Different Effects of SSRIs, Bupropion, and Trazodone on Mitochondrial Functions and Monoamine Oxidase Isoform Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio
Charles University
SVV 260 523
Charles University
DRO VFN64165
Ministry of Health
34119
Charles University
PubMed
37371937
PubMed Central
PMC10294837
DOI
10.3390/antiox12061208
PII: antiox12061208
Knihovny.cz E-zdroje
- Klíčová slova
- ATP, antidepressants, mitochondrial respiration, monoamine oxidase, oxidative phosphorylation, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
Mitochondrial dysfunction is involved in the pathophysiology of psychiatric and neurodegenerative disorders and can be used as a modulator and/or predictor of treatment responsiveness. Understanding the mitochondrial effects of antidepressants is important to connect mitochondria with their therapeutic and/or adverse effects. Pig brain-isolated mitochondria were used to evaluate antidepressant-induced changes in the activity of electron transport chain (ETC) complexes, monoamine oxidase (MAO), mitochondrial respiratory rate, and ATP. Bupropion, escitalopram, fluvoxamine, sertraline, paroxetine, and trazodone were tested. All tested antidepressants showed significant inhibition of complex I and IV activities at high concentrations (50 and 100 µmol/L); complex II + III activity was reduced by all antidepressants except bupropion. Complex I-linked respiration was reduced by escitalopram >> trazodone >> sertraline. Complex II-linked respiration was reduced only by bupropion. Significant positive correlations were confirmed between complex I-linked respiration and the activities of individual ETC complexes. MAO activity was inhibited by all tested antidepressants, with SSRIs causing a greater effect than trazodone and bupropion. The results indicate a probable association between the adverse effects of high doses of antidepressants and drug-induced changes in the activity of ETC complexes and the respiratory rate of mitochondria. In contrast, MAO inhibition could be linked to the antidepressant, procognitive, and neuroprotective effects of the tested antidepressants.
Zobrazit více v PubMed
Caruso G., Benatti C., Blom J.M.C., Caraci F., Tascedda F. The Many Faces of Mitochondrial Dysfunction in Depression: From Pathology to Treatment. Front. Pharmacol. 2019;10:995. doi: 10.3389/fphar.2019.00995. PubMed DOI PMC
Bansal Y., Kuhad A. Mitochondrial Dysfunction in Depression. Curr. Neuropharmacol. 2016;14:610–618. doi: 10.2174/1570159X14666160229114755. PubMed DOI PMC
Ľupták M., Hroudová J. Important role of mitochondria and the effect of mood stabilizers on mitochondrial function. Physiol. Res. 2019;68((Suppl. 1)):S3–S15. doi: 10.33549/physiolres.934324. PubMed DOI
Allen J., Romay-Tallon R., Brymer K.J., Caruncho H.J., Kalynchuk L.E. Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Front. Neurosci. 2018;12:386. doi: 10.3389/fnins.2018.00386. PubMed DOI PMC
Czarny P., Wigner P., Galecki P., Sliwinski T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Pt CProg. Neuro-Psychopharmacol. Biol. Psychiatry. 2018;80:309–321. doi: 10.1016/j.pnpbp.2017.06.036. PubMed DOI
Cohen G., Kesler N. Monoamine oxidase and mitochondrial respiration. J. Neurochem. 1999;73:2310–2315. doi: 10.1046/j.1471-4159.1999.0732310.x. PubMed DOI
Gamaro G.D., Streck E.L., Matté C., Prediger M.E., Wyse A.T., Dalmaz C. Reduction of hippocampal Na+, K+-ATPase activity in rats subjected to an experimental model of depression. Neurochem. Res. 2003;28:1339–1344. doi: 10.1023/A:1024988113978. PubMed DOI
Gong Y., Chai Y., Ding J.H., Sun X.L., Hu G. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain. Neurosci. Lett. 2011;488:76–80. doi: 10.1016/j.neulet.2010.11.006. PubMed DOI
Rappeneau V., Wilmes L., Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol. Cell. Neurosci. 2020;109:103555. doi: 10.1016/j.mcn.2020.103555. PubMed DOI
Videbech P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: A critical review. Acta Psychiatr. Scand. 2000;101:11–20. doi: 10.1034/j.1600-0447.2000.101001011.x. PubMed DOI
Mayberg H.S., Lewis P.J., Regenold W., Wagner H.N., Jr. Paralimbic hypoperfusion in unipolar depression. J. Nucl. Med. 1994;35:929–934. PubMed
Newton S.S., Thome J., Wallace T.L., Shirayama Y., Schlesinger L., Sakai N., Chen J., Neve R., Nestler E.J., Duman R.S. Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J. Neurosci. 2002;22:10883–10890. doi: 10.1523/JNEUROSCI.22-24-10883.2002. PubMed DOI PMC
Baxter L.R., Jr., Schwartz J.M., Phelps M.E., Mazziotta J.C., Guze B.H., Selin C.E., Gerner R.H., Sumida R.M. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch. Gen. Psychiatry. 1989;46:243–250. doi: 10.1001/archpsyc.1989.01810030049007. PubMed DOI
Ben-Shachar D., Karry R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS ONE. 2008;3:e3676. doi: 10.1371/journal.pone.0003676. PubMed DOI PMC
Moretti A., Gorini A., Villa R.F. Affective disorders, antidepressant drugs and brain metabolism. Mol. Psychiatry. 2003;8:773–785. doi: 10.1038/sj.mp.4001353. PubMed DOI
Hroudová J., Fišar Z., Kitzlerová E., Zvěřová M., Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13:795–800. doi: 10.1016/j.mito.2013.05.005. PubMed DOI
Karabatsiakis A., Böck C., Salinas-Manrique J., Kolassa S., Calzia E., Dietrich D.E., Kolassa I.T. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl. Psychiatry. 2014;4:e397. doi: 10.1038/tp.2014.44. PubMed DOI PMC
Gardner A., Johansson A., Wibom R., Nennesmo I., von Döbeln U., Hagenfeldt L., Hällström T. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J. Affect. Disord. 2003;76:55–68. doi: 10.1016/S0165-0327(02)00067-8. PubMed DOI
Trumpff C., Marsland A.L., Basualto-Alarcón C., Martin J.L., Carroll J.E., Sturm G., Vincent A.E., Mosharov E.V., Gu Z., Kaufman B.A., et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology. 2019;106:268–276. doi: 10.1016/j.psyneuen.2019.03.026. PubMed DOI PMC
Emmerzaal T.L., Nijkamp G., Veldic M., Rahman S., Andreazza A.C., Morava E., Rodenburg R.J., Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci. Biobehav. Rev. 2021;127:555–571. doi: 10.1016/j.neubiorev.2021.05.001. PubMed DOI
Fernström J., Mellon S.H., McGill M.A., Picard M., Reus V.I., Hough C.M., Lin J., Epel E.S., Wolkowitz O.M., Lindqvist D. Blood-based mitochondrial respiratory chain function in major depression. Transl. Psychiatry. 2021;11:593. doi: 10.1038/s41398-021-01723-x. PubMed DOI PMC
Edmondson D.E. Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: Biological implications. Curr. Pharm. Des. 2014;20:155–160. doi: 10.2174/13816128113190990406. PubMed DOI
Fišar Z. Drugs related to monoamine oxidase activity. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2016;69:112–124. doi: 10.1016/j.pnpbp.2016.02.012. PubMed DOI
Meyer J.H., Ginovart N., Boovariwala A., Sagrati S., Hussey D., Garcia A., Young T., Praschak-Rieder N., Wilson A.A., Houle S. Elevated monoamine oxidase a levels in the brain: An explanation for the monoamine imbalance of major depression. Arch. Gen. Psychiatry. 2006;63:1209–1216. doi: 10.1001/archpsyc.63.11.1209. PubMed DOI
Gallagher D.A., Schrag A. Impact of newer pharmacological treatments on quality of life in patients with Parkinson’s disease. CNS Drugs. 2008;22:563–586. doi: 10.2165/00023210-200822070-00003. PubMed DOI
Hroudová J., Singh N., Fišar Z., Ghosh K.K. Progress in drug development for Alzheimer’s disease: An overview in relation to mitochondrial energy metabolism. Eur. J. Med. Chem. 2016;121:774–784. doi: 10.1016/j.ejmech.2016.03.084. PubMed DOI
Bhawna, Kumar A., Bhatia M., Kapoor A., Kumar P., Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur. J. Med. Chem. 2022;242:114655. doi: 10.1016/j.ejmech.2022.114655. PubMed DOI
Manzoor S., Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review. Eur. J. Med. Chem. 2020;206:112787. doi: 10.1016/j.ejmech.2020.112787. PubMed DOI
Bodkin J.A., Dunlop B.W. Moving on With Monoamine Oxidase Inhibitors. Focus (Am. Psychiatr. Publ.) 2021;19:50–52. doi: 10.1176/appi.focus.20200046. PubMed DOI PMC
Mandrioli R., Mercolini L., Saracino M.A., Raggi M.A. Selective serotonin reuptake inhibitors (SSRIs): Therapeutic drug monitoring and pharmacological interactions. Curr. Med. Chem. 2012;19:1846–1863. doi: 10.2174/092986712800099749. PubMed DOI
Garnock-Jones K.P., McCormack P.L. Escitalopram: A review of its use in the management of major depressive disorder in adults. CNS Drugs. 2010;24:769–796. doi: 10.2165/11204760-000000000-00000. PubMed DOI
Protti M., Mandrioli R., Marasca C., Cavalli A., Serretti A., Mercolini L. New-generation, non-SSRI antidepressants: Drug-drug interactions and therapeutic drug monitoring. Part 2: NaSSAs, NRIs, SNDRIs, MASSAs, NDRIs, and others. Med. Res. Rev. 2020;40:1794–1832. doi: 10.1002/med.21671. PubMed DOI
Khouzam H.R. A review of trazodone use in psychiatric and medical conditions. Postgrad. Med. 2017;129:140–148. doi: 10.1080/00325481.2017.1249265. PubMed DOI
Ľupták M., Fišar Z., Hroudová J. Agomelatine, Ketamine and Vortioxetine Attenuate Energy Cell Metabolism-In Vitro Study. Int. J. Mol. Sci. 2022;23:13824. doi: 10.3390/ijms232213824. PubMed DOI PMC
Fišar Z., Hroudová J. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration. Folia Biol. 2016;62:15–25. PubMed
Srere P.A. Methods in Enzymology. Volume 13. Academic Press; Cambridge, MA, USA: 1969. [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)] pp. 3–11.
Barrie Kitto G. Methods in Enzymology. Volume 13. Academic Press; Cambridge, MA, USA: 1969. [19] Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart: [EC 1.1.1.37 l-Malate: NAD oxidoreductase] pp. 106–116.
Folbergrová J., Jesina P., Haugvicová R., Lisý V., Houstek J. Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem. Int. 2010;56:394–403. doi: 10.1016/j.neuint.2009.11.011. PubMed DOI
Trounce I.A., Kim Y.L., Jun A.S., Wallace D.C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 1996;264:484–509. doi: 10.1016/s0076-6879(96)64044-0. PubMed DOI
Rustin P., Chretien D., Bourgeron T., Gérard B., Rötig A., Saudubray J.M., Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta. 1994;228:35–51. doi: 10.1016/0009-8981(94)90055-8. PubMed DOI
Manfredi G., Spinazzola A., Checcarelli N., Naini A. Assay of mitochondrial ATP synthesis in animal cells. Methods Cell Biol. 2001;65:133–145. doi: 10.1016/s0091-679x(01)65008-8. PubMed DOI
Tonkonogi M., Sahlin K. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: Effect of training status. Acta Physiol. Scand. 1997;161:345–353. doi: 10.1046/j.1365-201X.1997.00222.x. PubMed DOI
Hroudová J., Fišar Z. In Vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol. Lett. 2012;213:345–352. doi: 10.1016/j.toxlet.2012.07.017. PubMed DOI
Sjövall F., Morota S., Hansson M.J., Friberg H., Gnaiger E., Elmér E. Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis. Crit. Care. 2010;14:R214. doi: 10.1186/cc9337. PubMed DOI PMC
Fisar Z. Inhibition of monoamine oxidase activity by cannabinoids. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2010;381:563–572. doi: 10.1007/s00210-010-0517-6. PubMed DOI
Egashira T., Takayama F., Yamanaka Y. The inhibition of monoamine oxidase activity by various antidepressants: Differences found in various mammalian species. Jpn. J. Pharmacol. 1999;81:115–121. doi: 10.1016/S0021-5198(19)30817-0. PubMed DOI
Jou S.H., Chiu N.Y., Liu C.S. Mitochondrial dysfunction and psychiatric disorders. Chang. Gung Med. J. 2009;32:370–379. PubMed
Hroudová J., Fišar Z. Connectivity between mitochondrial functions and psychiatric disorders. Psychiatry Clin. Neurosci. 2011;65:130–141. doi: 10.1111/j.1440-1819.2010.02178.x. PubMed DOI
Cikánková T., Fišar Z., Hroudová J. In Vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020;393:797–811. doi: 10.1007/s00210-019-01791-3. PubMed DOI
Gonçalves C.L., Rezin G.T., Ferreira G.K., Jeremias I.C., Cardoso M.R., Carvalho-Silva M., Zugno A.I., Quevedo J., Streck E.L. Differential effects of escitalopram administration on metabolic parameters of cortical and subcortical brain regions of Wistar rats. Acta Neuropsychiatr. 2012;24:147–154. doi: 10.1111/j.1601-5215.2011.00592.x. PubMed DOI
Ľupták M., Fišar Z., Hroudová J. Effect of Novel Antipsychotics on Energy Metabolism—In Vitro Study in Pig Brain Mitochondria. Mol. Neurobiol. 2021;58:5548–5563. doi: 10.1007/s12035-021-02498-4. PubMed DOI
Luethi D., Liechti M.E., Krähenbühl S. Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology. 2017;387:57–66. doi: 10.1016/j.tox.2017.06.004. PubMed DOI
Woynillowicz A.K., Raha S., Nicholson C.J., Holloway A.C. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function. Toxicol. Appl. Pharmacol. 2012;265:122–127. doi: 10.1016/j.taap.2012.08.020. PubMed DOI PMC
Li Y., Couch L., Higuchi M., Fang J.L., Guo L. Mitochondrial dysfunction induced by sertraline, an antidepressant agent. Toxicol. Sci. 2012;127:582–591. doi: 10.1093/toxsci/kfs100. PubMed DOI PMC
Hynes J., Nadanaciva S., Swiss R., Carey C., Kirwan S., Will Y. A high-throughput dual parameter assay for assessing drug-induced mitochondrial dysfunction provides additional predictivity over two established mitochondrial toxicity assays. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA. 2013;27:560–569. doi: 10.1016/j.tiv.2012.11.002. PubMed DOI
Nadanaciva S., Bernal A., Aggeler R., Capaldi R., Will Y. Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays. Toxicol. Vitr. 2007;21:902–911. doi: 10.1016/j.tiv.2007.01.011. PubMed DOI
Ferreira G.K., Cardoso M.R., Jeremias I.C., Gonçalves C.L., Freitas K.V., Antonini R., Scaini G., Rezin G.T., Quevedo J., Streck E.L. Fluvoxamine alters the activity of energy metabolism enzymes in the brain. Braz. J. Psychiatry. 2014;36:220–226. doi: 10.1590/1516-4446-2013-1202. PubMed DOI
Holper L., Ben-Shachar D., Mann J.J. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur. Neuropsychopharmacol. 2019;29:986–1002. doi: 10.1016/j.euroneuro.2019.06.010. PubMed DOI
Velasco A., González-Calvo V., Alvarez F.J., Dueñas A., García-Roldán J.L. Effect of trazodone on oxidative metabolism of rat brain in vitro. Rev. Esp. Fisiol. 1985;41:201–205. PubMed
Dykens J.A., Jamieson J.D., Marroquin L.D., Nadanaciva S., Xu J.J., Dunn M.C., Smith A.R., Will Y. In vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone. Toxicol. Sci. 2008;103:335–345. doi: 10.1093/toxsci/kfn056. PubMed DOI
Rana P., Nadanaciva S., Will Y. Mitochondrial membrane potential measurement of H9c2 cells grown in high-glucose and galactose-containing media does not provide additional predictivity towards mitochondrial assessment. Toxicol. Vitr. 2011;25:580–587. doi: 10.1016/j.tiv.2010.11.016. PubMed DOI
Swiss R., Niles A., Cali J.J., Nadanaciva S., Will Y. Validation of a HTS-amenable assay to detect drug-induced mitochondrial toxicity in the absence and presence of cell death. Toxicol. Vitr. 2013;27:1789–1797. doi: 10.1016/j.tiv.2013.05.007. PubMed DOI
Nabekura T., Ishikawa S., Tanase M., Okumura T., Kawasaki T. Antidepressants induce toxicity in human placental BeWo cells. Curr. Res. Toxicol. 2022;3:100073. doi: 10.1016/j.crtox.2022.100073. PubMed DOI PMC
Rodrigues D.O., Bristot I.J., Klamt F., Frizzo M.E. Sertraline reduces glutamate uptake in human platelets. Neurotoxicology. 2015;51:192–197. doi: 10.1016/j.neuro.2015.10.014. PubMed DOI
Gerö D., Szoleczky P., Suzuki K., Módis K., Oláh G., Coletta C., Szabo C. Cell-based screening identifies paroxetine as an inhibitor of diabetic endothelial dysfunction. Diabetes. 2013;62:953–964. doi: 10.2337/db12-0789. PubMed DOI PMC
Salin K., Auer S.K., Rey B., Selman C., Metcalfe N.B. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. Biol. Sci. 2015;282:20151028. doi: 10.1098/rspb.2015.1028. PubMed DOI PMC
Brand M.D. The efficiency and plasticity of mitochondrial energy transduction. Pt 5Biochem. Soc. Trans. 2005;33:897–904. doi: 10.1042/BST0330897. PubMed DOI
Finberg J.P., Rabey J.M. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front. Pharmacol. 2016;7:340. doi: 10.3389/fphar.2016.00340. PubMed DOI PMC
Bryant S.G., Guernsey B.G., Ingrim N.B. Review of bupropion. Clin. Pharm. 1983;2:525–537. PubMed
Gandolfi O., Barbaccia M.L., Chuang D.M., Costa E. Daily bupropion injections for 3 weeks attenuate the NE stimulation of adenylate cyclase and the number of beta-adrenergic recognition sites in rat frontal cortex. Neuropharmacology. 1983;22:927–929. doi: 10.1016/0028-3908(83)90143-0. PubMed DOI
Ferris R.M., Cooper B.R., Maxwell R.A. Studies of bupropion’s mechanism of antidepressant activity. Pt 2J. Clin. Psychiatry. 1983;44:74–78. PubMed
Johnson A.M. An overview of the animal pharmacology of paroxetine. Acta Psychiatr. Scand. Suppl. 1989;350:14–20. doi: 10.1111/j.1600-0447.1989.tb07161.x. PubMed DOI
Pivac N., Mück-Seler D., Sagud M., Jakovljević M., Mustapić M., Mihaljević-Peles A. Long-term sertraline treatment and peripheral biochemical markers in female depressed patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2003;27:759–765. doi: 10.1016/S0278-5846(03)00105-2. PubMed DOI
Mukherjee J., Yang Z.Y. Monoamine oxidase A inhibition by fluoxetine: An in vitro and in vivo study. Synapse. 1999;31:285–289. doi: 10.1002/(SICI)1098-2396(19990315)31:4<285::AID-SYN6>3.0.CO;2-5. PubMed DOI
Mukherjee J., Yang Z.Y. Evaluation of monoamine oxidase B inhibition by fluoxetine (Prozac): An In Vitro and In Vivo study. Eur. J. Pharmacol. 1997;337:111–114. doi: 10.1016/S0014-2999(97)01233-8. PubMed DOI
Fisar Z., Hroudová J., Raboch J. Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers. Neuro Endocrinol. Lett. 2010;31:645–656. PubMed
Baumann P., Hiemke C., Ulrich S., Eckermann G., Gaertner I., Gerlach M., Kuss H.J., Laux G., Müller-Oerlinghausen B., Rao M.L., et al. The AGNP-TDM Expert Group Consensus Guidelines: Therapeutic Drug Monitoring in Psychiatry. Pharmacopsychiatry. 2004;37:243–265. doi: 10.1055/s-2004-832687. PubMed DOI
Laib K., Brünen S., Pfeifer P., Vincent P., Hiemke C. 1023—Therapeutic drug-monitoring of bupropion for depression. Eur. Psychiatry. 2013;28:1. doi: 10.1016/S0924-9338(13)76150-9. PubMed DOI
Szewczyk A., Wojtczak L. Mitochondria as a pharmacological target. Pharmacol. Rev. 2002;54:101–127. doi: 10.1124/pr.54.1.101. PubMed DOI
D’Sa C., Duman R.S. Antidepressants and neuroplasticity. Bipolar Disord. 2002;4:183–194. doi: 10.1034/j.1399-5618.2002.01203.x. PubMed DOI
Stahl S.M., Pradko J.F., Haight B.R., Modell J.G., Rockett C.B., Learned-Coughlin S. A Review of the Neuropharmacology of Bupropion, a Dual Norepinephrine and Dopamine Reuptake Inhibitor. Prim. Care Companion J. Clin. Psychiatry. 2004;6:159–166. doi: 10.4088/PCC.v06n0403. PubMed DOI PMC
Bundgaard C., Jørgensen M., Larsen F. Pharmacokinetic modelling of blood-brain barrier transport of escitalopram in rats. Biopharm. Drug Dispos. 2007;28:349–360. doi: 10.1002/bdd.562. PubMed DOI
Jacobsen J., Plenge P., Sachs B., Pehrson A., Cajina M., Du Y., Roberts W., Rudder M., Dalvi P., Robinson T., et al. The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse. Psychopharmacology. 2014;231:4527–4540. doi: 10.1007/s00213-014-3595-1. PubMed DOI PMC
Bolo N.R., Hodé Y., Nédélec J.F., Lainé E., Wagner G., Macher J.P. Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacology. 2000;23:428–438. doi: 10.1016/S0893-133X(00)00116-0. PubMed DOI
Nedahl M., Johansen S.S., Linnet K. Reference Brain/Blood Concentrations of Citalopram, Duloxetine, Mirtazapine and Sertraline. J. Anal. Toxicol. 2018;42:149–156. doi: 10.1093/jat/bkx098. PubMed DOI
Chow J., Thompson A.J., Iqbal F., Zaidi W., Syed N.I. The Antidepressant Sertraline Reduces Synaptic Transmission Efficacy and Synaptogenesis Between Identified Lymnaea Neurons. Front. Mar. Sci. 2020;7:603789. doi: 10.3389/fmars.2020.603789. DOI
Solek P., Mytych J., Tabecka-Lonczynska A., Sowa-Kucma M., Koziorowski M. Toxic effect of antidepressants on male reproductive system cells: Evaluation of possible fertility reduction mechanism. J. Physiol. Pharmacol. 2021;72:367–379. doi: 10.26402/jpp.2021.3.06. PubMed DOI
Chen F., Wegener G., Madsen T.M., Nyengaard J.R. Mitochondrial plasticity of the hippocampus in a genetic rat model of depression after antidepressant treatment. Synapse. 2013;67:127–134. doi: 10.1002/syn.21622. PubMed DOI
Filipović D., Novak B., Xiao J., Yan Y., Bernardi R.E., Turck C.W. Chronic fluoxetine treatment in socially-isolated rats modulates the prefrontal cortex synaptoproteome. J. Proteom. 2023;282:104925. doi: 10.1016/j.jprot.2023.104925. PubMed DOI
Ait Tayeb A.E.K., Poinsignon V., Chappell K., Bouligand J., Becquemont L., Verstuyft C. Major Depressive Disorder and Oxidative Stress: A Review of Peripheral and Genetic Biomarkers According to Clinical Characteristics and Disease Stages. Antioxidants. 2023;12:942. doi: 10.3390/antiox12040942. PubMed DOI PMC
Shao A., Lin D., Wang L., Tu S., Lenahan C., Zhang J. Oxidative Stress at the Crossroads of Aging, Stroke and Depression. Aging Dis. 2020;11:1537–1566. doi: 10.14336/AD.2020.0225. PubMed DOI PMC
Vaváková M., Ďuračková Z., Trebatická J. Markers of Oxidative Stress and Neuroprogression in Depression Disorder. Oxidative Med. Cell. Longev. 2015;2015:898393. doi: 10.1155/2015/898393. PubMed DOI PMC
Westenberg H.G., Sandner C. Tolerability and safety of fluvoxamine and other antidepressants. Int. J. Clin. Pract. 2006;60:482–491. doi: 10.1111/j.1368-5031.2006.00865.x. PubMed DOI PMC
Sanchez C., Reines E.H., Montgomery S.A. A comparative review of escitalopram, paroxetine, and sertraline: Are they all alike? Int. Clin. Psychopharmacol. 2014;29:185–196. doi: 10.1097/YIC.0000000000000023. PubMed DOI PMC
Nieuwstraten C.E., Dolovich L.R. Bupropion versus selective serotonin-reuptake inhibitors for treatment of depression. Ann. Pharmacother. 2001;35:1608–1613. doi: 10.1345/aph.1A099. PubMed DOI
Patel K., Allen S., Haque M.N., Angelescu I., Baumeister D., Tracy D.K. Bupropion: A systematic review and meta-analysis of effectiveness as an antidepressant. Ther. Adv. Psychopharmacol. 2016;6:99–144. doi: 10.1177/2045125316629071. PubMed DOI PMC
Fagiolini A., Comandini A., Catena Dell’Osso M., Kasper S. Rediscovering trazodone for the treatment of major depressive disorder. CNS Drugs. 2012;26:1033–1049. doi: 10.1007/s40263-012-0010-5. PubMed DOI PMC
Prado C.E., Watt S., Crowe S.F. A meta-analysis of the effects of antidepressants on cognitive functioning in depressed and non-depressed samples. Neuropsychol. Rev. 2018;28:32–72. doi: 10.1007/s11065-018-9369-5. PubMed DOI
Bartels C., Wagner M., Wolfsgruber S., Ehrenreich H., Schneider A. Impact of SSRI Therapy on Risk of Conversion from Mild Cognitive Impairment to Alzheimer’s Dementia in Individuals with Previous Depression. Am. J. Psychiatry. 2018;175:232–241. doi: 10.1176/appi.ajp.2017.17040404. PubMed DOI
Blumberg M.J., Vaccarino S.R., McInerney S.J. Procognitive Effects of Antidepressants and Other Therapeutic Agents in Major Depressive Disorder: A Systematic Review. J. Clin. Psychiatry. 2020;81:19r13200. doi: 10.4088/JCP.19r13200. PubMed DOI
Gonçalo A.M.G., Vieira-Coelho M.A. The effects of trazodone on human cognition: A systematic review. Eur. J. Clin. Pharmacol. 2021;77:1623–1637. doi: 10.1007/s00228-021-03161-6. PubMed DOI PMC
Sommerlad A., Werbeloff N., Perera G., Smith T., Costello H., Mueller C., Kormilitzin A., Broadbent M., Nevado-Holgado A., Lovestone S., et al. Effect of trazodone on cognitive decline in people with dementia: Cohort study using UK routinely collected data. Int. J. Geriatr. Psychiatry. 2021;37:1–12. doi: 10.1002/gps.5625. PubMed DOI