Agomelatine, Ketamine and Vortioxetine Attenuate Energy Cell Metabolism-In Vitro Study

. 2022 Nov 10 ; 23 (22) : . [epub] 20221110

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36430306

Grantová podpora
34119 Charles University
Cooperatio Charles University
SVV 260 523 Charles University
DRO VFN64165 Ministry of Health

This determination of the mitochondrial effect of pharmacologically different antidepressants (agomelatine, ketamine and vortioxetine) was evaluated and quantified in vitro in pig brain-isolated mitochondria. We measured the activity of mitochondrial complexes, citrate synthase, malate dehydrogenase and monoamine oxidase, and the mitochondrial respiratory rate. Total hydrogen peroxide production and ATP production were assayed. The most potent inhibitor of all mitochondrial complexes and complex I-linked respiration was vortioxetine. Agomelatine and ketamine inhibited only complex IV activity. None of the drugs affected complex II-linked respiration, citrate synthase or malate dehydrogenase activity. Hydrogen peroxide production was mildly increased by agomelatine, which might contribute to increased oxidative damage and adverse effects at high drug concentrations. Vortioxetine significantly reduced hydrogen peroxide concentrations, which might suggest antioxidant mechanism activation. All tested antidepressants were partial MAO-A inhibitors, which might contribute to their antidepressant effect. We observed vortioxetine-induced MAO-B inhibition, which might be linked to decreased hydrogen peroxide formation and contribute to its procognitive and neuroprotective effects. Mitochondrial dysfunction could be linked to the adverse effects of vortioxetine, as vortioxetine is the most potent inhibitor of mitochondrial complexes and complex I-linked respiration. Clarifying the molecular interaction between drugs and mitochondria is important to fully understand their mechanism of action and the connection between their mechanisms and their therapeutic and/or adverse effects.

Zobrazit více v PubMed

Bansal Y., Kuhad A. Mitochondrial Dysfunction in Depression. Curr. Neuropharmacol. 2016;14:610–618. doi: 10.2174/1570159X14666160229114755. PubMed DOI PMC

Czarny P., Wigner P., Galecki P., Sliwinski T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2018;80:309–321. doi: 10.1016/j.pnpbp.2017.06.036. PubMed DOI

Gardner A., Boles R.G. Beyond the serotonin hypothesis: Mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2011;35:730–743. doi: 10.1016/j.pnpbp.2010.07.030. PubMed DOI

Cai S., Huang S., Hao W. New hypothesis and treatment targets of depression: An integrated view of key findings. Neurosci. Bull. 2015;31:61–74. doi: 10.1007/s12264-014-1486-4. PubMed DOI PMC

Karrouri R., Hammani Z., Benjelloun R., Otheman Y. Major depressive disorder: Validated treatments and future challenges. World J. Clin. Cases. 2021;9:9350–9367. doi: 10.12998/wjcc.v9.i31.9350. PubMed DOI PMC

Rubinow D.R. Treatment strategies after SSRI failure—Good news and bad news. N. Engl. J. Med. 2006;354:1305–1307. doi: 10.1056/NEJMe068029. PubMed DOI

Ferguson J.M. SSRI Antidepressant Medications: Adverse Effects and Tolerability. Prim. Care Companion J. Clin. Psychiatry. 2001;3:22–27. doi: 10.4088/PCC.v03n0105. PubMed DOI PMC

Trindade E., Menon D., Topfer L.A., Coloma C. Adverse effects associated with selective serotonin reuptake inhibitors and tricyclic antidepressants: A meta-analysis. CMAJ. 1998;159:1245–1252. PubMed PMC

Norman T.R., Olver J.S. Agomelatine for depression: Expanding the horizons? Expert Opin. Pharmacother. 2019;20:647–656. doi: 10.1080/14656566.2019.1574747. PubMed DOI

Bielecka-Wajdman A.M., Ludyga T., Machnik G., Gołyszny M., Obuchowicz E. Tricyclic Antidepressants Modulate Stressed Mitochondria in Glioblastoma Multiforme Cells. Cancer Control. 2018;25:1073274818798594. doi: 10.1177/1073274818798594. PubMed DOI PMC

Cecon E., Oishi A., Jockers R. Melatonin receptors: Molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 2018;175:3263–3280. doi: 10.1111/bph.13950. PubMed DOI PMC

Vines L., Sotelo D., Johnson A., Dennis E., Manza P., Volkow N.D., Wang G.J. Ketamine use disorder: Preclinical, clinical, and neuroimaging evidence to support proposed mechanisms of actions. Intell. Med. 2022;2:61–68. doi: 10.1016/j.imed.2022.03.001. PubMed DOI PMC

Weckmann K., Deery M.J., Howard J.A., Feret R., Asara J.M., Dethloff F., Filiou M.D., Iannace J., Labermaier C., Maccarrone G., et al. Ketamine’s antidepressant effect is mediated by energy metabolism and antioxidant defense system. Sci. Rep. 2017;7:15788. doi: 10.1038/s41598-017-16183-x. PubMed DOI PMC

Molero P., Ramos-Quiroga J.A., Martin-Santos R., Calvo-Sánchez E., Gutiérrez-Rojas L., Meana J.J. Antidepressant Efficacy and Tolerability of Ketamine and Esketamine: A Critical Review. CNS Drugs. 2018;32:411–420. doi: 10.1007/s40263-018-0519-3. PubMed DOI

Di Vincenzo J.D., Siegel A., Lipsitz O., Ho R., Teopiz K.M., Ng J., Lui L.M.W., Lin K., Cao B., Rodrigues N.B., et al. The effectiveness, safety and tolerability of ketamine for depression in adolescents and older adults: A systematic review. J. Psychiatr. Res. 2021;137:232–241. doi: 10.1016/j.jpsychires.2021.02.058. PubMed DOI

Belujon P., Grace A.A. Dopamine System Dysregulation in Major Depressive Disorders. Int. J. Neuropsychopharmacol. 2017;20:1036–1046. doi: 10.1093/ijnp/pyx056. PubMed DOI PMC

Corriger A., Pickering G. Ketamine and depression: A narrative review. Drug Des. Dev. Ther. 2019;13:3051–3067. doi: 10.2147/DDDT.S221437. PubMed DOI PMC

Morava E., Gardeitchik T., Kozicz T., de Boer L., Koene S., de Vries M.C., McFarland R., Roobol T., Rodenburg R.J., Verhaak C.M. Depressive behaviour in children diagnosed with a mitochondrial disorder. Mitochondrion. 2010;10:528–533. doi: 10.1016/j.mito.2010.05.011. PubMed DOI

Gardner A., Johansson A., Wibom R., Nennesmo I., von Döbeln U., Hagenfeldt L., Hällström T. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J. Affect. Disord. 2003;76:55–68. doi: 10.1016/S0165-0327(02)00067-8. PubMed DOI

Fernström J., Mellon S.H., McGill M.A., Picard M., Reus V.I., Hough C.M., Lin J., Epel E.S., Wolkowitz O.M., Lindqvist D. Blood-based mitochondrial respiratory chain function in major depression. Transl. Psychiatry. 2021;11:593. doi: 10.1038/s41398-021-01723-x. PubMed DOI PMC

Holper L., Ben-Shachar D., Mann J.J. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology. 2019;44:837–849. doi: 10.1038/s41386-018-0090-0. PubMed DOI PMC

Karabatsiakis A., Böck C., Salinas-Manrique J., Kolassa S., Calzia E., Dietrich D.E., Kolassa I.T. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl. Psychiatry. 2014;4:e397. doi: 10.1038/tp.2014.44. PubMed DOI PMC

Hroudová J., Fišar Z., Kitzlerová E., Zvěřová M., Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13:795–800. doi: 10.1016/j.mito.2013.05.005. PubMed DOI

Rappeneau V., Wilmes L., Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol. Cell. Neurosci. 2020;109:103555. doi: 10.1016/j.mcn.2020.103555. PubMed DOI

Czarny P., Wigner P., Strycharz J., Swiderska E., Synowiec E., Szatkowska M., Sliwinska A., Talarowska M., Szemraj J., Su K.P., et al. Mitochondrial DNA copy number, damage, repair and degradation in depressive disorder. World J. Biol. Psychiatry. 2020;21:91–101. doi: 10.1080/15622975.2019.1588993. PubMed DOI

Scatena R., Bottoni P., Botta G., Martorana G.E., Giardina B. The role of mitochondria in pharmacotoxicology: A reevaluation of an old, newly emerging topic. Am. J. Physiol. Cell. Physiol. 2007;293:C12–C21. doi: 10.1152/ajpcell.00314.2006. PubMed DOI

Dykens J.A., Will Y. The significance of mitochondrial toxicity testing in drug development. Drug Discov. Today. 2007;12:777–785. doi: 10.1016/j.drudis.2007.07.013. PubMed DOI

Hynes J., Marroquin L., Ogurtsov V., Christiansen K., Stevens G., Papkovsky D., Will Y. Investigation of Drug-Induced Mitochondrial Toxicity Using Fluorescence-Based Oxygen-Sensitive Probes. Toxicol. Sci. Off. J. Soc. Toxicol. 2006;92:186–200. doi: 10.1093/toxsci/kfj208. PubMed DOI

Begriche K., Massart J., Robin M.-A., Borgne-Sanchez A., Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: Mechanistic diversity and deleterious consequences for the liver. J. Hepatol. 2011;54:773–794. doi: 10.1016/j.jhep.2010.11.006. PubMed DOI

Hroudová J., Fišar Z. In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol. Lett. 2012;213:345–352. doi: 10.1016/j.toxlet.2012.07.017. PubMed DOI

Borhannejad F., Shariati B., Naderi S., Shalbafan M., Mortezaei A., Sahebolzamani E., Saeb A., Hosein Mortazavi S., Kamalzadeh L., Aqamolaei A., et al. Comparison of vortioxetine and sertraline for treatment of major depressive disorder in elderly patients: A double-blind randomized trial. J. Clin. Pharm. Ther. 2020;45:804–811. doi: 10.1111/jcpt.13177. PubMed DOI

Lee S.H., Jeon S.W., Shin C., Pae C.U., Patkar A.A., Masand P.S., An H., Han C. Acute Efficacy and Safety of Escitalopram Versus Desvenlafaxine and Vortioxetine in the Treatment of Depression With Cognitive Complaint: A Rater-Blinded Randomized Comparative Study. Psychiatry Investig. 2022;19:268–280. doi: 10.30773/pi.2021.0368. PubMed DOI PMC

He H., Wang W., Lyu J., Zheng J., Guo L., An X., Fan Y., Ma X. Efficacy and tolerability of different doses of three new antidepressants for treating major depressive disorder: A PRISMA-compliant meta-analysis. J. Psychiatr. Res. 2018;96:247–259. doi: 10.1016/j.jpsychires.2017.10.018. PubMed DOI

Gonda X., Sharma S.R., Tarazi F.I. Vortioxetine: A novel antidepressant for the treatment of major depressive disorder. Expert Opin. Drug Discov. 2019;14:81–89. doi: 10.1080/17460441.2019.1546691. PubMed DOI

Kelliny M., Croarkin P.E., Moore K.M., Bobo W.V. Profile of vortioxetine in the treatment of major depressive disorder: An overview of the primary and secondary literature. Ther. Clin. Risk Manag. 2015;11:1193–1212. doi: 10.2147/tcrm.s55313. PubMed DOI PMC

Hroudova J., Fisar Z. Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinol. Lett. 2010;31:336–342. PubMed

Holper L., Ben-Shachar D., Mann J.J. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur. Neuropsychopharmacol. 2019;29:986–1002. doi: 10.1016/j.euroneuro.2019.06.010. PubMed DOI

Emmerzaal T.L., Jacobs L., Geenen B., Verweij V., Morava E., Rodenburg R.J., Kozicz T. Chronic fluoxetine or ketamine treatment differentially affects brain energy homeostasis which is not exacerbated in mice with trait suboptimal mitochondrial function. Eur. J. Neurosci. 2021;53:2986–3001. doi: 10.1111/ejn.14901. PubMed DOI

Chang Y., Chen T.L., Sheu J.R., Chen R.M. Suppressive effects of ketamine on macrophage functions. Toxicol. Appl. Pharmacol. 2005;204:27–35. doi: 10.1016/j.taap.2004.08.011. PubMed DOI

Matrov D., Imbeault S., Kanarik M., Shkolnaya M., Schikorra P., Miljan E., Shimmo R., Harro J. Comprehensive mapping of cytochrome c oxidase activity in the rat brain after sub-chronic ketamine administration. Acta Histochem. 2020;122:151531. doi: 10.1016/j.acthis.2020.151531. PubMed DOI

de Mello A.H., Souza Lda R., Cereja A.C., Schraiber Rde B., Florentino D., Martins M.M., Petronilho F., Quevedo J., Rezin G.T. Effect of subchronic administration of agomelatine on brain energy metabolism and oxidative stress parameters in rats. Psychiatry Clin. Neurosci. 2016;70:159–166. doi: 10.1111/pcn.12371. PubMed DOI

Kumar H., Sharma B.M., Sharma B. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder. Neurochem. Int. 2015;91:34–45. doi: 10.1016/j.neuint.2015.10.007. PubMed DOI

Chanmanee T., Wongpun J., Tocharus C., Govitrapong P., Tocharus J. The effects of agomelatine on endoplasmic reticulum stress related to mitochondrial dysfunction in hippocampus of aging rat model. Chem. Biol. Interact. 2022;351:109703. doi: 10.1016/j.cbi.2021.109703. PubMed DOI

Ito H., Uchida T., Makita K. Ketamine causes mitochondrial dysfunction in human induced pluripotent stem cell-derived neurons. PLoS ONE. 2015;10:e0128445. doi: 10.1371/journal.pone.0128445. PubMed DOI PMC

Akpinar A., Uğuz A.C., Nazıroğlu M. Agomelatine and duloxetine synergistically modulates apoptotic pathway by inhibiting oxidative stress triggered intracellular calcium entry in neuronal PC12 cells: Role of TRPM2 and voltage-gated calcium channels. J. Membr. Biol. 2014;247:451–459. doi: 10.1007/s00232-014-9652-1. PubMed DOI

Abdel-Razaq W., Kendall D.A., Bates T.E. The effects of antidepressants on mitochondrial function in a model cell system and isolated mitochondria. Neurochem. Res. 2011;36:327–338. doi: 10.1007/s11064-010-0331-z. PubMed DOI

Stahl S.M., Felker A. Monoamine oxidase inhibitors: A modern guide to an unrequited class of antidepressants. CNS Spectr. 2008;13:855–870. doi: 10.1017/S1092852900016965. PubMed DOI

Thomas T. Monoamine oxidase-B inhibitors in the treatment of Alzheimer's disease. Neurobiol. Aging. 2000;21:343–348. doi: 10.1016/S0197-4580(00)00100-7. PubMed DOI

Frampton J.E. Vortioxetine: A Review in Cognitive Dysfunction in Depression. Drugs. 2016;76:1675–1682. doi: 10.1007/s40265-016-0655-3. PubMed DOI

Pei Q., Wang Y., Hu Z.Y., Liu S.K., Tan H.Y., Guo C.X., Zhang R.R., Xiang Y.X., Huang J., Huang L., et al. Evaluation of the highly variable agomelatine pharmacokinetics in Chinese healthy subjects to support bioequivalence study. PLoS ONE. 2014;9:e109300. doi: 10.1371/journal.pone.0109300. PubMed DOI PMC

Zanos P., Moaddel R., Morris P.J., Riggs L.M., Highland J.N., Georgiou P., Pereira E.F.R., Albuquerque E.X., Thomas C.J., Zarate C.A., Jr., et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol. Rev. 2018;70:621–660. doi: 10.1124/pr.117.015198. PubMed DOI PMC

Chen G., Højer A.M., Areberg J., Nomikos G. Vortioxetine: Clinical Pharmacokinetics and Drug Interactions. Clin. Pharmacokinet. 2018;57:673–686. doi: 10.1007/s40262-017-0612-7. PubMed DOI PMC

Zorumski C.F., Izumi Y., Mennerick S. Ketamine: NMDA Receptors and Beyond. J. Neurosci. 2016;36:11158–11164. doi: 10.1523/JNEUROSCI.1547-16.2016. PubMed DOI PMC

Millan M.J. Agomelatine for the treatment of generalized anxiety disorder: Focus on its distinctive mechanism of action. Ther. Adv. Psychopharmacol. 2022;12:20451253221105128. doi: 10.1177/20451253221105128. PubMed DOI PMC

Katona C.L., Katona C.P. New generation multi-modal antidepressants: Focus on vortioxetine for major depressive disorder. Neuropsychiatr. Dis. Treat. 2014;10:349–354. doi: 10.2147/NDT.S39544. PubMed DOI PMC

Horobin R.W., Trapp S., Weissig V. Mitochondriotropics: A review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J. Control. Release. 2007;121:125–136. doi: 10.1016/j.jconrel.2007.05.040. PubMed DOI

Fišar Z., Hroudová J. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration. Folia Biol. 2016;62:15–25. PubMed

Adzic M., Brkic Z., Bulajic S., Mitic M., Radojcic M.B. Antidepressant Action on Mitochondrial Dysfunction in Psychiatric Disorders. Drug Dev. Res. 2016;77:400–406. doi: 10.1002/ddr.21332. PubMed DOI

Ľupták M., Fišar Z., Hroudová J. Effect of Novel Antipsychotics on Energy Metabolism—In Vitro Study in Pig Brain Mitochondria. Mol. Neurobiol. 2021;58:5548–5563. doi: 10.1007/s12035-021-02498-4. PubMed DOI

Emmerzaal T.L., Nijkamp G., Veldic M., Rahman S., Andreazza A.C., Morava E., Rodenburg R.J., Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci. Biobehav. Rev. 2021;127:555–571. doi: 10.1016/j.neubiorev.2021.05.001. PubMed DOI

Lanza I.R., Nair K.S. Functional assessment of isolated mitochondria in vitro. Methods Enzymol. 2009;457:349–372. doi: 10.1016/s0076-6879(09)05020-4. PubMed DOI PMC

Schneider A., Bouzaidi-Tiali N., Chanez A.L., Bulliard L. ATP production in isolated mitochondria of procyclic Trypanosoma brucei. Methods Mol. Biol. 2007;372:379–387. doi: 10.1007/978-1-59745-365-3_27. PubMed DOI

Tonkonogi M., Sahlin K. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: Effect of training status. Acta Physiol. Scand. 1997;161:345–353. doi: 10.1046/j.1365-201X.1997.00222.x. PubMed DOI

Drew B., Leeuwenburgh C. Method for measuring ATP production in isolated mitochondria: ATP production in brain and liver mitochondria of Fischer-344 rats with age and caloric restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;285:R1259–R1267. doi: 10.1152/ajpregu.00264.2003. PubMed DOI

Fisar Z. Inhibition of monoamine oxidase activity by cannabinoids. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2010;381:563–572. doi: 10.1007/s00210-010-0517-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...