Age-Dependent Alterations in Platelet Mitochondrial Respiration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio, research area Neurosciences
Charles University
MH CZ-DRO VFN64165
Ministry of Health, Czech Republic
PubMed
37371659
PubMed Central
PMC10295145
DOI
10.3390/biomedicines11061564
PII: biomedicines11061564
Knihovny.cz E-zdroje
- Klíčová slova
- aging, cognitive decline, mitochondria, mitochondrial respiration, neurodegenerative disease, neuroinflammation, neuroplasticity, oxidative stress, platelet, respiratory chain complex,
- Publikační typ
- časopisecké články MeSH
Mitochondrial dysfunction is an important cellular hallmark of aging and neurodegeneration. Platelets are a useful model to study the systemic manifestations of mitochondrial dysfunction. To evaluate the age dependence of mitochondrial parameters, citrate synthase activity, respiratory chain complex activity, and oxygen consumption kinetics were assessed. The effect of cognitive impairment was examined by comparing the age dependence of mitochondrial parameters in healthy individuals and those with neuropsychiatric disease. The study found a significant negative slope of age-dependence for both the activity of individual mitochondrial enzymes (citrate synthase and complex II) and parameters of mitochondrial respiration in intact platelets (routine respiration, maximum capacity of electron transport system, and respiratory rate after complex I inhibition). However, there was no significant difference in the age-related changes of mitochondrial parameters between individuals with and without cognitive impairment. These findings highlight the potential of measuring mitochondrial respiration in intact platelets as a means to assess age-related mitochondrial dysfunction. The results indicate that drugs and interventions targeting mitochondrial respiration may have the potential to slow down or eliminate certain aging and neurodegenerative processes. Mitochondrial respiration in platelets holds promise as a biomarker of aging, irrespective of the degree of cognitive impairment.
Zobrazit více v PubMed
Rysz J., Franczyk B., Rysz-Gorzynska M., Gluba-Brzozka A. Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int. J. Mol. Sci. 2021;23:183. doi: 10.3390/ijms23010183. PubMed DOI PMC
Lopez-Otin C., Blasco M.A., Partridge L., Serrano M., Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186:243–278. doi: 10.1016/j.cell.2022.11.001. PubMed DOI
Zia A., Pourbagher-Shahri A.M., Farkhondeh T., Samarghandian S. Molecular and cellular pathways contributing to brain aging. Behav. Brain Funct. 2021;17:6. doi: 10.1186/s12993-021-00179-9. PubMed DOI PMC
Catanesi M., d’Angelo M., Tupone M.G., Benedetti E., Giordano A., Castelli V., Cimini A. MicroRNAs Dysregulation and Mitochondrial Dysfunction in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020;21:5986. doi: 10.3390/ijms21175986. PubMed DOI PMC
Cui H., Kong Y., Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduct. 2012;2012:646354. doi: 10.1155/2012/646354. PubMed DOI PMC
Hroudova J., Singh N., Fisar Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer’s disease. Biomed. Res. Int. 2014;2014:175062. doi: 10.1155/2014/175062. PubMed DOI PMC
Grimm A., Eckert A. Brain aging and neurodegeneration: From a mitochondrial point of view. J. Neurochem. 2017;143:418–431. doi: 10.1111/jnc.14037. PubMed DOI PMC
Sini P., Dang T.B.C., Fais M., Galioto M., Padedda B.M., Luglie A., Iaccarino C., Crosio C. Cyanobacteria, Cyanotoxins, and Neurodegenerative Diseases: Dangerous Liaisons. Int. J. Mol. Sci. 2021;22:8726. doi: 10.3390/ijms22168726. PubMed DOI PMC
Tanaka M., Szabo A., Spekker E., Polyak H., Toth F., Vecsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells. 2022;11:2607. doi: 10.3390/cells11162607. PubMed DOI PMC
Tanaka M., Vecsei L. Editorial of Special Issue “Dissecting Neurological and Neuropsychiatric Diseases: Neurodegeneration and Neuroprotection”. Int. J. Mol. Sci. 2022;23:6991. doi: 10.3390/ijms23136991. PubMed DOI PMC
Tanaka M., Toldi J., Vecsei L. Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. Int. J. Mol. Sci. 2020;21:2431. doi: 10.3390/ijms21072431. PubMed DOI PMC
Picca A., Calvani R., Coelho-Junior H.J., Landi F., Bernabei R., Marzetti E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants. 2020;9:647. doi: 10.3390/antiox9080647. PubMed DOI PMC
Brunetti D., Catania A., Viscomi C., Deleidi M., Bindoff L.A., Ghezzi D., Zeviani M. Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines. 2021;9:833. doi: 10.3390/biomedicines9070833. PubMed DOI PMC
Wu Y., Chen M., Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019;49:35–45. doi: 10.1016/j.mito.2019.07.003. PubMed DOI
Shen X., Sun P., Zhang H., Yang H. Mitochondrial quality control in the brain: The physiological and pathological roles. Front. Neurosci. 2022;16:1075141. doi: 10.3389/fnins.2022.1075141. PubMed DOI PMC
Lee D., Jo M.G., Kim S.Y., Chung C.G., Lee S.B. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson’s Disease Treatment. Antioxidants. 2020;9:1056. doi: 10.3390/antiox9111056. PubMed DOI PMC
Mitchell P., Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature. 1967;213:137–139. doi: 10.1038/213137a0. PubMed DOI
Harman D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. PubMed DOI
Harman D. The aging process. Proc. Natl. Acad. Sci. USA. 1981;78:7124–7128. doi: 10.1073/pnas.78.11.7124. PubMed DOI PMC
Harman D. Origin and evolution of the free radical theory of aging: A brief personal history, 1954–2009. Biogerontology. 2009;10:773–781. doi: 10.1007/s10522-009-9234-2. PubMed DOI
Singh A., Kukreti R., Saso L., Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. 2019;24:1583. doi: 10.3390/molecules24081583. PubMed DOI PMC
Ristow M., Schmeisser S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 2011;51:327–336. doi: 10.1016/j.freeradbiomed.2011.05.010. PubMed DOI
Jang J.Y., Blum A., Liu J., Finkel T. The role of mitochondria in aging. J. Clin. Invest. 2018;128:3662–3670. doi: 10.1172/JCI120842. PubMed DOI PMC
Son J.M., Lee C. Mitochondria: Multifaceted regulators of aging. BMB Rep. 2019;52:13–23. doi: 10.5483/BMBRep.2019.52.1.300. PubMed DOI PMC
Son J.M., Lee C. Aging: All roads lead to mitochondria. Semin. Cell Dev. Biol. 2021;116:160–168. doi: 10.1016/j.semcdb.2021.02.006. PubMed DOI PMC
Martini H., Passos J.F. Cellular senescence: All roads lead to mitochondria. FEBS J. 2023;290:1186–1202. doi: 10.1111/febs.16361. PubMed DOI PMC
Chistiakov D.A., Sobenin I.A., Revin V.V., Orekhov A.N., Bobryshev Y.V. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed. Res. Int. 2014;2014:238463. doi: 10.1155/2014/238463. PubMed DOI PMC
Wei Y.H., Wu S.B., Ma Y.S., Lee H.C. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang Gung Med. J. 2009;32:113–132. PubMed
Lee H.C., Wei Y.H. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp. Biol. Med. 2007;232:592–606. PubMed
Jagtap Y.A., Kumar P., Kinger S., Dubey A.R., Choudhary A., Gutti R.K., Singh S., Jha H.C., Poluri K.M., Mishra A. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front. Cell Dev. Biol. 2023;11:1146564. doi: 10.3389/fcell.2023.1146564. PubMed DOI PMC
Mangrulkar S.V., Wankhede N.L., Kale M.B., Upaganlawar A.B., Taksande B.G., Umekar M.J., Anwer M.K., Dailah H.G., Mohan S., Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox. Res. 2023:1–22. doi: 10.1007/s12640-023-00647-2. PubMed DOI
Bagheri-Mohammadi S., Farjami M., Suha A.J., Zarch S.M.A., Najafi S., Esmaeili A. The mitochondrial calcium signaling, regulation, and cellular functions: A novel target for therapeutic medicine in neurological disorders. J. Cell. Biochem. 2023;124:635–655. doi: 10.1002/jcb.30414. PubMed DOI
Rehman M.U., Sehar N., Dar N.J., Khan A., Arafah A., Rashid S., Rashid S.M., Ganaie M.A. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci. Biobehav. Rev. 2023;144:104961. doi: 10.1016/j.neubiorev.2022.104961. PubMed DOI
Li R.L., Wang L.Y., Duan H.X., Zhang Q., Guo X., Wu C., Peng W. Regulation of mitochondrial dysfunction induced cell apoptosis is a potential therapeutic strategy for herbal medicine to treat neurodegenerative diseases. Front. Pharmacol. 2022;13:937289. doi: 10.3389/fphar.2022.937289. PubMed DOI PMC
Chaturvedi R.K., Flint Beal M. Mitochondrial diseases of the brain. Free Radic. Biol. Med. 2013;63:1–29. doi: 10.1016/j.freeradbiomed.2013.03.018. PubMed DOI
Fernandes T., Resende R., Silva D.F., Marques A.P., Santos A.E., Cardoso S.M., Domingues M.R., Moreira P.I., Pereira C.F. Structural and Functional Alterations in Mitochondria-Associated Membranes (MAMs) and in Mitochondria Activate Stress Response Mechanisms in an In Vitro Model of Alzheimer’s Disease. Biomedicines. 2021;9:881. doi: 10.3390/biomedicines9080881. PubMed DOI PMC
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer’s Disease and Identifying Promising Drug Targets. Biomolecules. 2022;12:1676. doi: 10.3390/biom12111676. PubMed DOI PMC
Klinedinst N.J., Regenold W.T. A mitochondrial bioenergetic basis of depression. J. Bioenerg. Biomembr. 2015;47:155–171. doi: 10.1007/s10863-014-9584-6. PubMed DOI
Sigitova E., Fisar Z., Hroudova J., Cikankova T., Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin. Neurosci. 2017;71:77–103. doi: 10.1111/pcn.12476. PubMed DOI
Kato T. The role of mitochondrial dysfunction in bipolar disorder. Drug News Perspect. 2006;19:597–602. doi: 10.1358/dnp.2006.19.10.1068006. PubMed DOI
Kato T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr. Res. 2017;187:62–66. doi: 10.1016/j.schres.2016.10.037. PubMed DOI
Stork C., Renshaw P.F. Mitochondrial dysfunction in bipolar disorder: Evidence from magnetic resonance spectroscopy research. Mol. Psychiatry. 2005;10:900–919. doi: 10.1038/sj.mp.4001711. PubMed DOI
Baquero M., Martin N. Depressive symptoms in neurodegenerative diseases. World J. Clin. Cases. 2015;3:682–693. doi: 10.12998/wjcc.v3.i8.682. PubMed DOI PMC
Hammar A., Ronold E.H., Rekkedal G.A. Cognitive Impairment and Neurocognitive Profiles in Major Depression—A Clinical Perspective. Front. Psychiatry. 2022;13:764374. doi: 10.3389/fpsyt.2022.764374. PubMed DOI PMC
Masse C., Chopard G., Bennabi D., Haffen E., Vandel P. Cognitive functions in late-life depression. Geriatr. Psychol. Neuropsychiatr. Vieil. 2022;19:202–210. doi: 10.1684/pnv.2021.0939. PubMed DOI
Huang Y., Zhang Z., Lin S., Zhou H., Xu G. Cognitive Impairment Mechanism in Patients with Bipolar Disorder. Neuropsychiatr. Dis. Treat. 2023;19:361–366. doi: 10.2147/NDT.S396424. PubMed DOI PMC
Pessoa L., Padmala S., Kenzer A., Bauer A. Interactions between cognition and emotion during response inhibition. Emotion. 2012;12:192–197. doi: 10.1037/a0024109. PubMed DOI PMC
Battaglia S., Serio G., Scarpazza C., D’Ausilio A., Borgomaneri S. Frozen in (e)motion: How reactive motor inhibition is influenced by the emotional content of stimuli in healthy and psychiatric populations. Behav. Res. Ther. 2021;146:103963. doi: 10.1016/j.brat.2021.103963. PubMed DOI
Battaglia S., Cardellicchio P., Di Fazio C., Nazzi C., Fracasso A., Borgomaneri S. Stopping in (e)motion: Reactive action inhibition when facing valence-independent emotional stimuli. Front. Behav. Neurosci. 2022;16:998714. doi: 10.3389/fnbeh.2022.998714. PubMed DOI PMC
Roberts-Wolfe D., Sacchet M.D., Hastings E., Roth H., Britton W. Mindfulness training alters emotional memory recall compared to active controls: Support for an emotional information processing model of mindfulness. Front. Hum. Neurosci. 2012;6:15. doi: 10.3389/fnhum.2012.00015. PubMed DOI PMC
Salat D.H., Kaye J.A., Janowsky J.S. Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease. Arch. Neurol. 2001;58:1403–1408. doi: 10.1001/archneur.58.9.1403. PubMed DOI
Lezi E., Swerdlow R.H. Mitochondria in neurodegeneration. Adv. Exp. Med. Biol. 2012;942:269–286. doi: 10.1007/978-94-007-2869-1_12. PubMed DOI PMC
Navarro A., Boveris A. Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front. Aging Neurosci. 2010;2:34. doi: 10.3389/fnagi.2010.00034. PubMed DOI PMC
Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011;435:297–312. doi: 10.1042/BJ20110162. PubMed DOI PMC
Junker A., Wang J., Gouspillou G., Ehinger J.K., Elmer E., Sjovall F., Fisher-Wellman K.H., Neufer P.D., Molina A.J.A., Ferrucci L., et al. Human studies of mitochondrial biology demonstrate an overall lack of binary sex differences: A multivariate meta-analysis. FASEB J. 2022;36:e22146. doi: 10.1096/fj.202101628R. PubMed DOI PMC
Jedlicka J., Kunc R., Kuncova J. Mitochondrial respiration of human platelets in young adult and advanced age—Seahorse or O2k? Physiol. Res. 2021;70:S369–S379. doi: 10.33549/physiolres.934812. PubMed DOI PMC
Fisar Z., Hroudova J. Measurement of Mitochondrial Respiration in Platelets. Methods Mol. Biol. 2021;2277:269–276. doi: 10.1007/978-1-0716-1270-5_16. PubMed DOI
Harker L.A., Roskos L.K., Marzec U.M., Carter R.A., Cherry J.K., Sundell B., Cheung E.N., Terry D., Sheridan W. Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood. 2000;95:2514–2522. doi: 10.1182/blood.V95.8.2514. PubMed DOI
Jenne C.N., Urrutia R., Kubes P. Platelets: Bridging hemostasis, inflammation, and immunity. Int. J. Lab. Hematol. 2013;35:254–261. doi: 10.1111/ijlh.12084. PubMed DOI
Braganza A., Corey C.G., Santanasto A.J., Distefano G., Coen P.M., Glynn N.W., Nouraie S.M., Goodpaster B.H., Newman A.B., Shiva S. Platelet bioenergetics correlate with muscle energetics and are altered in older adults. JCI Insight. 2019;5:e128248. doi: 10.1172/jci.insight.128248. PubMed DOI PMC
Leiter O., Walker T.L. Platelets in Neurodegenerative Conditions-Friend or Foe? Front. Immunol. 2020;11:747. doi: 10.3389/fimmu.2020.00747. PubMed DOI PMC
Canobbio I. Blood platelets: Circulating mirrors of neurons? Res. Pract. Thromb. Haemost. 2019;3:564–565. doi: 10.1002/rth2.12254. PubMed DOI PMC
Rivera F.J., Kazanis I., Ghevaert C., Aigner L. Beyond Clotting: A Role of Platelets in CNS Repair? Front. Cell Neurosci. 2015;9:511. doi: 10.3389/fncel.2015.00511. PubMed DOI PMC
Burnouf T., Walker T.L. The multifaceted role of platelets in mediating brain function. Blood. 2022;140:815–827. doi: 10.1182/blood.2022015970. PubMed DOI PMC
Pandya J.D., Valdez M., Royland J.E., MacPhail R.C., Sullivan P.G., Kodavanti P.R.S. Age-and Organ-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats. J. Aging Res. 2020;2020:7232614. doi: 10.1155/2020/7232614. PubMed DOI PMC
Pandya J.D., Royland J.E., MacPhail R.C., Sullivan P.G., Kodavanti P.R. Age-and brain region-specific differences in mitochondrial bioenergetics in Brown Norway rats. Neurobiol. Aging. 2016;42:25–34. doi: 10.1016/j.neurobiolaging.2016.02.027. PubMed DOI
Jedlicka J., Tuma Z., Razak K., Kunc R., Kala A., Proskauer Pena S., Lerchner T., Jezek K., Kuncova J. Impact of aging on mitochondrial respiration in various organs. Physiol. Res. 2022;71:S227–S236. doi: 10.33549/physiolres.934995. PubMed DOI PMC
Acin-Perez R., Beninca C., Shabane B., Shirihai O.S., Stiles L. Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life. 2021;11:949. doi: 10.3390/life11090949. PubMed DOI PMC
Doerrier C., Garcia-Souza L.F., Krumschnabel G., Wohlfarter Y., Meszaros A.T., Gnaiger E. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. Methods Mol. Biol. 2018;1782:31–70. doi: 10.1007/978-1-4939-7831-1_3. PubMed DOI
Chinopoulos C., Kiss G., Kawamata H., Starkov A.A. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption. Methods Enzymol. 2014;542:333–348. doi: 10.1016/B978-0-12-416618-9.00017-0. PubMed DOI PMC
Tretter L., Takacs K., Kover K., Adam-Vizi V. Stimulation of H(2)O(2) generation by calcium in brain mitochondria respiring on alpha-glycerophosphate. J. Neurosci. Res. 2007;85:3471–3479. doi: 10.1002/jnr.21405. PubMed DOI
Makrecka-Kuka M., Krumschnabel G., Gnaiger E. High-Resolution Respirometry for Simultaneous Measurement of Oxygen and Hydrogen Peroxide Fluxes in Permeabilized Cells, Tissue Homogenate and Isolated Mitochondria. Biomolecules. 2015;5:1319–1338. doi: 10.3390/biom5031319. PubMed DOI PMC
Krumschnabel G., Eigentler A., Fasching M., Gnaiger E. Use of safranin for the assessment of mitochondrial membrane potential by high-resolution respirometry and fluorometry. Methods Enzymol. 2014;542:163–181. doi: 10.1016/B978-0-12-416618-9.00009-1. PubMed DOI
Smiley S.T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T.W., Steele G.D., Jr., Chen L.B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA. 1991;88:3671–3675. doi: 10.1073/pnas.88.9.3671. PubMed DOI PMC
Skrha J., Jr., Gall J., Buchal R., Sedlackova E., Platenik J. Glucose and its metabolites have distinct effects on the calcium-induced mitochondrial permeability transition. Folia Biol. 2011;57:96–103. PubMed
Morkuniene R., Cizas P., Jankeviciute S., Petrolis R., Arandarcikaite O., Krisciukaitis A., Borutaite V. Small A beta(1-42) Oligomer-Induced Membrane Depolarization of Neuronal and Microglial Cells: Role of N-Methyl-D-Aspartate Receptors. J. Neurosci. Res. 2015;93:475–486. doi: 10.1002/jnr.23510. PubMed DOI
Fisar Z. Inhibition of monoamine oxidase activity by cannabinoids. Naunyn-Schmiedeberg Arch. Pharmacol. 2010;381:563–572. doi: 10.1007/s00210-010-0517-6. PubMed DOI
Aleardi A.M., Benard G., Augereau O., Malgat M., Talbot J.C., Mazat J.P., Letellier T., Dachary-Prigent J., Solaini G.C., Rossignol R. Gradual alteration of mitochondrial structure and function by beta-amyloids: Importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J. Bioenerg. Biomembr. 2005;37:207–225. doi: 10.1007/s10863-005-6631-3. PubMed DOI
Kato T. DNA polymorphisms and bipolar disorder. Am. J. Psychiatry. 2001;158:1169–1170. doi: 10.1176/appi.ajp.158.7.1169-b. PubMed DOI
Song W., Bossy B., Martin O.J., Hicks A., Lubitz S., Knott A.B., Bossy-Wetzel E. Assessing mitochondrial morphology and dynamics using fluorescence wide-field microscopy and 3D image processing. Methods. 2008;46:295–303. doi: 10.1016/j.ymeth.2008.10.003. PubMed DOI PMC
Williams J.A., Zhao K., Jin S., Ding W.X. New methods for monitoring mitochondrial biogenesis and mitophagy in vitro and in vivo. Exp. Biol. Med. 2017;242:781–787. doi: 10.1177/1535370216688802. PubMed DOI PMC
Fisar Z., Hroudova J., Hansikova H., Spacilova J., Lelkova P., Wenchich L., Jirak R., Zverova M., Zeman J., Martasek P., et al. Mitochondrial Respiration in the Platelets of Patients with Alzheimer’s Disease. Curr. Alzheimer Res. 2016;13:930–941. doi: 10.2174/1567205013666160314150856. PubMed DOI
Fisar Z., Jirak R., Zverova M., Setnicka V., Habartova L., Hroudova J., Vanickova Z., Raboch J. Plasma amyloid beta levels and platelet mitochondrial respiration in patients with Alzheimer’s disease. Clin. Biochem. 2019;72:71–80. doi: 10.1016/j.clinbiochem.2019.04.003. PubMed DOI
Fisar Z., Hansikova H., Krizova J., Jirak R., Kitzlerova E., Zverova M., Hroudova J., Wenchich L., Zeman J., Raboch J. Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion. 2019;48:67–77. doi: 10.1016/j.mito.2019.07.013. PubMed DOI
Platenik J., Fisar Z., Buchal R., Jirak R., Kitzlerova E., Zverova M., Raboch J. GSK3beta, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014;50:83–93. doi: 10.1016/j.pnpbp.2013.12.001. PubMed DOI
Hroudova J., Fisar Z., Kitzlerova E., Zverova M., Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13:795–800. doi: 10.1016/j.mito.2013.05.005. PubMed DOI
Zverova M., Hroudova J., Fisar Z., Hansikova H., Kalisova L., Kitzlerova E., Lambertova A., Raboch J. Disturbances of mitochondrial parameters to distinguish patients with depressive episode of bipolar disorder and major depressive disorder. Neuropsychiatr. Dis. Treat. 2019;15:233–240. doi: 10.2147/NDT.S188964. PubMed DOI PMC
Hroudova J., Fisar Z., Hansikova H., Kalisova L., Kitzlerova E., Zverova M., Lambertova A., Raboch J. Mitochondrial Dysfunction in Blood Platelets of Patients with Manic Episode of Bipolar Disorder. CNS Neurol. Disord. Drug Targets. 2019;18:222–231. doi: 10.2174/1871527318666181224130011. PubMed DOI
Roman G.C., Tatemichi T.K., Erkinjuntti T., Cummings J.L., Masdeu J.C., Garcia J.H., Amaducci L., Orgogozo J.M., Brun A., Hofman A., et al. Vascular dementia: Diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993;43:250–260. doi: 10.1212/WNL.43.2.250. PubMed DOI
Dubois B., Feldman H.H., Jacova C., Dekosky S.T., Barberger-Gateau P., Cummings J., Delacourte A., Galasko D., Gauthier S., Jicha G., et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–746. doi: 10.1016/S1474-4422(07)70178-3. PubMed DOI
McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–944. doi: 10.1212/WNL.34.7.939. PubMed DOI
Pantoni L., Inzitari D. Hachinski’s ischemic score and the diagnosis of vascular dementia: A review. Ital. J. Neurol. Sci. 1993;14:539–546. doi: 10.1007/BF02339212. PubMed DOI
Yesavage J.A. Geriatric Depression Scale. Psychopharmacol. Bull. 1988;24:709–711. PubMed
Mioshi E., Dawson K., Mitchell J., Arnold R., Hodges J.R. The Addenbrooke’s Cognitive Examination Revised (ACE-R): A brief cognitive test battery for dementia screening. Int. J. Geriatr. Psychiatry. 2006;21:1078–1085. doi: 10.1002/gps.1610. PubMed DOI
Tombaugh T.N., McIntyre N.J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc. 1992;40:922–935. doi: 10.1111/j.1532-5415.1992.tb01992.x. PubMed DOI
Hroudova J., Fisar Z. Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro. Endocrinol. Lett. 2010;31:336–342. PubMed
Singh N., Hroudova J., Fisar Z. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria. J. Mol. Neurosci. 2015;56:926–931. doi: 10.1007/s12031-015-0545-2. PubMed DOI
Luptak M., Fisar Z., Hroudova J. Effect of Novel Antipsychotics on Energy Metabolism—In Vitro Study in Pig Brain Mitochondria. Mol. Neurobiol. 2021;58:5548–5563. doi: 10.1007/s12035-021-02498-4. PubMed DOI
Sjovall F., Morota S., Persson J., Hansson M.J., Elmer E. Patients with sepsis exhibit increased mitochondrial respiratory capacity in peripheral blood immune cells. Crit. Care. 2013;17:R152. doi: 10.1186/cc12831. PubMed DOI PMC
Larsen S., Nielsen J., Hansen C.N., Nielsen L.B., Wibrand F., Stride N., Schroder H.D., Boushel R., Helge J.W., Dela F., et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 2012;590:3349–3360. doi: 10.1113/jphysiol.2012.230185. PubMed DOI PMC
Heun R., Kockler M., Ptok U. Depression in Alzheimer’s disease: Is there a temporal relationship between the onset of depression and the onset of dementia? Eur. Psychiatry. 2002;17:254–258. doi: 10.1016/S0924-9338(02)00678-8. PubMed DOI
Lyketsos C.G., Carrillo M.C., Ryan J.M., Khachaturian A.S., Trzepacz P., Amatniek J., Cedarbaum J., Brashear R., Miller D.S. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 2011;7:532–539. doi: 10.1016/j.jalz.2011.05.2410. PubMed DOI PMC
Zoll J., Sanchez H., N’Guessan B., Ribera F., Lampert E., Bigard X., Serrurier B., Fortin D., Geny B., Veksler V., et al. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J. Physiol. 2002;543:191–200. doi: 10.1113/jphysiol.2002.019661. PubMed DOI PMC
Picard M., McEwen B.S., Epel E.S., Sandi C. An energetic view of stress: Focus on mitochondria. Front. Neuroendocrinol. 2018;49:72–85. doi: 10.1016/j.yfrne.2018.01.001. PubMed DOI PMC
Hamrick M.W., Stranahan A.M. Metabolic regulation of aging and age-related disease. Ageing Res. Rev. 2020;64:101175. doi: 10.1016/j.arr.2020.101175. PubMed DOI PMC
Crane J.D., Devries M.C., Safdar A., Hamadeh M.J., Tarnopolsky M.A. The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. J. Gerontol. A Biol. Sci. Med. Sci. 2010;65:119–128. doi: 10.1093/gerona/glp179. PubMed DOI
Houmard J.A., Weidner M.L., Gavigan K.E., Tyndall G.L., Hickey M.S., Alshami A. Fiber type and citrate synthase activity in the human gastrocnemius and vastus lateralis with aging. J. Appl. Physiol. 1998;85:1337–1341. doi: 10.1152/jappl.1998.85.4.1337. PubMed DOI
Fisar Z., Hroudova J. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration. Folia Biol. 2016;62:15–25. PubMed
Battaglia S., Di Fazio C., Vicario C.M., Avenanti A. Neuropharmacological Modulation of N-methyl-D-aspartate, Noradrenaline and Endocannabinoid Receptors in Fear Extinction Learning: Synaptic Transmission and Plasticity. Int. J. Mol. Sci. 2023;24:5926. doi: 10.3390/ijms24065926. PubMed DOI PMC
CoQ10 and Mitochondrial Dysfunction in Alzheimer's Disease