Mitochondrial respiration of human platelets in young adult and advanced age - Seahorse or O2k?
Jazyk angličtina Země Česko Médium print
Typ dokumentu srovnávací studie, časopisecké články
PubMed
35099255
PubMed Central
PMC8884395
DOI
10.33549/physiolres.934812
PII: 934812
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- analýza metabolického toku metody MeSH
- buněčné dýchání MeSH
- dospělí MeSH
- energetický metabolismus * MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- spotřeba kyslíku MeSH
- stárnutí krev metabolismus MeSH
- trombocyty metabolismus MeSH
- věkové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- adenosintrifosfát MeSH
The objective of the present study was to evaluate platelet mitochondrial oxygen consumption using high-resolution respirometry (HRR) and metabolic flux analysis (MFA) and to verify the effect of advanced age on these parameters. HRR was used to analyze permeabilized and intact platelets, MFA to measure oxygen consumption rates (OCR), extracellular acidification rates (ECAR) and ATP production rate in intact fixed platelets. Two groups of healthy volunteers were included in the study: YOUNG (20-42 years, n=44) and older adults (OLD; 70-89 years; n=15). Compared to YOUNG donors, platelets from group OLD participants displayed significantly lower values of oxygen consumption in the Complex II-linked phosphorylating and uncoupled states and the Complex IV activity in HRR protocols for permeabilized cells and significantly lower resting and uncoupled respirations in intact cells when analyzed by both methods. In addition, mitochondrial ATP production rate was also significantly lower in platelets isolated from older adults. Variables measured by both methods from the same bloods correlated significantly, nevertheless those acquired by MFA were higher than those measured using HRR. In conclusion, the study verifies compromised mitochondrial respiration and oxidative ATP production in the platelets of aged persons and documents good compatibility of the two most widely used methods for determining the global performance of the electron-transporting system, i.e. HRR and MFA.
Zobrazit více v PubMed
AKKERMAN JW, HOLMSEN H. Interrelationships among platelet responses: studies on the burst in proton liberation, lactate production, and oxygen uptake during platelet aggregation and Ca2+ secretion. Blood. 1981;57:956–966. doi: 10.1182/blood.V57.5.956.bloodjournal575956. PubMed DOI
ALEXIOU A, NIZAMI B, KHAN FI, SOURSOU G, VAIRAKTARAKIS C, CHATZICHRONIS S, TSIAMIS V, MANZTAVINOS V, YARLA NS, MD ASHRAF G. Mitochondrial dynamics and proteins related to neurodegenerative diseases. Curr Protein Pept Sci. 2018;19:850–857. doi: 10.2174/1389203718666170810150151. PubMed DOI
BAJRACHARYA R, YOUNGSON NA, BALLARD JWO. Dietary macronutrient management to treat mitochondrial dysfunction in Parkinson’s disease. Int J Mol Sci. 2019;20:1850. doi: 10.3390/ijms20081850. PubMed DOI PMC
BOENGLER K, KOSIOL M, MAYR M, SCHULZ R, ROHRBACH S. Mitochondria and ageing: Role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle. 2017;8:349–369. doi: 10.1002/jcsm.12178. PubMed DOI PMC
BOFFOLI D, SCACCO SC, VERGARI R, SOLARINO G, SANTACROCE G, PAPA S. Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta. 1994;1226:73–82. doi: 10.1016/0925-4439(94)90061-2. PubMed DOI
BRAGANZA A, COREY CG, SANTANASTO AJ, DISTEFANO G, COEN PM, GLYNN NW, NOURAIE SM, GOODPASTER BH, NEWMAN AB, SHIVA S. Platelet bioenergetics correlate with muscle energetics and are altered in older adults. JCI Insight. 2019;5:e128248. doi: 10.1172/jci.insight.128248. PubMed DOI PMC
CHACKO BK, KRAMER PA, RAVI S, JOHNSON MS, HARDY RW, BALLINGER SW, DARLEY-USMAR VM. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab Invest. 2013;93:690–700. doi: 10.1038/labinvest.2013.53. PubMed DOI PMC
CHOKSI KB, NUSS JE, DEFORD JH, PAPACONSTANTINOU J. Mitochondrial electron transport chain functions in long-lived Ames dwarf mice. Aging. 2011;3:754–767. doi: 10.18632/aging.100357. PubMed DOI PMC
COOPER JM, MANN VM, SCHAPIRA AH. Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. J Neurol Sci. 1992;113:91–98. doi: 10.1016/0022-510X(92)90270-U. PubMed DOI
FIŠAR Z, HROUDOVÁ J, HANSÍKOVÁ H, SPÁČILOVÁ J, LELKOVÁ P, WENCHICH L, JIRÁK R, ZVĚŘOVÁ M, ZEMAN J, MARTÁSEK P, RABOCH J. Mitochondrial respiration in the platelets of patients with Alzheimer’s disease. Curr Alzheimer Res. 2016;13:930–941. doi: 10.2174/1567205013666160314150856. PubMed DOI
GATTERER H, MENZ V, SALAZAR-MARTINEZ E, SUMBALOVA Z, GARCIA-SOUZA LF, VELIKA B, GNAIGER E, BURTSCHER M. Exercise performance, muscle oxygen extraction and blood cell mitochondrial respiration after repeated-sprint and sprint interval training in hypoxia: A pilot study. J Sports Sci Med. 2018;17:339–347. PubMed PMC
HEDGES CP, WOODHEAD JST, WANG HW, MITCHELL CJ, CAMERON-SMITH D, HICKEY AJR, MERRY TL. Peripheral blood mononuclear cells do not reflect skeletal muscle mitochondrial function or adaptation to high-intensity interval training in healthy young men. J Appl Physiol. 2019;126:454–461. doi: 10.1152/japplphysiol.00777.2018. PubMed DOI
JAVADOV S, KOZLOV AV, CAMARA AKS. Mitochondria in health and diseases. Cells. 2020;9:1177. doi: 10.3390/cells9051177. PubMed DOI PMC
JOSEPH AM, ADHIHETTY PJ, BUFORD TW, WOHLGEMUTH SE, LEES HA, NGUYEN LM, ARANDA JM, SANDESARA BD, PAHOR M, MANINI TM, MARZETTI E, LEEUWENBURGH C. The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging Cell. 2012;11:801–809. doi: 10.1111/j.1474-9726.2012.00844.x. PubMed DOI PMC
KILKSON H, HOLME S, MURPHY S. Platelet metabolism during storage of platelet concentrates at 22 degrees C. Blood. 1984;64:406–414. doi: 10.1182/blood.V64.2.406.bloodjournal642406. PubMed DOI
LEENAARS CHC, KOUWENAAR C, STAFLEU FR, BLEICH A, RITSKES-HOITINGA M, De VRIES RBM, MEIJBOOM FLB. Animal to human translation: a systematic scoping review of reported concordance rates. J Transl Med. 2019;17:223. doi: 10.1186/s12967-019-1976-2. PubMed DOI PMC
MALAY S, CHUNG KC. The choice of controls for providing validity and evidence in clinical research. Plast Reconstr Surg. 2012;130:959–965. doi: 10.1097/PRS.0b013e318262f4c8. PubMed DOI PMC
MELCHINGER H, JAIN K, TYAGI T, HWA J. Role of platelet mitochondria: Life in a nucleus-free zone. Front Cardiovasc Med. 2019;6:153. doi: 10.3389/fcvm.2019.00153. PubMed DOI PMC
MODY L, MILLER DK, McGLOIN JM, FREEMAN M, MARCANTONIO ER, MAGAZINER J, STUDENSKI S. Recruitment and retention of older adults in aging research. J Am Geriatr Soc. 2008;56:2340–2348. doi: 10.1111/j.1532-5415.2008.02015.x. PubMed DOI PMC
MOOKERJEE SA, GERENCSER AA, NICHOLLS DG, BRAND MD. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J Biol Chem. 2017;292:7189–7207. doi: 10.1074/jbc.M116.774471. PubMed DOI PMC
NAVARRO A, BOVERIS A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292:C670–C686. doi: 10.1152/ajpcell.00213.2006. PubMed DOI
OJAIMI J, MASTERS CL, OPESKIN K, McKELVIE P, BYRNE E. Mitochondrial respiratory chain activity in the human brain as a function of age. Mech Ageing Dev. 1999;111:39–47. doi: 10.1016/S0047-6374(99)00071-8. PubMed DOI
PESTA D, GNAIGER E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol. 2012;810:25–58. doi: 10.1007/978-1-61779-382-0_3. PubMed DOI
PETRUS AT, LIGHEZAN DL, DANILA MD, DUICU OM, STURZA A, MUNTEAN DM, IONITA I. Assessment of platelet respiration as emerging biomarker of disease. Physiol Res. 2019;68:347–363. doi: 10.33549/physiolres.934032. PubMed DOI
PORTER C, HURREN NM, COTTER MV, BHATTARAI N, REIDY PT, DILLON EL, DURHAM WJ, TUVDENDORJ D, SHEFFIELD-MOORE M, VOLPI E, SIDOSSIS LS, RASMUSSEN BB, BØRSHEIM E. Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle. Am J Physiol Endocrinol Metab. 2015;309:E224–E232. doi: 10.1152/ajpendo.00125.2015. PubMed DOI PMC
QIU Y, BROWN AC, MYERS DR, SAKURAI Y, MANNINO RG, TRAN R, AHN B, HARDY ET, KEE MF, KUMAR S, BAO G, BARKER TH, LAM WA. Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci U S A. 2014;111:14430–14435. doi: 10.1073/pnas.1322917111. PubMed DOI PMC
RAVI S, CHACKO B, SAWADA H, KRAMER PA, JOHNSON MS, BENAVIDES GA, O’DONNELL V, MARQUES MB, DARLEY-USMAR VM. Metabolic plasticity in resting and thrombin activated platelets. PLoS One. 2015;10:e0123597. doi: 10.1371/journal.pone.0123597. PubMed DOI PMC
ROSE S, CARVALHO E, DIAZ EC, COTTER M, BENNURI SC, AZHAR G, FRYE RE, ADAMS SH, BØRSHEIM E. A comparative study of mitochondrial respiration in circulating blood cells and skeletal muscle fibers in women. Am J Physiol Endocrinol Metab. 2019;317:E503–E512. doi: 10.1152/ajpendo.00084.2019. PubMed DOI
SCHAPIRA AH. Mitochondrial complex I deficiency in Parkinson’s disease. Adv Neurol. 1993;60:288–291. PubMed
SHI C, GUO K, YEW DT, YAO Z, FORSTER EL, WANG H, XU J. Effects of ageing and Alzheimer’s disease on mitochondrial function of human platelets. Exp Gerontol. 2008;43:589–594. doi: 10.1016/j.exger.2008.02.004. PubMed DOI
SJÖVALL F, EHINGER JK, MARELSSON SE, MOROTA S, FROSTNER EA, UCHINO H, LUNDGREN J, ARNBJÖRNSSON E, HANSSON MJ, FELLMAN V, ELMÉR E. Mitochondrial respiration in human viable platelets - methodology and influence of gender, age and storage. Mitochondrion. 2013;13:7–14. doi: 10.1016/j.mito.2012.11.001. PubMed DOI
TYRRELL DJ, BHARADWAJ MS, JORGENSEN MJ, REGISTER TC, MOLINA AJ. Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: Implications for a minimally invasive biomarker of mitochondrial health. Redox Biol. 2016;10:65–77. doi: 10.1016/j.redox.2016.09.009. PubMed DOI PMC
TYRRELL DJ, BHARADWAJ MS, Van HORN CG, KRITCHEVSKY SB, NICKLAS BJ, MOLINA AJ. Respirometric profiling of muscle mitochondria and blood cells are associated with differences in gait speed among community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2014;70:1394–1399. doi: 10.1093/gerona/glu096. PubMed DOI PMC
VEVERA J, FIŠAR Z, NEKOVÁŘOVÁ T, VRABLÍK M, ZLATOHLÁVEK L, HROUDOVÁ J, SINGH N, RABOCH J, VALEŠ K. Statin-induced changes in mitochondrial respiration in blood platelets in rats and human with dyslipidemia. Physiol Res. 2016;65:777–788. doi: 10.33549/physiolres.933264. PubMed DOI
WANG L, WU Q, FAN Z, XIE R, WANG Z, LU Y. Platelet mitochondrial dysfunction and the correlation with human diseases. Biochem Soc Trans. 2017;45:1213. doi: 10.1042/BST20170291. PubMed DOI
YU H, HU W, SONG X, ZHAO Y. Immune modulation of platelet-derived mitochondria on memory CD4(+) T cells in humans. Int J Mol Sci. 2020;21:6295. doi: 10.3390/ijms21176295. PubMed DOI PMC
Age-Dependent Alterations in Platelet Mitochondrial Respiration
Impact of aging on mitochondrial respiration in various organs
Cell-Tak coating interferes with DNA-based normalization of metabolic flux data