Agomelatine, Ketamine and Vortioxetine Attenuate Energy Cell Metabolism-In Vitro Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
34119
Charles University
Cooperatio
Charles University
SVV 260 523
Charles University
DRO VFN64165
Ministry of Health
PubMed
36430306
PubMed Central
PMC9697131
DOI
10.3390/ijms232213824
PII: ijms232213824
Knihovny.cz E-zdroje
- Klíčová slova
- ATP, agomelatine, antidepressants, ketamine, mitochondrial respiration, monoamine oxidase, oxidative phosphorylation, reactive oxygen species, vortioxetine,
- MeSH
- antidepresiva farmakologie MeSH
- citrátsynthasa MeSH
- ketamin * farmakologie MeSH
- malátdehydrogenasa MeSH
- monoaminoxidasa MeSH
- peroxid vodíku MeSH
- prasata MeSH
- respirační komplex I MeSH
- vortioxetin farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- agomelatine MeSH Prohlížeč
- antidepresiva MeSH
- citrátsynthasa MeSH
- ketamin * MeSH
- malátdehydrogenasa MeSH
- monoaminoxidasa MeSH
- peroxid vodíku MeSH
- respirační komplex I MeSH
- vortioxetin MeSH
This determination of the mitochondrial effect of pharmacologically different antidepressants (agomelatine, ketamine and vortioxetine) was evaluated and quantified in vitro in pig brain-isolated mitochondria. We measured the activity of mitochondrial complexes, citrate synthase, malate dehydrogenase and monoamine oxidase, and the mitochondrial respiratory rate. Total hydrogen peroxide production and ATP production were assayed. The most potent inhibitor of all mitochondrial complexes and complex I-linked respiration was vortioxetine. Agomelatine and ketamine inhibited only complex IV activity. None of the drugs affected complex II-linked respiration, citrate synthase or malate dehydrogenase activity. Hydrogen peroxide production was mildly increased by agomelatine, which might contribute to increased oxidative damage and adverse effects at high drug concentrations. Vortioxetine significantly reduced hydrogen peroxide concentrations, which might suggest antioxidant mechanism activation. All tested antidepressants were partial MAO-A inhibitors, which might contribute to their antidepressant effect. We observed vortioxetine-induced MAO-B inhibition, which might be linked to decreased hydrogen peroxide formation and contribute to its procognitive and neuroprotective effects. Mitochondrial dysfunction could be linked to the adverse effects of vortioxetine, as vortioxetine is the most potent inhibitor of mitochondrial complexes and complex I-linked respiration. Clarifying the molecular interaction between drugs and mitochondria is important to fully understand their mechanism of action and the connection between their mechanisms and their therapeutic and/or adverse effects.
Zobrazit více v PubMed
Bansal Y., Kuhad A. Mitochondrial Dysfunction in Depression. Curr. Neuropharmacol. 2016;14:610–618. doi: 10.2174/1570159X14666160229114755. PubMed DOI PMC
Czarny P., Wigner P., Galecki P., Sliwinski T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2018;80:309–321. doi: 10.1016/j.pnpbp.2017.06.036. PubMed DOI
Gardner A., Boles R.G. Beyond the serotonin hypothesis: Mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2011;35:730–743. doi: 10.1016/j.pnpbp.2010.07.030. PubMed DOI
Cai S., Huang S., Hao W. New hypothesis and treatment targets of depression: An integrated view of key findings. Neurosci. Bull. 2015;31:61–74. doi: 10.1007/s12264-014-1486-4. PubMed DOI PMC
Karrouri R., Hammani Z., Benjelloun R., Otheman Y. Major depressive disorder: Validated treatments and future challenges. World J. Clin. Cases. 2021;9:9350–9367. doi: 10.12998/wjcc.v9.i31.9350. PubMed DOI PMC
Rubinow D.R. Treatment strategies after SSRI failure—Good news and bad news. N. Engl. J. Med. 2006;354:1305–1307. doi: 10.1056/NEJMe068029. PubMed DOI
Ferguson J.M. SSRI Antidepressant Medications: Adverse Effects and Tolerability. Prim. Care Companion J. Clin. Psychiatry. 2001;3:22–27. doi: 10.4088/PCC.v03n0105. PubMed DOI PMC
Trindade E., Menon D., Topfer L.A., Coloma C. Adverse effects associated with selective serotonin reuptake inhibitors and tricyclic antidepressants: A meta-analysis. CMAJ. 1998;159:1245–1252. PubMed PMC
Norman T.R., Olver J.S. Agomelatine for depression: Expanding the horizons? Expert Opin. Pharmacother. 2019;20:647–656. doi: 10.1080/14656566.2019.1574747. PubMed DOI
Bielecka-Wajdman A.M., Ludyga T., Machnik G., Gołyszny M., Obuchowicz E. Tricyclic Antidepressants Modulate Stressed Mitochondria in Glioblastoma Multiforme Cells. Cancer Control. 2018;25:1073274818798594. doi: 10.1177/1073274818798594. PubMed DOI PMC
Cecon E., Oishi A., Jockers R. Melatonin receptors: Molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 2018;175:3263–3280. doi: 10.1111/bph.13950. PubMed DOI PMC
Vines L., Sotelo D., Johnson A., Dennis E., Manza P., Volkow N.D., Wang G.J. Ketamine use disorder: Preclinical, clinical, and neuroimaging evidence to support proposed mechanisms of actions. Intell. Med. 2022;2:61–68. doi: 10.1016/j.imed.2022.03.001. PubMed DOI PMC
Weckmann K., Deery M.J., Howard J.A., Feret R., Asara J.M., Dethloff F., Filiou M.D., Iannace J., Labermaier C., Maccarrone G., et al. Ketamine’s antidepressant effect is mediated by energy metabolism and antioxidant defense system. Sci. Rep. 2017;7:15788. doi: 10.1038/s41598-017-16183-x. PubMed DOI PMC
Molero P., Ramos-Quiroga J.A., Martin-Santos R., Calvo-Sánchez E., Gutiérrez-Rojas L., Meana J.J. Antidepressant Efficacy and Tolerability of Ketamine and Esketamine: A Critical Review. CNS Drugs. 2018;32:411–420. doi: 10.1007/s40263-018-0519-3. PubMed DOI
Di Vincenzo J.D., Siegel A., Lipsitz O., Ho R., Teopiz K.M., Ng J., Lui L.M.W., Lin K., Cao B., Rodrigues N.B., et al. The effectiveness, safety and tolerability of ketamine for depression in adolescents and older adults: A systematic review. J. Psychiatr. Res. 2021;137:232–241. doi: 10.1016/j.jpsychires.2021.02.058. PubMed DOI
Belujon P., Grace A.A. Dopamine System Dysregulation in Major Depressive Disorders. Int. J. Neuropsychopharmacol. 2017;20:1036–1046. doi: 10.1093/ijnp/pyx056. PubMed DOI PMC
Corriger A., Pickering G. Ketamine and depression: A narrative review. Drug Des. Dev. Ther. 2019;13:3051–3067. doi: 10.2147/DDDT.S221437. PubMed DOI PMC
Morava E., Gardeitchik T., Kozicz T., de Boer L., Koene S., de Vries M.C., McFarland R., Roobol T., Rodenburg R.J., Verhaak C.M. Depressive behaviour in children diagnosed with a mitochondrial disorder. Mitochondrion. 2010;10:528–533. doi: 10.1016/j.mito.2010.05.011. PubMed DOI
Gardner A., Johansson A., Wibom R., Nennesmo I., von Döbeln U., Hagenfeldt L., Hällström T. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J. Affect. Disord. 2003;76:55–68. doi: 10.1016/S0165-0327(02)00067-8. PubMed DOI
Fernström J., Mellon S.H., McGill M.A., Picard M., Reus V.I., Hough C.M., Lin J., Epel E.S., Wolkowitz O.M., Lindqvist D. Blood-based mitochondrial respiratory chain function in major depression. Transl. Psychiatry. 2021;11:593. doi: 10.1038/s41398-021-01723-x. PubMed DOI PMC
Holper L., Ben-Shachar D., Mann J.J. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology. 2019;44:837–849. doi: 10.1038/s41386-018-0090-0. PubMed DOI PMC
Karabatsiakis A., Böck C., Salinas-Manrique J., Kolassa S., Calzia E., Dietrich D.E., Kolassa I.T. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl. Psychiatry. 2014;4:e397. doi: 10.1038/tp.2014.44. PubMed DOI PMC
Hroudová J., Fišar Z., Kitzlerová E., Zvěřová M., Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13:795–800. doi: 10.1016/j.mito.2013.05.005. PubMed DOI
Rappeneau V., Wilmes L., Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol. Cell. Neurosci. 2020;109:103555. doi: 10.1016/j.mcn.2020.103555. PubMed DOI
Czarny P., Wigner P., Strycharz J., Swiderska E., Synowiec E., Szatkowska M., Sliwinska A., Talarowska M., Szemraj J., Su K.P., et al. Mitochondrial DNA copy number, damage, repair and degradation in depressive disorder. World J. Biol. Psychiatry. 2020;21:91–101. doi: 10.1080/15622975.2019.1588993. PubMed DOI
Scatena R., Bottoni P., Botta G., Martorana G.E., Giardina B. The role of mitochondria in pharmacotoxicology: A reevaluation of an old, newly emerging topic. Am. J. Physiol. Cell. Physiol. 2007;293:C12–C21. doi: 10.1152/ajpcell.00314.2006. PubMed DOI
Dykens J.A., Will Y. The significance of mitochondrial toxicity testing in drug development. Drug Discov. Today. 2007;12:777–785. doi: 10.1016/j.drudis.2007.07.013. PubMed DOI
Hynes J., Marroquin L., Ogurtsov V., Christiansen K., Stevens G., Papkovsky D., Will Y. Investigation of Drug-Induced Mitochondrial Toxicity Using Fluorescence-Based Oxygen-Sensitive Probes. Toxicol. Sci. Off. J. Soc. Toxicol. 2006;92:186–200. doi: 10.1093/toxsci/kfj208. PubMed DOI
Begriche K., Massart J., Robin M.-A., Borgne-Sanchez A., Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: Mechanistic diversity and deleterious consequences for the liver. J. Hepatol. 2011;54:773–794. doi: 10.1016/j.jhep.2010.11.006. PubMed DOI
Hroudová J., Fišar Z. In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol. Lett. 2012;213:345–352. doi: 10.1016/j.toxlet.2012.07.017. PubMed DOI
Borhannejad F., Shariati B., Naderi S., Shalbafan M., Mortezaei A., Sahebolzamani E., Saeb A., Hosein Mortazavi S., Kamalzadeh L., Aqamolaei A., et al. Comparison of vortioxetine and sertraline for treatment of major depressive disorder in elderly patients: A double-blind randomized trial. J. Clin. Pharm. Ther. 2020;45:804–811. doi: 10.1111/jcpt.13177. PubMed DOI
Lee S.H., Jeon S.W., Shin C., Pae C.U., Patkar A.A., Masand P.S., An H., Han C. Acute Efficacy and Safety of Escitalopram Versus Desvenlafaxine and Vortioxetine in the Treatment of Depression With Cognitive Complaint: A Rater-Blinded Randomized Comparative Study. Psychiatry Investig. 2022;19:268–280. doi: 10.30773/pi.2021.0368. PubMed DOI PMC
He H., Wang W., Lyu J., Zheng J., Guo L., An X., Fan Y., Ma X. Efficacy and tolerability of different doses of three new antidepressants for treating major depressive disorder: A PRISMA-compliant meta-analysis. J. Psychiatr. Res. 2018;96:247–259. doi: 10.1016/j.jpsychires.2017.10.018. PubMed DOI
Gonda X., Sharma S.R., Tarazi F.I. Vortioxetine: A novel antidepressant for the treatment of major depressive disorder. Expert Opin. Drug Discov. 2019;14:81–89. doi: 10.1080/17460441.2019.1546691. PubMed DOI
Kelliny M., Croarkin P.E., Moore K.M., Bobo W.V. Profile of vortioxetine in the treatment of major depressive disorder: An overview of the primary and secondary literature. Ther. Clin. Risk Manag. 2015;11:1193–1212. doi: 10.2147/tcrm.s55313. PubMed DOI PMC
Hroudova J., Fisar Z. Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinol. Lett. 2010;31:336–342. PubMed
Holper L., Ben-Shachar D., Mann J.J. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur. Neuropsychopharmacol. 2019;29:986–1002. doi: 10.1016/j.euroneuro.2019.06.010. PubMed DOI
Emmerzaal T.L., Jacobs L., Geenen B., Verweij V., Morava E., Rodenburg R.J., Kozicz T. Chronic fluoxetine or ketamine treatment differentially affects brain energy homeostasis which is not exacerbated in mice with trait suboptimal mitochondrial function. Eur. J. Neurosci. 2021;53:2986–3001. doi: 10.1111/ejn.14901. PubMed DOI
Chang Y., Chen T.L., Sheu J.R., Chen R.M. Suppressive effects of ketamine on macrophage functions. Toxicol. Appl. Pharmacol. 2005;204:27–35. doi: 10.1016/j.taap.2004.08.011. PubMed DOI
Matrov D., Imbeault S., Kanarik M., Shkolnaya M., Schikorra P., Miljan E., Shimmo R., Harro J. Comprehensive mapping of cytochrome c oxidase activity in the rat brain after sub-chronic ketamine administration. Acta Histochem. 2020;122:151531. doi: 10.1016/j.acthis.2020.151531. PubMed DOI
de Mello A.H., Souza Lda R., Cereja A.C., Schraiber Rde B., Florentino D., Martins M.M., Petronilho F., Quevedo J., Rezin G.T. Effect of subchronic administration of agomelatine on brain energy metabolism and oxidative stress parameters in rats. Psychiatry Clin. Neurosci. 2016;70:159–166. doi: 10.1111/pcn.12371. PubMed DOI
Kumar H., Sharma B.M., Sharma B. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder. Neurochem. Int. 2015;91:34–45. doi: 10.1016/j.neuint.2015.10.007. PubMed DOI
Chanmanee T., Wongpun J., Tocharus C., Govitrapong P., Tocharus J. The effects of agomelatine on endoplasmic reticulum stress related to mitochondrial dysfunction in hippocampus of aging rat model. Chem. Biol. Interact. 2022;351:109703. doi: 10.1016/j.cbi.2021.109703. PubMed DOI
Ito H., Uchida T., Makita K. Ketamine causes mitochondrial dysfunction in human induced pluripotent stem cell-derived neurons. PLoS ONE. 2015;10:e0128445. doi: 10.1371/journal.pone.0128445. PubMed DOI PMC
Akpinar A., Uğuz A.C., Nazıroğlu M. Agomelatine and duloxetine synergistically modulates apoptotic pathway by inhibiting oxidative stress triggered intracellular calcium entry in neuronal PC12 cells: Role of TRPM2 and voltage-gated calcium channels. J. Membr. Biol. 2014;247:451–459. doi: 10.1007/s00232-014-9652-1. PubMed DOI
Abdel-Razaq W., Kendall D.A., Bates T.E. The effects of antidepressants on mitochondrial function in a model cell system and isolated mitochondria. Neurochem. Res. 2011;36:327–338. doi: 10.1007/s11064-010-0331-z. PubMed DOI
Stahl S.M., Felker A. Monoamine oxidase inhibitors: A modern guide to an unrequited class of antidepressants. CNS Spectr. 2008;13:855–870. doi: 10.1017/S1092852900016965. PubMed DOI
Thomas T. Monoamine oxidase-B inhibitors in the treatment of Alzheimer's disease. Neurobiol. Aging. 2000;21:343–348. doi: 10.1016/S0197-4580(00)00100-7. PubMed DOI
Frampton J.E. Vortioxetine: A Review in Cognitive Dysfunction in Depression. Drugs. 2016;76:1675–1682. doi: 10.1007/s40265-016-0655-3. PubMed DOI
Pei Q., Wang Y., Hu Z.Y., Liu S.K., Tan H.Y., Guo C.X., Zhang R.R., Xiang Y.X., Huang J., Huang L., et al. Evaluation of the highly variable agomelatine pharmacokinetics in Chinese healthy subjects to support bioequivalence study. PLoS ONE. 2014;9:e109300. doi: 10.1371/journal.pone.0109300. PubMed DOI PMC
Zanos P., Moaddel R., Morris P.J., Riggs L.M., Highland J.N., Georgiou P., Pereira E.F.R., Albuquerque E.X., Thomas C.J., Zarate C.A., Jr., et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol. Rev. 2018;70:621–660. doi: 10.1124/pr.117.015198. PubMed DOI PMC
Chen G., Højer A.M., Areberg J., Nomikos G. Vortioxetine: Clinical Pharmacokinetics and Drug Interactions. Clin. Pharmacokinet. 2018;57:673–686. doi: 10.1007/s40262-017-0612-7. PubMed DOI PMC
Zorumski C.F., Izumi Y., Mennerick S. Ketamine: NMDA Receptors and Beyond. J. Neurosci. 2016;36:11158–11164. doi: 10.1523/JNEUROSCI.1547-16.2016. PubMed DOI PMC
Millan M.J. Agomelatine for the treatment of generalized anxiety disorder: Focus on its distinctive mechanism of action. Ther. Adv. Psychopharmacol. 2022;12:20451253221105128. doi: 10.1177/20451253221105128. PubMed DOI PMC
Katona C.L., Katona C.P. New generation multi-modal antidepressants: Focus on vortioxetine for major depressive disorder. Neuropsychiatr. Dis. Treat. 2014;10:349–354. doi: 10.2147/NDT.S39544. PubMed DOI PMC
Horobin R.W., Trapp S., Weissig V. Mitochondriotropics: A review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J. Control. Release. 2007;121:125–136. doi: 10.1016/j.jconrel.2007.05.040. PubMed DOI
Fišar Z., Hroudová J. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration. Folia Biol. 2016;62:15–25. PubMed
Adzic M., Brkic Z., Bulajic S., Mitic M., Radojcic M.B. Antidepressant Action on Mitochondrial Dysfunction in Psychiatric Disorders. Drug Dev. Res. 2016;77:400–406. doi: 10.1002/ddr.21332. PubMed DOI
Ľupták M., Fišar Z., Hroudová J. Effect of Novel Antipsychotics on Energy Metabolism—In Vitro Study in Pig Brain Mitochondria. Mol. Neurobiol. 2021;58:5548–5563. doi: 10.1007/s12035-021-02498-4. PubMed DOI
Emmerzaal T.L., Nijkamp G., Veldic M., Rahman S., Andreazza A.C., Morava E., Rodenburg R.J., Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci. Biobehav. Rev. 2021;127:555–571. doi: 10.1016/j.neubiorev.2021.05.001. PubMed DOI
Lanza I.R., Nair K.S. Functional assessment of isolated mitochondria in vitro. Methods Enzymol. 2009;457:349–372. doi: 10.1016/s0076-6879(09)05020-4. PubMed DOI PMC
Schneider A., Bouzaidi-Tiali N., Chanez A.L., Bulliard L. ATP production in isolated mitochondria of procyclic Trypanosoma brucei. Methods Mol. Biol. 2007;372:379–387. doi: 10.1007/978-1-59745-365-3_27. PubMed DOI
Tonkonogi M., Sahlin K. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: Effect of training status. Acta Physiol. Scand. 1997;161:345–353. doi: 10.1046/j.1365-201X.1997.00222.x. PubMed DOI
Drew B., Leeuwenburgh C. Method for measuring ATP production in isolated mitochondria: ATP production in brain and liver mitochondria of Fischer-344 rats with age and caloric restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;285:R1259–R1267. doi: 10.1152/ajpregu.00264.2003. PubMed DOI
Fisar Z. Inhibition of monoamine oxidase activity by cannabinoids. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2010;381:563–572. doi: 10.1007/s00210-010-0517-6. PubMed DOI