Effect of Novel Antipsychotics on Energy Metabolism - In Vitro Study in Pig Brain Mitochondria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
34119
Grantová Agentura, Univerzita Karlova
Q27/LF1
Univerzita Karlova v Praze
PubMed
34365585
DOI
10.1007/s12035-021-02498-4
PII: 10.1007/s12035-021-02498-4
Knihovny.cz E-zdroje
- Klíčová slova
- ATP, Dopamine system stabilizers, Mitochondrial respiration, Monoamine oxidase, Oxidative phosphorylation, Reactive oxygen species,
- MeSH
- adenosintrifosfát biosyntéza MeSH
- antipsychotika klasifikace farmakologie MeSH
- chinolony farmakologie MeSH
- elektronový transportní řetězec účinky léků MeSH
- energetický metabolismus účinky léků MeSH
- inhibitory MAO farmakologie MeSH
- loxapin farmakologie MeSH
- lurasidon hydrochlorid farmakologie MeSH
- mitochondrie účinky léků metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- piperaziny farmakologie MeSH
- prasata MeSH
- reaktivní formy kyslíku metabolismus MeSH
- receptory neurotransmiterů účinky léků MeSH
- spotřeba kyslíku účinky léků MeSH
- thiofeny farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- antipsychotika MeSH
- brexpiprazole MeSH Prohlížeč
- cariprazine MeSH Prohlížeč
- chinolony MeSH
- elektronový transportní řetězec MeSH
- inhibitory MAO MeSH
- loxapin MeSH
- lurasidon hydrochlorid MeSH
- peroxid vodíku MeSH
- piperaziny MeSH
- reaktivní formy kyslíku MeSH
- receptory neurotransmiterů MeSH
- thiofeny MeSH
The identification and quantification of mitochondrial effects of novel antipsychotics (brexpiprazole, cariprazine, loxapine, and lurasidone) were studied in vitro in pig brain mitochondria. Selected parameters of mitochondrial metabolism, electron transport chain (ETC) complexes, citrate synthase (CS), malate dehydrogenase (MDH), monoamine oxidase (MAO), mitochondrial respiration, and total ATP and reactive oxygen species (ROS) production were evaluated and associated with possible adverse effects of drugs. All tested antipsychotics decreased the ETC activities (except for complex IV, which increased in activity after brexpiprazole and loxapine addition). Both complex I- and complex II-linked respiration were dose-dependently inhibited, and significant correlations were found between complex I-linked respiration and both complex I activity (positive correlation) and complex IV activity (negative correlation). All drugs significantly decreased mitochondrial ATP production at higher concentrations. Hydrogen peroxide production was significantly increased at 10 µM brexpiprazole and lurasidone and at 100 µM cariprazine and loxapine. All antipsychotics acted as partial inhibitors of MAO-A, brexpiprazole and loxapine partially inhibited MAO-B. Based on our results, novel antipsychotics probably lacked oxygen uncoupling properties. The mitochondrial effects of novel antipsychotics might contribute on their adverse effects, which are mostly related to decreased ATP production and increased ROS production, while MAO-A inhibition might contribute to their antidepressant effect, and brexpiprazole- and loxapine-induced MAO-B inhibition might likely promote neuroplasticity and neuroprotection. The assessment of drug-induced mitochondrial dysfunctions is important in development of new drugs as well as in the understanding of molecular mechanism of adverse or side drug effects.
Zobrazit více v PubMed
Jou SH, Chiu NY, Liu CS (2009) Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 32:370–379 PubMed
Hroudova J, Fisar Z (2011) Connectivity between mitochondrial functions and psychiatric disorders. Psychiatry Clin Neurosci 65:130–141. https://doi.org/10.1111/j.1440-1819.2010.02178.x PubMed DOI
Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R (2019) Mitochondria, metabolism, and redox mechanisms in psychiatric disorders. Antioxid Redox Signal 31:275–317. https://doi.org/10.1089/ars.2018.7606 PubMed DOI PMC
Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101. https://doi.org/10.1016/0166-2236(89)90165-3 PubMed DOI
Prince JA, Blennow K, Gottfries CG, Karlsson I, Oreland L (1999) Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacology 21:372–379. https://doi.org/10.1016/s0893-133x(99)00016-0 PubMed DOI
Maurer I, Zierz S, Möller H (2001) Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 48:125–136. https://doi.org/10.1016/s0920-9964(00)00075-x PubMed DOI
Cavelier L, Jazin EE, Eriksson I, Prince J, Båve U, Oreland L, Gyllensten U (1995) Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics 29:217–224. https://doi.org/10.1006/geno.1995.1234 PubMed DOI
Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, Chen G (2012) Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 13:293–307. https://doi.org/10.1038/nrn3229 PubMed DOI
Cikankova T, Fisar Z, Bakhouche Y, Luptak M, Hroudova J (2019) In vitro effects of antipsychotics on mitochondrial respiration. Naunyn Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/s00210-019-01665-8 PubMed DOI
Stahl SM (2013) Stahl’s essential psychopharmacology: neuroscientific basis and practical applications. Cambridge University Press, New York
Ward K, Citrome L (2019) Brexpiprazole for the maintenance treatment of adults with schizophrenia: an evidence-based review and place in therapy. Neuropsyc Dis Treat 15:247–257. https://doi.org/10.2147/ndt.S169369 DOI
Duric V, Banasr M, Franklin T, Lepack A, Adham N, Kiss B, Gyertyán I, Duman RS (2017) Cariprazine exhibits anxiolytic and dopamine D3 receptor-dependent antidepressant effects in the chronic stress model. Int J Neuropsychop 20:788–796. https://doi.org/10.1093/ijnp/pyx038 DOI
Corponi F, Fabbri C, Bitter I, Montgomery S, Vieta E, Kasper S, Pallanti S, Serretti A (2019) Novel antipsychotics specificity profile: a clinically oriented review of lurasidone, brexpiprazole, cariprazine and lumateperone. Eur Neuropsychopharmacol 29:971–985. https://doi.org/10.1016/j.euroneuro.2019.06.008 PubMed DOI
Keating GM (2013) Loxapine inhalation powder: a review of its use in the acute treatment of agitation in patients with bipolar disorder or schizophrenia. CNS Drugs 27:479–489. https://doi.org/10.1007/s40263-013-0075-9 PubMed DOI
Shrestha S, Agha RS, Khan Z, Shah K, Jain S (2021) Considering loxapine instead of clozapine: a case series and literature review. Cureus 13:e12919. https://doi.org/10.7759/cureus.12919 PubMed DOI PMC
Popovic D, Nuss P, Vieta E (2015) Revisiting loxapine: a systematic review. Ann Gen Psychiat 14:15. https://doi.org/10.1186/s12991-015-0053-3 DOI
Loebel A, Citrome L (2015) Lurasidone: a novel antipsychotic agent for the treatment of schizophrenia and bipolar depression. BJPsych Bull 39:237–241. https://doi.org/10.1192/pb.bp.114.048793 PubMed DOI PMC
Fišar Z, Hroudová J (2016) Pig brain mitochondria as a biological model for study of mitochondrial respiration. Folia Biol (Praha) 62:15–25
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 DOI
Srere PA (1969) [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods in Enzymology. Academic Press, Cambridge, pp 3–11
Barrie Kitto G (1969) [19] Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart: [EC 1.1.1.37 l-Malate: NAD oxidoreductase]. Methods in Enzymology. Academic Press, Cambridge, pp 106–116
Folbergrová J, Ješina P, Haugvicová R, Lisý V, Houštěk J (2010) Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem Int 56:394–403. https://doi.org/10.1016/j.neuint.2009.11.011 PubMed DOI
Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509. https://doi.org/10.1016/s0076-6879(96)64044-0 PubMed DOI
Manfredi G, Spinazzola A, Checcarelli N, Naini A (2001) Assay of mitochondrial ATP synthesis in animal cells. Methods in Cell Biology. Academic Press, Cambridge, pp 133–145
Tonkonogi M, Sahlin K (1997) Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol Scand 161:345–353. https://doi.org/10.1046/j.1365-201X.1997.00222.x PubMed DOI
Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80:780–787. https://doi.org/10.1046/j.0022-3042.2002.00744.x PubMed DOI
Egashira T, Takayama F, Yamanaka Y (1999) The inhibition of monoamine oxidase activity by various antidepressants: differences found in various mammalian species. Jpn J Pharmacol 81:115–121. https://doi.org/10.1016/S0021-5198(19)30817-0 PubMed DOI
Wiegand G, Remington SJ (1986) Citrate synthase: structure, control, and mechanism. Annu Rev Biophys Bio 15:97–117. https://doi.org/10.1146/annurev.bb.15.060186.000525 DOI
Minárik P, Tomásková N, Kollárová M, Antalík M (2002) Malate dehydrogenases—structure and function. Gen Physiol Biophys 21:257–265 PubMed
Hong R, Li X (2019) Discovery of monoamine oxidase inhibitors by medicinal chemistry approaches. Medchemcomm 10:10–25. https://doi.org/10.1039/c8md00446c PubMed DOI
Wong DF, Raoufinia A, Bricmont P, Brašić JR, McQuade RD, Forbes RA, Kikuchi T, Kuwabara H (2020) An open-label, positron emission tomography study of the striatal D(2)/D(3) receptor occupancy and pharmacokinetics of single-dose oral brexpiprazole in healthy participants. Eur J Clin Pharmacol. https://doi.org/10.1007/s00228-020-03021-9 PubMed DOI PMC
Girgis RR, Slifstein M, D’Souza D, Lee Y, Periclou A, Ghahramani P, Laszlovszky I, Durgam S, Adham N, Nabulsi N, Huang Y, Carson RE, Kiss B, Kapás M, Abi-Dargham A, Rakhit A (2016) Preferential binding to dopamine D3 over D2 receptors by cariprazine in patients with schizophrenia using PET with the D3/D2 receptor ligand [(11)C]-(+)-PHNO. Psychopharmacology 233:3503–3512. https://doi.org/10.1007/s00213-016-4382-y PubMed DOI PMC
Cassella JV, Spyker DA, Yeung PP (2015) A randomized, placebo-controlled repeat-dose thorough QT study of inhaled loxapine in healthy volunteers. Int J Clin Pharm Th. https://doi.org/10.5414/cp202457 DOI
Selim S, Riesenberg R, Cassella J, Kunta J, Hellriegel E, Smith MA, Vinks AA, Rabinovich-Guilatt L (2017) Pharmacokinetics and safety of single-dose inhaled loxapine in children and adolescents. J Clin Pharmacol 57:1244–1257. https://doi.org/10.1002/jcph.932 PubMed DOI
Preskorn S, Ereshefsky L, Chiu YY, Poola N, Loebel A (2013) Effect of food on the pharmacokinetics of lurasidone: results of two randomized, open-label, crossover studies. Hum Psychopharm Clin 28:495–505. https://doi.org/10.1002/hup.2338 DOI
Hu C, Wang Y, Song R, Yu C, Luo X, Jia J (2017) Single- and multiple-dose pharmacokinetics, safety and tolerability of lurasidone in healthy Chinese subjects. Clin Drug Invest 37:861–871. https://doi.org/10.1007/s40261-017-0546-8 DOI
Gyertyán I, Kiss B, Sághy K, Laszy J, Szabó G, Szabados T, Gémesi LI, Pásztor G, Zájer-Balázs M, Kapás M, Csongor E, Domány G, Tihanyi K, Szombathelyi Z (2011) Cariprazine (RGH-188), a potent D3/D2 dopamine receptor partial agonist, binds to dopamine D3 receptors in vivo and shows antipsychotic-like and procognitive effects in rodents. Neurochem Int 59:925–935. https://doi.org/10.1016/j.neuint.2011.07.002 PubMed DOI
Fisar Z, Krulik R, Fuksová K, Sikora J (1996) Imipramine distribution among red blood cells, plasma and brain tissue. Gen Physiol Biophys 15:51–64 PubMed
Modica-Napolitano JS, Lagace CJ, Brennan WA, Aprille JR (2003) Differential effects of typical and atypical neuroleptics on mitochondrial function in vitro. Arch Pharm Res 26:951–959 DOI
Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324. https://doi.org/10.1016/j.ijdevneu.2010.08.007 PubMed DOI
Gubert C, Stertz L, Pfaffenseller B, Panizzutti BS, Rezin GT, Massuda R, Streck EL, Gama CS, Kapczinski F, Kunz M (2013) Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J Psychiatr Res 47:1396–1402. https://doi.org/10.1016/j.jpsychires.2013.06.018 PubMed DOI
Rosenfeld M, Brenner-Lavie H, Ari SG, Kavushansky A, Ben-Shachar D (2011) Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry 69:980–988. https://doi.org/10.1016/j.biopsych.2011.01.010 PubMed DOI
Rollins BL, Morgan L, Hjelm BE, Sequeira A, Schatzberg AF, Barchas JD, Lee FS, Myers RM, Watson SJ, Akil H, Potkin SG, Bunney WE, Vawter MP (2018) Mitochondrial complex I deficiency in schizophrenia and bipolar disorder and medication influence. Mol Neuropsychiatry 3:157–169. https://doi.org/10.1159/000484348 PubMed DOI
Huhn M, Nikolakopoulou A, Schneider-Thoma J, Krause M, Samara M, Peter N, Arndt T, Bäckers L, Rothe P, Cipriani A, Davis J, Salanti G, Leucht S (2019) Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet 394:939–951. https://doi.org/10.1016/s0140-6736(19)31135-3 PubMed DOI PMC
Iverson TM (2013) Catalytic mechanisms of complex II enzymes: a structural perspective. Biochim Biophys Acta 1827:648–657. https://doi.org/10.1016/j.bbabio.2012.09.008 PubMed DOI
Grimm S (2013) Respiratory chain complex II as general sensor for apoptosis. Biochim Biophys Acta 1827:565–572. https://doi.org/10.1016/j.bbabio.2012.09.009 PubMed DOI
Cikankova T, Sigitova E, Zverova M, Fisar Z, Raboch J, Hroudova J (2017) Mitochondrial dysfunctions in bipolar disorder: effect of the disease and pharmacotherapy. CNS Neurol Disord Drug Targets 16:176–186. https://doi.org/10.2174/1871527315666161213110518 PubMed DOI
Salin K, Auer SK, Rey B, Selman C, Metcalfe NB (2015) Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proceedings of the Royal Society B: Biological Sciences 282:20151028. https://doi.org/10.1098/rspb.2015.1028 PubMed DOI PMC
Salin K, Villasevil EM, Anderson GJ, Selman C, Chinopoulos C, Metcalfe NB (2018) The RCR and ATP/O indices can give contradictory messages about mitochondrial efficiency. Integr Comp Biol 58:486–494. https://doi.org/10.1093/icb/icy085 PubMed DOI
Gnaiger E (2020) Mitochondrial pathways and respiratory control: an introduction to OXPHOS analysis. 5th ed
Chen R, Park HA, Mnatsakanyan N, Niu Y, Licznerski P, Wu J, Miranda P, Graham M, Tang J, Boon AJW, Cossu G, Mandemakers W, Bonifati V, Smith PJS, Alavian KN, Jonas EA (2019) Parkinson’s disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth. Cell Death Dis 10:469. https://doi.org/10.1038/s41419-019-1679-x PubMed DOI PMC
Neupane P, Bhuju S, Thapa N, Bhattarai HK (2019) ATP synthase: structure, function and inhibition. Biomol Concepts 10:1–10. https://doi.org/10.1515/bmc-2019-0001 PubMed DOI
Filiou MD, Sandi C (2019) Anxiety and brain mitochondria: a bidirectional crosstalk. Trends Neurosci. https://doi.org/10.1016/j.tins.2019.07.002 PubMed DOI
Vuorinen K, Ylitalo K, Peuhkurinen K, Raatikainen P, Ala-Rämi A, Hassinen IE (1995) Mechanisms of ischemic preconditioning in rat myocardium. Roles of adenosine, cellular energy state, and mitochondrial F1F0-ATPase. Circulation 91:2810–2818. https://doi.org/10.1161/01.cir.91.11.2810 PubMed DOI
Dubouchaud H, Walter L, Rigoulet M, Batandier C (2018) Mitochondrial NADH redox potential impacts the reactive oxygen species production of reverse electron transfer through complex I. J Bioenerg Biomembr 50:367–377. https://doi.org/10.1007/s10863-018-9767-7 PubMed DOI
Speijer D (2019) Can all major ROS forming sites of the respiratory chain be activated by high FADH2/NADH ratios?: ancient evolutionary constraints determine mitochondrial ROS formation. BioEssays 41:e1800180. https://doi.org/10.1002/bies.201800180 PubMed DOI
Sanson A, Riva MA (2020) Anti-stress properties of atypical antipsychotics. Pharmaceuticals (Basel). https://doi.org/10.3390/ph13100322
Cadenas S (2018) Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg 1859:940–950. https://doi.org/10.1016/j.bbabio.2018.05.019 PubMed DOI
Fasipe OJ (2019) The emergence of new antidepressants for clinical use: agomelatine paradox versus other novel agents. IBRO Rep 6:95–110. https://doi.org/10.1016/j.ibror.2019.01.001 PubMed DOI PMC
Bauer M, Hefting N, Lindsten A, Josiassen MK, Hobart M (2019) A randomised, placebo-controlled 24-week study evaluating adjunctive brexpiprazole in patients with major depressive disorder. Acta Neuropsychiatr 31:27–35. https://doi.org/10.1017/neu.2018.23 PubMed DOI
Diefenderfer LA, Iuppa C (2017) Brexpiprazole: a review of a new treatment option for schizophrenia and major depressive disorder. Ment Health Clin 7:207–212. https://doi.org/10.9740/mhc.2017.09.207 PubMed DOI
Özdemir Z, Alagöz MA, Bahçecioğlu ÖF, Gök S (2021) Monoamineoxidase-B (MAO-B) inhibitors in thetreatment of Alzheimer’s and Parkinson’s disease. Curr Med Chem. https://doi.org/10.2174/0929867328666210203204710 PubMed DOI
Chen AT, Nasrallah HA (2019) Neuroprotective effects of the second generation antipsychotics. Schizophr Res 208:1–7. https://doi.org/10.1016/j.schres.2019.04.009 PubMed DOI
Fisar Z, Hansikova H, Krizova J, Jirak R, Kitzlerova E, Zverova M, Hroudova J, Wenchich L, Zeman J, Raboch J (2019) Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion. https://doi.org/10.1016/j.mito.2019.07.013 PubMed DOI
Solmi M, Murru A, Pacchiarotti I, Undurraga J, Veronese N, Fornaro M, Stubbs B, Monaco F, Vieta E, Seeman MV, Correll CU, Carvalho AF (2017) Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag 13:757–777. https://doi.org/10.2147/tcrm.S117321 PubMed DOI PMC
Urbanová M, Mráz M, Ďurovcová V, Trachta P, Kloučková J, Kaválková P, Haluzíková D, Lacinová Z, Hansíková H, Wenchich L, Kršek M, Haluzík M (2017) The effect of very-low-calorie diet on mitochondrial dysfunction in subcutaneous adipose tissue and peripheral monocytes of obese subjects with type 2 diabetes mellitus. Physiol Res 66:811–822. https://doi.org/10.33549/physiolres.933469
Scaini G, Quevedo J, Velligan D, Roberts DL, Raventos H, Walss-Bass C (2018) Second generation antipsychotic-induced mitochondrial alterations: implications for increased risk of metabolic syndrome in patients with schizophrenia. Eur Neuropsychopharmacol 28:369–380. https://doi.org/10.1016/j.euroneuro.2018.01.004 PubMed DOI
Kearns B, Cooper K, Cantrell A, Thomas C (2021) Schizophrenia treatment with second-generation antipsychotics: a multi-country comparison of the costs of cardiovascular and metabolic adverse events and weight gain. Neuropsych Dis Treat 17:125–137. https://doi.org/10.2147/ndt.S282856 DOI
Keks N, Hope J, Schwartz D, McLennan H, Copolov D, Meadows G (2020) Comparative tolerability of dopamine D2/3 receptor partial agonists for schizophrenia. CNS Drugs 34:473–507. https://doi.org/10.1007/s40263-020-00718-4 PubMed DOI
Barton BB, Segger F, Fischer K, Obermeier M, Musil R (2020) Update on weight-gain caused by antipsychotics: a systematic review and meta-analysis. Expert Opin Drug Saf 19:295–314. https://doi.org/10.1080/14740338.2020.1713091 PubMed DOI
Pillinger T, McCutcheon RA, Vano L, Mizuno Y, Arumuham A, Hindley G, Beck K, Natesan S, Efthimiou O, Cipriani A, Howes OD (2020) Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. Lancet Psychiat 7:64–77. https://doi.org/10.1016/s2215-0366(19)30416-x DOI
Elmorsy E, Al-Ghafari A, Helaly ANM, Hisab AS, Oehrle B, Smith PA (2017) Editor’s highlight: therapeutic concentrations of antidepressants inhibit pancreatic beta-cell function via mitochondrial complex inhibition. Toxicol Sci 158:286–301. https://doi.org/10.1093/toxsci/kfx090 PubMed DOI
Contreras-Shannon V, Heart DL, Paredes RM, Navaira E, Catano G, Maffi SK, Walss-Bass C (2013) Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells. PLoS ONE 8:e59012. https://doi.org/10.1371/journal.pone.0059012 PubMed DOI PMC
Age-Dependent Alterations in Platelet Mitochondrial Respiration
Agomelatine, Ketamine and Vortioxetine Attenuate Energy Cell Metabolism-In Vitro Study