Age-Dependent Alterations in Platelet Mitochondrial Respiration

. 2023 May 28 ; 11 (6) : . [epub] 20230528

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37371659

Grantová podpora
Cooperatio, research area Neurosciences Charles University
MH CZ-DRO VFN64165 Ministry of Health, Czech Republic

Mitochondrial dysfunction is an important cellular hallmark of aging and neurodegeneration. Platelets are a useful model to study the systemic manifestations of mitochondrial dysfunction. To evaluate the age dependence of mitochondrial parameters, citrate synthase activity, respiratory chain complex activity, and oxygen consumption kinetics were assessed. The effect of cognitive impairment was examined by comparing the age dependence of mitochondrial parameters in healthy individuals and those with neuropsychiatric disease. The study found a significant negative slope of age-dependence for both the activity of individual mitochondrial enzymes (citrate synthase and complex II) and parameters of mitochondrial respiration in intact platelets (routine respiration, maximum capacity of electron transport system, and respiratory rate after complex I inhibition). However, there was no significant difference in the age-related changes of mitochondrial parameters between individuals with and without cognitive impairment. These findings highlight the potential of measuring mitochondrial respiration in intact platelets as a means to assess age-related mitochondrial dysfunction. The results indicate that drugs and interventions targeting mitochondrial respiration may have the potential to slow down or eliminate certain aging and neurodegenerative processes. Mitochondrial respiration in platelets holds promise as a biomarker of aging, irrespective of the degree of cognitive impairment.

Zobrazit více v PubMed

Rysz J., Franczyk B., Rysz-Gorzynska M., Gluba-Brzozka A. Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int. J. Mol. Sci. 2021;23:183. doi: 10.3390/ijms23010183. PubMed DOI PMC

Lopez-Otin C., Blasco M.A., Partridge L., Serrano M., Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186:243–278. doi: 10.1016/j.cell.2022.11.001. PubMed DOI

Zia A., Pourbagher-Shahri A.M., Farkhondeh T., Samarghandian S. Molecular and cellular pathways contributing to brain aging. Behav. Brain Funct. 2021;17:6. doi: 10.1186/s12993-021-00179-9. PubMed DOI PMC

Catanesi M., d’Angelo M., Tupone M.G., Benedetti E., Giordano A., Castelli V., Cimini A. MicroRNAs Dysregulation and Mitochondrial Dysfunction in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020;21:5986. doi: 10.3390/ijms21175986. PubMed DOI PMC

Cui H., Kong Y., Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduct. 2012;2012:646354. doi: 10.1155/2012/646354. PubMed DOI PMC

Hroudova J., Singh N., Fisar Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer’s disease. Biomed. Res. Int. 2014;2014:175062. doi: 10.1155/2014/175062. PubMed DOI PMC

Grimm A., Eckert A. Brain aging and neurodegeneration: From a mitochondrial point of view. J. Neurochem. 2017;143:418–431. doi: 10.1111/jnc.14037. PubMed DOI PMC

Sini P., Dang T.B.C., Fais M., Galioto M., Padedda B.M., Luglie A., Iaccarino C., Crosio C. Cyanobacteria, Cyanotoxins, and Neurodegenerative Diseases: Dangerous Liaisons. Int. J. Mol. Sci. 2021;22:8726. doi: 10.3390/ijms22168726. PubMed DOI PMC

Tanaka M., Szabo A., Spekker E., Polyak H., Toth F., Vecsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells. 2022;11:2607. doi: 10.3390/cells11162607. PubMed DOI PMC

Tanaka M., Vecsei L. Editorial of Special Issue “Dissecting Neurological and Neuropsychiatric Diseases: Neurodegeneration and Neuroprotection”. Int. J. Mol. Sci. 2022;23:6991. doi: 10.3390/ijms23136991. PubMed DOI PMC

Tanaka M., Toldi J., Vecsei L. Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. Int. J. Mol. Sci. 2020;21:2431. doi: 10.3390/ijms21072431. PubMed DOI PMC

Picca A., Calvani R., Coelho-Junior H.J., Landi F., Bernabei R., Marzetti E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants. 2020;9:647. doi: 10.3390/antiox9080647. PubMed DOI PMC

Brunetti D., Catania A., Viscomi C., Deleidi M., Bindoff L.A., Ghezzi D., Zeviani M. Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines. 2021;9:833. doi: 10.3390/biomedicines9070833. PubMed DOI PMC

Wu Y., Chen M., Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019;49:35–45. doi: 10.1016/j.mito.2019.07.003. PubMed DOI

Shen X., Sun P., Zhang H., Yang H. Mitochondrial quality control in the brain: The physiological and pathological roles. Front. Neurosci. 2022;16:1075141. doi: 10.3389/fnins.2022.1075141. PubMed DOI PMC

Lee D., Jo M.G., Kim S.Y., Chung C.G., Lee S.B. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson’s Disease Treatment. Antioxidants. 2020;9:1056. doi: 10.3390/antiox9111056. PubMed DOI PMC

Mitchell P., Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature. 1967;213:137–139. doi: 10.1038/213137a0. PubMed DOI

Harman D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. PubMed DOI

Harman D. The aging process. Proc. Natl. Acad. Sci. USA. 1981;78:7124–7128. doi: 10.1073/pnas.78.11.7124. PubMed DOI PMC

Harman D. Origin and evolution of the free radical theory of aging: A brief personal history, 1954–2009. Biogerontology. 2009;10:773–781. doi: 10.1007/s10522-009-9234-2. PubMed DOI

Singh A., Kukreti R., Saso L., Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. 2019;24:1583. doi: 10.3390/molecules24081583. PubMed DOI PMC

Ristow M., Schmeisser S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 2011;51:327–336. doi: 10.1016/j.freeradbiomed.2011.05.010. PubMed DOI

Jang J.Y., Blum A., Liu J., Finkel T. The role of mitochondria in aging. J. Clin. Invest. 2018;128:3662–3670. doi: 10.1172/JCI120842. PubMed DOI PMC

Son J.M., Lee C. Mitochondria: Multifaceted regulators of aging. BMB Rep. 2019;52:13–23. doi: 10.5483/BMBRep.2019.52.1.300. PubMed DOI PMC

Son J.M., Lee C. Aging: All roads lead to mitochondria. Semin. Cell Dev. Biol. 2021;116:160–168. doi: 10.1016/j.semcdb.2021.02.006. PubMed DOI PMC

Martini H., Passos J.F. Cellular senescence: All roads lead to mitochondria. FEBS J. 2023;290:1186–1202. doi: 10.1111/febs.16361. PubMed DOI PMC

Chistiakov D.A., Sobenin I.A., Revin V.V., Orekhov A.N., Bobryshev Y.V. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed. Res. Int. 2014;2014:238463. doi: 10.1155/2014/238463. PubMed DOI PMC

Wei Y.H., Wu S.B., Ma Y.S., Lee H.C. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang Gung Med. J. 2009;32:113–132. PubMed

Lee H.C., Wei Y.H. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp. Biol. Med. 2007;232:592–606. PubMed

Jagtap Y.A., Kumar P., Kinger S., Dubey A.R., Choudhary A., Gutti R.K., Singh S., Jha H.C., Poluri K.M., Mishra A. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front. Cell Dev. Biol. 2023;11:1146564. doi: 10.3389/fcell.2023.1146564. PubMed DOI PMC

Mangrulkar S.V., Wankhede N.L., Kale M.B., Upaganlawar A.B., Taksande B.G., Umekar M.J., Anwer M.K., Dailah H.G., Mohan S., Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox. Res. 2023:1–22. doi: 10.1007/s12640-023-00647-2. PubMed DOI

Bagheri-Mohammadi S., Farjami M., Suha A.J., Zarch S.M.A., Najafi S., Esmaeili A. The mitochondrial calcium signaling, regulation, and cellular functions: A novel target for therapeutic medicine in neurological disorders. J. Cell. Biochem. 2023;124:635–655. doi: 10.1002/jcb.30414. PubMed DOI

Rehman M.U., Sehar N., Dar N.J., Khan A., Arafah A., Rashid S., Rashid S.M., Ganaie M.A. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci. Biobehav. Rev. 2023;144:104961. doi: 10.1016/j.neubiorev.2022.104961. PubMed DOI

Li R.L., Wang L.Y., Duan H.X., Zhang Q., Guo X., Wu C., Peng W. Regulation of mitochondrial dysfunction induced cell apoptosis is a potential therapeutic strategy for herbal medicine to treat neurodegenerative diseases. Front. Pharmacol. 2022;13:937289. doi: 10.3389/fphar.2022.937289. PubMed DOI PMC

Chaturvedi R.K., Flint Beal M. Mitochondrial diseases of the brain. Free Radic. Biol. Med. 2013;63:1–29. doi: 10.1016/j.freeradbiomed.2013.03.018. PubMed DOI

Fernandes T., Resende R., Silva D.F., Marques A.P., Santos A.E., Cardoso S.M., Domingues M.R., Moreira P.I., Pereira C.F. Structural and Functional Alterations in Mitochondria-Associated Membranes (MAMs) and in Mitochondria Activate Stress Response Mechanisms in an In Vitro Model of Alzheimer’s Disease. Biomedicines. 2021;9:881. doi: 10.3390/biomedicines9080881. PubMed DOI PMC

Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer’s Disease and Identifying Promising Drug Targets. Biomolecules. 2022;12:1676. doi: 10.3390/biom12111676. PubMed DOI PMC

Klinedinst N.J., Regenold W.T. A mitochondrial bioenergetic basis of depression. J. Bioenerg. Biomembr. 2015;47:155–171. doi: 10.1007/s10863-014-9584-6. PubMed DOI

Sigitova E., Fisar Z., Hroudova J., Cikankova T., Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin. Neurosci. 2017;71:77–103. doi: 10.1111/pcn.12476. PubMed DOI

Kato T. The role of mitochondrial dysfunction in bipolar disorder. Drug News Perspect. 2006;19:597–602. doi: 10.1358/dnp.2006.19.10.1068006. PubMed DOI

Kato T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr. Res. 2017;187:62–66. doi: 10.1016/j.schres.2016.10.037. PubMed DOI

Stork C., Renshaw P.F. Mitochondrial dysfunction in bipolar disorder: Evidence from magnetic resonance spectroscopy research. Mol. Psychiatry. 2005;10:900–919. doi: 10.1038/sj.mp.4001711. PubMed DOI

Baquero M., Martin N. Depressive symptoms in neurodegenerative diseases. World J. Clin. Cases. 2015;3:682–693. doi: 10.12998/wjcc.v3.i8.682. PubMed DOI PMC

Hammar A., Ronold E.H., Rekkedal G.A. Cognitive Impairment and Neurocognitive Profiles in Major Depression—A Clinical Perspective. Front. Psychiatry. 2022;13:764374. doi: 10.3389/fpsyt.2022.764374. PubMed DOI PMC

Masse C., Chopard G., Bennabi D., Haffen E., Vandel P. Cognitive functions in late-life depression. Geriatr. Psychol. Neuropsychiatr. Vieil. 2022;19:202–210. doi: 10.1684/pnv.2021.0939. PubMed DOI

Huang Y., Zhang Z., Lin S., Zhou H., Xu G. Cognitive Impairment Mechanism in Patients with Bipolar Disorder. Neuropsychiatr. Dis. Treat. 2023;19:361–366. doi: 10.2147/NDT.S396424. PubMed DOI PMC

Pessoa L., Padmala S., Kenzer A., Bauer A. Interactions between cognition and emotion during response inhibition. Emotion. 2012;12:192–197. doi: 10.1037/a0024109. PubMed DOI PMC

Battaglia S., Serio G., Scarpazza C., D’Ausilio A., Borgomaneri S. Frozen in (e)motion: How reactive motor inhibition is influenced by the emotional content of stimuli in healthy and psychiatric populations. Behav. Res. Ther. 2021;146:103963. doi: 10.1016/j.brat.2021.103963. PubMed DOI

Battaglia S., Cardellicchio P., Di Fazio C., Nazzi C., Fracasso A., Borgomaneri S. Stopping in (e)motion: Reactive action inhibition when facing valence-independent emotional stimuli. Front. Behav. Neurosci. 2022;16:998714. doi: 10.3389/fnbeh.2022.998714. PubMed DOI PMC

Roberts-Wolfe D., Sacchet M.D., Hastings E., Roth H., Britton W. Mindfulness training alters emotional memory recall compared to active controls: Support for an emotional information processing model of mindfulness. Front. Hum. Neurosci. 2012;6:15. doi: 10.3389/fnhum.2012.00015. PubMed DOI PMC

Salat D.H., Kaye J.A., Janowsky J.S. Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease. Arch. Neurol. 2001;58:1403–1408. doi: 10.1001/archneur.58.9.1403. PubMed DOI

Lezi E., Swerdlow R.H. Mitochondria in neurodegeneration. Adv. Exp. Med. Biol. 2012;942:269–286. doi: 10.1007/978-94-007-2869-1_12. PubMed DOI PMC

Navarro A., Boveris A. Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front. Aging Neurosci. 2010;2:34. doi: 10.3389/fnagi.2010.00034. PubMed DOI PMC

Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011;435:297–312. doi: 10.1042/BJ20110162. PubMed DOI PMC

Junker A., Wang J., Gouspillou G., Ehinger J.K., Elmer E., Sjovall F., Fisher-Wellman K.H., Neufer P.D., Molina A.J.A., Ferrucci L., et al. Human studies of mitochondrial biology demonstrate an overall lack of binary sex differences: A multivariate meta-analysis. FASEB J. 2022;36:e22146. doi: 10.1096/fj.202101628R. PubMed DOI PMC

Jedlicka J., Kunc R., Kuncova J. Mitochondrial respiration of human platelets in young adult and advanced age—Seahorse or O2k? Physiol. Res. 2021;70:S369–S379. doi: 10.33549/physiolres.934812. PubMed DOI PMC

Fisar Z., Hroudova J. Measurement of Mitochondrial Respiration in Platelets. Methods Mol. Biol. 2021;2277:269–276. doi: 10.1007/978-1-0716-1270-5_16. PubMed DOI

Harker L.A., Roskos L.K., Marzec U.M., Carter R.A., Cherry J.K., Sundell B., Cheung E.N., Terry D., Sheridan W. Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood. 2000;95:2514–2522. doi: 10.1182/blood.V95.8.2514. PubMed DOI

Jenne C.N., Urrutia R., Kubes P. Platelets: Bridging hemostasis, inflammation, and immunity. Int. J. Lab. Hematol. 2013;35:254–261. doi: 10.1111/ijlh.12084. PubMed DOI

Braganza A., Corey C.G., Santanasto A.J., Distefano G., Coen P.M., Glynn N.W., Nouraie S.M., Goodpaster B.H., Newman A.B., Shiva S. Platelet bioenergetics correlate with muscle energetics and are altered in older adults. JCI Insight. 2019;5:e128248. doi: 10.1172/jci.insight.128248. PubMed DOI PMC

Leiter O., Walker T.L. Platelets in Neurodegenerative Conditions-Friend or Foe? Front. Immunol. 2020;11:747. doi: 10.3389/fimmu.2020.00747. PubMed DOI PMC

Canobbio I. Blood platelets: Circulating mirrors of neurons? Res. Pract. Thromb. Haemost. 2019;3:564–565. doi: 10.1002/rth2.12254. PubMed DOI PMC

Rivera F.J., Kazanis I., Ghevaert C., Aigner L. Beyond Clotting: A Role of Platelets in CNS Repair? Front. Cell Neurosci. 2015;9:511. doi: 10.3389/fncel.2015.00511. PubMed DOI PMC

Burnouf T., Walker T.L. The multifaceted role of platelets in mediating brain function. Blood. 2022;140:815–827. doi: 10.1182/blood.2022015970. PubMed DOI PMC

Pandya J.D., Valdez M., Royland J.E., MacPhail R.C., Sullivan P.G., Kodavanti P.R.S. Age-and Organ-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats. J. Aging Res. 2020;2020:7232614. doi: 10.1155/2020/7232614. PubMed DOI PMC

Pandya J.D., Royland J.E., MacPhail R.C., Sullivan P.G., Kodavanti P.R. Age-and brain region-specific differences in mitochondrial bioenergetics in Brown Norway rats. Neurobiol. Aging. 2016;42:25–34. doi: 10.1016/j.neurobiolaging.2016.02.027. PubMed DOI

Jedlicka J., Tuma Z., Razak K., Kunc R., Kala A., Proskauer Pena S., Lerchner T., Jezek K., Kuncova J. Impact of aging on mitochondrial respiration in various organs. Physiol. Res. 2022;71:S227–S236. doi: 10.33549/physiolres.934995. PubMed DOI PMC

Acin-Perez R., Beninca C., Shabane B., Shirihai O.S., Stiles L. Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life. 2021;11:949. doi: 10.3390/life11090949. PubMed DOI PMC

Doerrier C., Garcia-Souza L.F., Krumschnabel G., Wohlfarter Y., Meszaros A.T., Gnaiger E. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. Methods Mol. Biol. 2018;1782:31–70. doi: 10.1007/978-1-4939-7831-1_3. PubMed DOI

Chinopoulos C., Kiss G., Kawamata H., Starkov A.A. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption. Methods Enzymol. 2014;542:333–348. doi: 10.1016/B978-0-12-416618-9.00017-0. PubMed DOI PMC

Tretter L., Takacs K., Kover K., Adam-Vizi V. Stimulation of H(2)O(2) generation by calcium in brain mitochondria respiring on alpha-glycerophosphate. J. Neurosci. Res. 2007;85:3471–3479. doi: 10.1002/jnr.21405. PubMed DOI

Makrecka-Kuka M., Krumschnabel G., Gnaiger E. High-Resolution Respirometry for Simultaneous Measurement of Oxygen and Hydrogen Peroxide Fluxes in Permeabilized Cells, Tissue Homogenate and Isolated Mitochondria. Biomolecules. 2015;5:1319–1338. doi: 10.3390/biom5031319. PubMed DOI PMC

Krumschnabel G., Eigentler A., Fasching M., Gnaiger E. Use of safranin for the assessment of mitochondrial membrane potential by high-resolution respirometry and fluorometry. Methods Enzymol. 2014;542:163–181. doi: 10.1016/B978-0-12-416618-9.00009-1. PubMed DOI

Smiley S.T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T.W., Steele G.D., Jr., Chen L.B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA. 1991;88:3671–3675. doi: 10.1073/pnas.88.9.3671. PubMed DOI PMC

Skrha J., Jr., Gall J., Buchal R., Sedlackova E., Platenik J. Glucose and its metabolites have distinct effects on the calcium-induced mitochondrial permeability transition. Folia Biol. 2011;57:96–103. PubMed

Morkuniene R., Cizas P., Jankeviciute S., Petrolis R., Arandarcikaite O., Krisciukaitis A., Borutaite V. Small A beta(1-42) Oligomer-Induced Membrane Depolarization of Neuronal and Microglial Cells: Role of N-Methyl-D-Aspartate Receptors. J. Neurosci. Res. 2015;93:475–486. doi: 10.1002/jnr.23510. PubMed DOI

Fisar Z. Inhibition of monoamine oxidase activity by cannabinoids. Naunyn-Schmiedeberg Arch. Pharmacol. 2010;381:563–572. doi: 10.1007/s00210-010-0517-6. PubMed DOI

Aleardi A.M., Benard G., Augereau O., Malgat M., Talbot J.C., Mazat J.P., Letellier T., Dachary-Prigent J., Solaini G.C., Rossignol R. Gradual alteration of mitochondrial structure and function by beta-amyloids: Importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J. Bioenerg. Biomembr. 2005;37:207–225. doi: 10.1007/s10863-005-6631-3. PubMed DOI

Kato T. DNA polymorphisms and bipolar disorder. Am. J. Psychiatry. 2001;158:1169–1170. doi: 10.1176/appi.ajp.158.7.1169-b. PubMed DOI

Song W., Bossy B., Martin O.J., Hicks A., Lubitz S., Knott A.B., Bossy-Wetzel E. Assessing mitochondrial morphology and dynamics using fluorescence wide-field microscopy and 3D image processing. Methods. 2008;46:295–303. doi: 10.1016/j.ymeth.2008.10.003. PubMed DOI PMC

Williams J.A., Zhao K., Jin S., Ding W.X. New methods for monitoring mitochondrial biogenesis and mitophagy in vitro and in vivo. Exp. Biol. Med. 2017;242:781–787. doi: 10.1177/1535370216688802. PubMed DOI PMC

Fisar Z., Hroudova J., Hansikova H., Spacilova J., Lelkova P., Wenchich L., Jirak R., Zverova M., Zeman J., Martasek P., et al. Mitochondrial Respiration in the Platelets of Patients with Alzheimer’s Disease. Curr. Alzheimer Res. 2016;13:930–941. doi: 10.2174/1567205013666160314150856. PubMed DOI

Fisar Z., Jirak R., Zverova M., Setnicka V., Habartova L., Hroudova J., Vanickova Z., Raboch J. Plasma amyloid beta levels and platelet mitochondrial respiration in patients with Alzheimer’s disease. Clin. Biochem. 2019;72:71–80. doi: 10.1016/j.clinbiochem.2019.04.003. PubMed DOI

Fisar Z., Hansikova H., Krizova J., Jirak R., Kitzlerova E., Zverova M., Hroudova J., Wenchich L., Zeman J., Raboch J. Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion. 2019;48:67–77. doi: 10.1016/j.mito.2019.07.013. PubMed DOI

Platenik J., Fisar Z., Buchal R., Jirak R., Kitzlerova E., Zverova M., Raboch J. GSK3beta, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014;50:83–93. doi: 10.1016/j.pnpbp.2013.12.001. PubMed DOI

Hroudova J., Fisar Z., Kitzlerova E., Zverova M., Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13:795–800. doi: 10.1016/j.mito.2013.05.005. PubMed DOI

Zverova M., Hroudova J., Fisar Z., Hansikova H., Kalisova L., Kitzlerova E., Lambertova A., Raboch J. Disturbances of mitochondrial parameters to distinguish patients with depressive episode of bipolar disorder and major depressive disorder. Neuropsychiatr. Dis. Treat. 2019;15:233–240. doi: 10.2147/NDT.S188964. PubMed DOI PMC

Hroudova J., Fisar Z., Hansikova H., Kalisova L., Kitzlerova E., Zverova M., Lambertova A., Raboch J. Mitochondrial Dysfunction in Blood Platelets of Patients with Manic Episode of Bipolar Disorder. CNS Neurol. Disord. Drug Targets. 2019;18:222–231. doi: 10.2174/1871527318666181224130011. PubMed DOI

Roman G.C., Tatemichi T.K., Erkinjuntti T., Cummings J.L., Masdeu J.C., Garcia J.H., Amaducci L., Orgogozo J.M., Brun A., Hofman A., et al. Vascular dementia: Diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993;43:250–260. doi: 10.1212/WNL.43.2.250. PubMed DOI

Dubois B., Feldman H.H., Jacova C., Dekosky S.T., Barberger-Gateau P., Cummings J., Delacourte A., Galasko D., Gauthier S., Jicha G., et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–746. doi: 10.1016/S1474-4422(07)70178-3. PubMed DOI

McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–944. doi: 10.1212/WNL.34.7.939. PubMed DOI

Pantoni L., Inzitari D. Hachinski’s ischemic score and the diagnosis of vascular dementia: A review. Ital. J. Neurol. Sci. 1993;14:539–546. doi: 10.1007/BF02339212. PubMed DOI

Yesavage J.A. Geriatric Depression Scale. Psychopharmacol. Bull. 1988;24:709–711. PubMed

Mioshi E., Dawson K., Mitchell J., Arnold R., Hodges J.R. The Addenbrooke’s Cognitive Examination Revised (ACE-R): A brief cognitive test battery for dementia screening. Int. J. Geriatr. Psychiatry. 2006;21:1078–1085. doi: 10.1002/gps.1610. PubMed DOI

Tombaugh T.N., McIntyre N.J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc. 1992;40:922–935. doi: 10.1111/j.1532-5415.1992.tb01992.x. PubMed DOI

Hroudova J., Fisar Z. Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro. Endocrinol. Lett. 2010;31:336–342. PubMed

Singh N., Hroudova J., Fisar Z. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria. J. Mol. Neurosci. 2015;56:926–931. doi: 10.1007/s12031-015-0545-2. PubMed DOI

Luptak M., Fisar Z., Hroudova J. Effect of Novel Antipsychotics on Energy Metabolism—In Vitro Study in Pig Brain Mitochondria. Mol. Neurobiol. 2021;58:5548–5563. doi: 10.1007/s12035-021-02498-4. PubMed DOI

Sjovall F., Morota S., Persson J., Hansson M.J., Elmer E. Patients with sepsis exhibit increased mitochondrial respiratory capacity in peripheral blood immune cells. Crit. Care. 2013;17:R152. doi: 10.1186/cc12831. PubMed DOI PMC

Larsen S., Nielsen J., Hansen C.N., Nielsen L.B., Wibrand F., Stride N., Schroder H.D., Boushel R., Helge J.W., Dela F., et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 2012;590:3349–3360. doi: 10.1113/jphysiol.2012.230185. PubMed DOI PMC

Heun R., Kockler M., Ptok U. Depression in Alzheimer’s disease: Is there a temporal relationship between the onset of depression and the onset of dementia? Eur. Psychiatry. 2002;17:254–258. doi: 10.1016/S0924-9338(02)00678-8. PubMed DOI

Lyketsos C.G., Carrillo M.C., Ryan J.M., Khachaturian A.S., Trzepacz P., Amatniek J., Cedarbaum J., Brashear R., Miller D.S. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 2011;7:532–539. doi: 10.1016/j.jalz.2011.05.2410. PubMed DOI PMC

Zoll J., Sanchez H., N’Guessan B., Ribera F., Lampert E., Bigard X., Serrurier B., Fortin D., Geny B., Veksler V., et al. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J. Physiol. 2002;543:191–200. doi: 10.1113/jphysiol.2002.019661. PubMed DOI PMC

Picard M., McEwen B.S., Epel E.S., Sandi C. An energetic view of stress: Focus on mitochondria. Front. Neuroendocrinol. 2018;49:72–85. doi: 10.1016/j.yfrne.2018.01.001. PubMed DOI PMC

Hamrick M.W., Stranahan A.M. Metabolic regulation of aging and age-related disease. Ageing Res. Rev. 2020;64:101175. doi: 10.1016/j.arr.2020.101175. PubMed DOI PMC

Crane J.D., Devries M.C., Safdar A., Hamadeh M.J., Tarnopolsky M.A. The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. J. Gerontol. A Biol. Sci. Med. Sci. 2010;65:119–128. doi: 10.1093/gerona/glp179. PubMed DOI

Houmard J.A., Weidner M.L., Gavigan K.E., Tyndall G.L., Hickey M.S., Alshami A. Fiber type and citrate synthase activity in the human gastrocnemius and vastus lateralis with aging. J. Appl. Physiol. 1998;85:1337–1341. doi: 10.1152/jappl.1998.85.4.1337. PubMed DOI

Fisar Z., Hroudova J. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration. Folia Biol. 2016;62:15–25. PubMed

Battaglia S., Di Fazio C., Vicario C.M., Avenanti A. Neuropharmacological Modulation of N-methyl-D-aspartate, Noradrenaline and Endocannabinoid Receptors in Fear Extinction Learning: Synaptic Transmission and Plasticity. Int. J. Mol. Sci. 2023;24:5926. doi: 10.3390/ijms24065926. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

CoQ10 and Mitochondrial Dysfunction in Alzheimer's Disease

. 2024 Feb 02 ; 13 (2) : . [epub] 20240202

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...