WR, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, Yu Y, Irie H, Bruce W. Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials. 2008;29(3):266–271. doi: 10.1016/j.biomaterials.2007.09.035. PubMed DOI
Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, Ohgushi H, Yoshikawa H. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite. Biomaterials. 2005;26(1):73–79. doi: 10.1016/j.biomaterials.2004.02.010. PubMed DOI
Sugimoto S, Kiuchi M, Takechi S, Tanaka K, Goto S. Inverter plasma discharge system. Surf. Coat. Technol. 2001;136:65–68. doi: 10.1016/S0257-8972(00)01013-6. DOI
Takechi S, Sugimoto S, Kiuchi M, Tanaka K, Goto S. Operational parameter effects on inverter plasma performance. Surf. Coat. Technol. 2001;136:69–72. doi: 10.1016/S0257-8972(00)01014-8. DOI
Sugimoto S, Matsuda Y, Mori H. Carbon nanotube formation directly on the surface of stainless steel materials by plasma-assisted chemical vapor deposition. J. Plasma Fusion Res. Ser. 2009;8:522.
Donkó Z, Zajičková L, Sugimoto S, Harumningtyas AA, Hamaguchi S. Modeling characterisation of a bipolar pulsed discharge. Plasma Sources Sci. Technol. 2020;29(10):104001. doi: 10.1088/1361-6595/abb321. DOI
Tompkins HG, McGahan WA. Spectroscopic Ellipsometry and Reflectometry: A User's Guide. Wiley; 1999.
Hubert J, Poleunis C, Delcorte A, Laha P, Bossert J, Lambeets S, Ozkan A, Bertrand P, Terryn H, Reniers F. Plasma polymerization of C4Cl6 and C2H2Cl4 at atmospheric pressure. Polymer. 2013;54(16):4085–4092. doi: 10.1016/j.polymer.2013.05.068. DOI
Favia P, Stendardo MV, d'Agostino R. Selective grafting of amine groups on polyethylene by means of NH3−H2 RF glow discharges. Plasmas Polym. 1996;1(2):91–112. doi: 10.1007/BF02532821. DOI
Manakhov A, Michlíček M, Felten A, Pireaux J-J, Nečas D, Zajíčková L. XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach. Appl. Surf. Sci. 2017;394:578–585. doi: 10.1016/j.apsusc.2016.10.099. DOI
Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988;254(2):317–330. doi: 10.1007/BF00225804. PubMed DOI
Reyes CD, Garcia AJ. A centrifugation cell adhesion assay for high-throughput screening of biomaterial surfaces. J. Biomed. Mater. Res. A. 2003;67(1):328–333. doi: 10.1002/jbm.a.10122. PubMed DOI
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM. Cell Profiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC
Hart LM, Lauer JC, Selig M, Hanak M, Walters B, Rolauffs B. Shaping the Cell and the Future: Recent advancements in biophysical aspects relevant to regenerative medicine. J. Funct. Morphol. Kinesiol. 2018;3:2. doi: 10.3390/jfmk3010002. DOI
Council NR. Guide for the Care and Use of Laboratory Animals. 8. The National Academies Press; 2011. PubMed
Michlíček M, Hamaguchi S, Zajíčková L. Molecular dynamics simulation of amine groups formation during plasma processing of polystyrene surfaces. Plasma Sources Sci. Technol. 2020;29(10):105020. doi: 10.1088/1361-6595/abb2e8. DOI
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone. 2016;83:197–209. doi: 10.1016/j.bone.2015.11.011. PubMed DOI PMC
Mankin HJ, Gebhardt MC, Jennings LC, Springfield DS, Tomford WW. Long-term results of allograft replacement in the management of bone tumors. Clin. Orthop. Relat. Res. 1996;324:86–97. doi: 10.1097/00003086-199603000-00011. PubMed DOI
Akita S, Tamai N, Myoui A, Nishikawa M, Kaito T, Takaoka K, Yoshikawa H. Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramics. Tissue Eng. 2004;10(5–6):789–795. doi: 10.1089/1076327041348338. PubMed DOI
Deng Y, Jiang C, Li C, Li T, Peng M, Wang J, Dai K. 3D printed scaffolds of calcium silicate-doped beta-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Sci. Rep. 2017;7(1):5588. doi: 10.1038/s41598-017-05196-1. PubMed DOI PMC
Nishikawa M, Myoui A, Ohgushi H, Ikeuchi M, Tamai N, Yoshikawa H. Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis. Cell Transplant. 2004;13(4):367–376. doi: 10.3727/000000004783983819. PubMed DOI
Zhang D, Gao P, Li Q, Li J, Li X, Liu X, Kang Y, Ren L. Engineering biomimetic periosteum with beta-TCP scaffolds to promote bone formation in calvarial defects of rats. Stem Cell Res. Ther. 2017;8(1):134. doi: 10.1186/s13287-017-0592-4. PubMed DOI PMC
Keselowsky BG, Collard DM, Garcia AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl. Acad. Sci. USA. 2005;102(17):5953–5957. doi: 10.1073/pnas.0407356102. PubMed DOI PMC
Lee MH, Ducheyne P, Lynch L, Boettiger D, Composto RJ. Effect of biomaterial surface properties on fibronectin-alpha5beta1 integrin interaction and cellular attachment. Biomaterials. 2006;27(9):1907–1916. doi: 10.1016/j.biomaterials.2005.11.003. PubMed DOI
Moursi AM, Globus RK, Damsky CH. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J. Cell Sci. 1997;110(Pt 18):2187–2196. doi: 10.1242/jcs.110.18.2187. PubMed DOI
Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A. 2003;66(2):247–259. doi: 10.1002/jbm.a.10537. PubMed DOI
Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials. 2004;25(28):5947–5954. doi: 10.1016/j.biomaterials.2004.01.062. PubMed DOI
Michael KE, Vernekar VN, Keselowsky BG, Meredith JC, Latour RA, García AJ. Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir. 2003;19:8033–8040. doi: 10.1021/la034810a. DOI
Kornberg L, Earp HS, Parsons JT, Schaller M, Juliano RL. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J. Biol. Chem. 1992;267(33):23439–23442. doi: 10.1016/S0021-9258(18)35853-8. PubMed DOI
Biggs MJ, Dalby MJ. Focal adhesions in osteoneogenesis. Proc. Inst. Mech. Eng. H. 2010;224(12):1441–1453. doi: 10.1243/09544119JEIM775. PubMed DOI PMC
Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Oreffo RO, Dalby MJ. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials. 2009;30(28):5094–5103. doi: 10.1016/j.biomaterials.2009.05.049. PubMed DOI
Ge C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 2007;176(5):709–718. doi: 10.1083/jcb.200610046. PubMed DOI PMC
Hamilton DW, Brunette DM. The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. Biomaterials. 2007;28(10):1806–1819. doi: 10.1016/j.biomaterials.2006.11.041. PubMed DOI
Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J. Cell Biochem. 2007;101(5):1266–1277. doi: 10.1002/jcb.21249. PubMed DOI
Klees RF, Salasznyk RM, Kingsley K, Williams WA, Boskey A, Plopper GE. Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Mol. Biol. Cell. 2005;16(2):881–890. doi: 10.1091/mbc.e04-08-0695. PubMed DOI PMC
Liu J, Zhao Z, Li J, Zou L, Shuler C, Zou Y, Huang X, Li M, Wang J. Hydrostatic pressures promote initial osteodifferentiation with ERK1/2 not p38 MAPK signaling involved. J. Cell Biochem. 2009;107(2):224–232. doi: 10.1002/jcb.22118. PubMed DOI
Rocca A, Marino A, Rocca V, Moscato S, de Vito G, Piazza V, Mazzolai B, Mattoli V, Ngo-Anh TJ, Ciofani G. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int. J. Nanomed. 2015;10:433–445. doi: 10.2217/nnm.14.188. PubMed DOI PMC
McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 2004;6(4):483–495. doi: 10.1016/S1534-5807(04)00075-9. PubMed DOI
Bhadriraju K, Yang M, Alom Ruiz S, Pirone D, Tan J, Chen CS. Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Exp. Cell Res. 2007;313(16):3616–3623. doi: 10.1016/j.yexcr.2007.07.002. PubMed DOI PMC
Shen Y, Liu W, Wen C, Pan H, Wang T, Darvell BW, Lu WW, Huang W. Bone regeneration: Importance of local pH—Strontium-doped borosilicate scaffold. J. Mater. Chem. 2012;22:8662–8670. doi: 10.1039/c2jm16141a. DOI
Shen Y, Liu W, Lin K, Pan H, Darvell BW, Peng S, Wen C, Deng L, Lu WW, Chang J. Interfacial pH: A critical factor for osteoporotic bone regeneration. Langmuir. 2011;27(6):2701–2708. doi: 10.1021/la104876w. PubMed DOI
Liu X, Feng Q, Bachhuka A, Vasilev K. Surface modification by allylamine plasma polymerization promotes osteogenic differentiation of human adipose-derived stem cells. ACS Appl. Mater. Interfaces. 2014;6(12):9733–9741. doi: 10.1021/am502170s. PubMed DOI
Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials. 2006;27(27):4783–4793. doi: 10.1016/j.biomaterials.2006.05.001. PubMed DOI