Different Effects of SSRIs, Bupropion, and Trazodone on Mitochondrial Functions and Monoamine Oxidase Isoform Activity

. 2023 Jun 02 ; 12 (6) : . [epub] 20230602

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37371937

Grantová podpora
Cooperatio Charles University
SVV 260 523 Charles University
DRO VFN64165 Ministry of Health
34119 Charles University

Mitochondrial dysfunction is involved in the pathophysiology of psychiatric and neurodegenerative disorders and can be used as a modulator and/or predictor of treatment responsiveness. Understanding the mitochondrial effects of antidepressants is important to connect mitochondria with their therapeutic and/or adverse effects. Pig brain-isolated mitochondria were used to evaluate antidepressant-induced changes in the activity of electron transport chain (ETC) complexes, monoamine oxidase (MAO), mitochondrial respiratory rate, and ATP. Bupropion, escitalopram, fluvoxamine, sertraline, paroxetine, and trazodone were tested. All tested antidepressants showed significant inhibition of complex I and IV activities at high concentrations (50 and 100 µmol/L); complex II + III activity was reduced by all antidepressants except bupropion. Complex I-linked respiration was reduced by escitalopram >> trazodone >> sertraline. Complex II-linked respiration was reduced only by bupropion. Significant positive correlations were confirmed between complex I-linked respiration and the activities of individual ETC complexes. MAO activity was inhibited by all tested antidepressants, with SSRIs causing a greater effect than trazodone and bupropion. The results indicate a probable association between the adverse effects of high doses of antidepressants and drug-induced changes in the activity of ETC complexes and the respiratory rate of mitochondria. In contrast, MAO inhibition could be linked to the antidepressant, procognitive, and neuroprotective effects of the tested antidepressants.

Zobrazit více v PubMed

Caruso G., Benatti C., Blom J.M.C., Caraci F., Tascedda F. The Many Faces of Mitochondrial Dysfunction in Depression: From Pathology to Treatment. Front. Pharmacol. 2019;10:995. doi: 10.3389/fphar.2019.00995. PubMed DOI PMC

Bansal Y., Kuhad A. Mitochondrial Dysfunction in Depression. Curr. Neuropharmacol. 2016;14:610–618. doi: 10.2174/1570159X14666160229114755. PubMed DOI PMC

Ľupták M., Hroudová J. Important role of mitochondria and the effect of mood stabilizers on mitochondrial function. Physiol. Res. 2019;68((Suppl. 1)):S3–S15. doi: 10.33549/physiolres.934324. PubMed DOI

Allen J., Romay-Tallon R., Brymer K.J., Caruncho H.J., Kalynchuk L.E. Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Front. Neurosci. 2018;12:386. doi: 10.3389/fnins.2018.00386. PubMed DOI PMC

Czarny P., Wigner P., Galecki P., Sliwinski T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Pt CProg. Neuro-Psychopharmacol. Biol. Psychiatry. 2018;80:309–321. doi: 10.1016/j.pnpbp.2017.06.036. PubMed DOI

Cohen G., Kesler N. Monoamine oxidase and mitochondrial respiration. J. Neurochem. 1999;73:2310–2315. doi: 10.1046/j.1471-4159.1999.0732310.x. PubMed DOI

Gamaro G.D., Streck E.L., Matté C., Prediger M.E., Wyse A.T., Dalmaz C. Reduction of hippocampal Na+, K+-ATPase activity in rats subjected to an experimental model of depression. Neurochem. Res. 2003;28:1339–1344. doi: 10.1023/A:1024988113978. PubMed DOI

Gong Y., Chai Y., Ding J.H., Sun X.L., Hu G. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain. Neurosci. Lett. 2011;488:76–80. doi: 10.1016/j.neulet.2010.11.006. PubMed DOI

Rappeneau V., Wilmes L., Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol. Cell. Neurosci. 2020;109:103555. doi: 10.1016/j.mcn.2020.103555. PubMed DOI

Videbech P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: A critical review. Acta Psychiatr. Scand. 2000;101:11–20. doi: 10.1034/j.1600-0447.2000.101001011.x. PubMed DOI

Mayberg H.S., Lewis P.J., Regenold W., Wagner H.N., Jr. Paralimbic hypoperfusion in unipolar depression. J. Nucl. Med. 1994;35:929–934. PubMed

Newton S.S., Thome J., Wallace T.L., Shirayama Y., Schlesinger L., Sakai N., Chen J., Neve R., Nestler E.J., Duman R.S. Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J. Neurosci. 2002;22:10883–10890. doi: 10.1523/JNEUROSCI.22-24-10883.2002. PubMed DOI PMC

Baxter L.R., Jr., Schwartz J.M., Phelps M.E., Mazziotta J.C., Guze B.H., Selin C.E., Gerner R.H., Sumida R.M. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch. Gen. Psychiatry. 1989;46:243–250. doi: 10.1001/archpsyc.1989.01810030049007. PubMed DOI

Ben-Shachar D., Karry R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS ONE. 2008;3:e3676. doi: 10.1371/journal.pone.0003676. PubMed DOI PMC

Moretti A., Gorini A., Villa R.F. Affective disorders, antidepressant drugs and brain metabolism. Mol. Psychiatry. 2003;8:773–785. doi: 10.1038/sj.mp.4001353. PubMed DOI

Hroudová J., Fišar Z., Kitzlerová E., Zvěřová M., Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13:795–800. doi: 10.1016/j.mito.2013.05.005. PubMed DOI

Karabatsiakis A., Böck C., Salinas-Manrique J., Kolassa S., Calzia E., Dietrich D.E., Kolassa I.T. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl. Psychiatry. 2014;4:e397. doi: 10.1038/tp.2014.44. PubMed DOI PMC

Gardner A., Johansson A., Wibom R., Nennesmo I., von Döbeln U., Hagenfeldt L., Hällström T. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J. Affect. Disord. 2003;76:55–68. doi: 10.1016/S0165-0327(02)00067-8. PubMed DOI

Trumpff C., Marsland A.L., Basualto-Alarcón C., Martin J.L., Carroll J.E., Sturm G., Vincent A.E., Mosharov E.V., Gu Z., Kaufman B.A., et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology. 2019;106:268–276. doi: 10.1016/j.psyneuen.2019.03.026. PubMed DOI PMC

Emmerzaal T.L., Nijkamp G., Veldic M., Rahman S., Andreazza A.C., Morava E., Rodenburg R.J., Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci. Biobehav. Rev. 2021;127:555–571. doi: 10.1016/j.neubiorev.2021.05.001. PubMed DOI

Fernström J., Mellon S.H., McGill M.A., Picard M., Reus V.I., Hough C.M., Lin J., Epel E.S., Wolkowitz O.M., Lindqvist D. Blood-based mitochondrial respiratory chain function in major depression. Transl. Psychiatry. 2021;11:593. doi: 10.1038/s41398-021-01723-x. PubMed DOI PMC

Edmondson D.E. Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: Biological implications. Curr. Pharm. Des. 2014;20:155–160. doi: 10.2174/13816128113190990406. PubMed DOI

Fišar Z. Drugs related to monoamine oxidase activity. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2016;69:112–124. doi: 10.1016/j.pnpbp.2016.02.012. PubMed DOI

Meyer J.H., Ginovart N., Boovariwala A., Sagrati S., Hussey D., Garcia A., Young T., Praschak-Rieder N., Wilson A.A., Houle S. Elevated monoamine oxidase a levels in the brain: An explanation for the monoamine imbalance of major depression. Arch. Gen. Psychiatry. 2006;63:1209–1216. doi: 10.1001/archpsyc.63.11.1209. PubMed DOI

Gallagher D.A., Schrag A. Impact of newer pharmacological treatments on quality of life in patients with Parkinson’s disease. CNS Drugs. 2008;22:563–586. doi: 10.2165/00023210-200822070-00003. PubMed DOI

Hroudová J., Singh N., Fišar Z., Ghosh K.K. Progress in drug development for Alzheimer’s disease: An overview in relation to mitochondrial energy metabolism. Eur. J. Med. Chem. 2016;121:774–784. doi: 10.1016/j.ejmech.2016.03.084. PubMed DOI

Bhawna, Kumar A., Bhatia M., Kapoor A., Kumar P., Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur. J. Med. Chem. 2022;242:114655. doi: 10.1016/j.ejmech.2022.114655. PubMed DOI

Manzoor S., Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review. Eur. J. Med. Chem. 2020;206:112787. doi: 10.1016/j.ejmech.2020.112787. PubMed DOI

Bodkin J.A., Dunlop B.W. Moving on With Monoamine Oxidase Inhibitors. Focus (Am. Psychiatr. Publ.) 2021;19:50–52. doi: 10.1176/appi.focus.20200046. PubMed DOI PMC

Mandrioli R., Mercolini L., Saracino M.A., Raggi M.A. Selective serotonin reuptake inhibitors (SSRIs): Therapeutic drug monitoring and pharmacological interactions. Curr. Med. Chem. 2012;19:1846–1863. doi: 10.2174/092986712800099749. PubMed DOI

Garnock-Jones K.P., McCormack P.L. Escitalopram: A review of its use in the management of major depressive disorder in adults. CNS Drugs. 2010;24:769–796. doi: 10.2165/11204760-000000000-00000. PubMed DOI

Protti M., Mandrioli R., Marasca C., Cavalli A., Serretti A., Mercolini L. New-generation, non-SSRI antidepressants: Drug-drug interactions and therapeutic drug monitoring. Part 2: NaSSAs, NRIs, SNDRIs, MASSAs, NDRIs, and others. Med. Res. Rev. 2020;40:1794–1832. doi: 10.1002/med.21671. PubMed DOI

Khouzam H.R. A review of trazodone use in psychiatric and medical conditions. Postgrad. Med. 2017;129:140–148. doi: 10.1080/00325481.2017.1249265. PubMed DOI

Ľupták M., Fišar Z., Hroudová J. Agomelatine, Ketamine and Vortioxetine Attenuate Energy Cell Metabolism-In Vitro Study. Int. J. Mol. Sci. 2022;23:13824. doi: 10.3390/ijms232213824. PubMed DOI PMC

Fišar Z., Hroudová J. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration. Folia Biol. 2016;62:15–25. PubMed

Srere P.A. Methods in Enzymology. Volume 13. Academic Press; Cambridge, MA, USA: 1969. [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)] pp. 3–11.

Barrie Kitto G. Methods in Enzymology. Volume 13. Academic Press; Cambridge, MA, USA: 1969. [19] Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart: [EC 1.1.1.37 l-Malate: NAD oxidoreductase] pp. 106–116.

Folbergrová J., Jesina P., Haugvicová R., Lisý V., Houstek J. Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem. Int. 2010;56:394–403. doi: 10.1016/j.neuint.2009.11.011. PubMed DOI

Trounce I.A., Kim Y.L., Jun A.S., Wallace D.C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 1996;264:484–509. doi: 10.1016/s0076-6879(96)64044-0. PubMed DOI

Rustin P., Chretien D., Bourgeron T., Gérard B., Rötig A., Saudubray J.M., Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta. 1994;228:35–51. doi: 10.1016/0009-8981(94)90055-8. PubMed DOI

Manfredi G., Spinazzola A., Checcarelli N., Naini A. Assay of mitochondrial ATP synthesis in animal cells. Methods Cell Biol. 2001;65:133–145. doi: 10.1016/s0091-679x(01)65008-8. PubMed DOI

Tonkonogi M., Sahlin K. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: Effect of training status. Acta Physiol. Scand. 1997;161:345–353. doi: 10.1046/j.1365-201X.1997.00222.x. PubMed DOI

Hroudová J., Fišar Z. In Vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol. Lett. 2012;213:345–352. doi: 10.1016/j.toxlet.2012.07.017. PubMed DOI

Sjövall F., Morota S., Hansson M.J., Friberg H., Gnaiger E., Elmér E. Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis. Crit. Care. 2010;14:R214. doi: 10.1186/cc9337. PubMed DOI PMC

Fisar Z. Inhibition of monoamine oxidase activity by cannabinoids. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2010;381:563–572. doi: 10.1007/s00210-010-0517-6. PubMed DOI

Egashira T., Takayama F., Yamanaka Y. The inhibition of monoamine oxidase activity by various antidepressants: Differences found in various mammalian species. Jpn. J. Pharmacol. 1999;81:115–121. doi: 10.1016/S0021-5198(19)30817-0. PubMed DOI

Jou S.H., Chiu N.Y., Liu C.S. Mitochondrial dysfunction and psychiatric disorders. Chang. Gung Med. J. 2009;32:370–379. PubMed

Hroudová J., Fišar Z. Connectivity between mitochondrial functions and psychiatric disorders. Psychiatry Clin. Neurosci. 2011;65:130–141. doi: 10.1111/j.1440-1819.2010.02178.x. PubMed DOI

Cikánková T., Fišar Z., Hroudová J. In Vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020;393:797–811. doi: 10.1007/s00210-019-01791-3. PubMed DOI

Gonçalves C.L., Rezin G.T., Ferreira G.K., Jeremias I.C., Cardoso M.R., Carvalho-Silva M., Zugno A.I., Quevedo J., Streck E.L. Differential effects of escitalopram administration on metabolic parameters of cortical and subcortical brain regions of Wistar rats. Acta Neuropsychiatr. 2012;24:147–154. doi: 10.1111/j.1601-5215.2011.00592.x. PubMed DOI

Ľupták M., Fišar Z., Hroudová J. Effect of Novel Antipsychotics on Energy Metabolism—In Vitro Study in Pig Brain Mitochondria. Mol. Neurobiol. 2021;58:5548–5563. doi: 10.1007/s12035-021-02498-4. PubMed DOI

Luethi D., Liechti M.E., Krähenbühl S. Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology. 2017;387:57–66. doi: 10.1016/j.tox.2017.06.004. PubMed DOI

Woynillowicz A.K., Raha S., Nicholson C.J., Holloway A.C. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function. Toxicol. Appl. Pharmacol. 2012;265:122–127. doi: 10.1016/j.taap.2012.08.020. PubMed DOI PMC

Li Y., Couch L., Higuchi M., Fang J.L., Guo L. Mitochondrial dysfunction induced by sertraline, an antidepressant agent. Toxicol. Sci. 2012;127:582–591. doi: 10.1093/toxsci/kfs100. PubMed DOI PMC

Hynes J., Nadanaciva S., Swiss R., Carey C., Kirwan S., Will Y. A high-throughput dual parameter assay for assessing drug-induced mitochondrial dysfunction provides additional predictivity over two established mitochondrial toxicity assays. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA. 2013;27:560–569. doi: 10.1016/j.tiv.2012.11.002. PubMed DOI

Nadanaciva S., Bernal A., Aggeler R., Capaldi R., Will Y. Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays. Toxicol. Vitr. 2007;21:902–911. doi: 10.1016/j.tiv.2007.01.011. PubMed DOI

Ferreira G.K., Cardoso M.R., Jeremias I.C., Gonçalves C.L., Freitas K.V., Antonini R., Scaini G., Rezin G.T., Quevedo J., Streck E.L. Fluvoxamine alters the activity of energy metabolism enzymes in the brain. Braz. J. Psychiatry. 2014;36:220–226. doi: 10.1590/1516-4446-2013-1202. PubMed DOI

Holper L., Ben-Shachar D., Mann J.J. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur. Neuropsychopharmacol. 2019;29:986–1002. doi: 10.1016/j.euroneuro.2019.06.010. PubMed DOI

Velasco A., González-Calvo V., Alvarez F.J., Dueñas A., García-Roldán J.L. Effect of trazodone on oxidative metabolism of rat brain in vitro. Rev. Esp. Fisiol. 1985;41:201–205. PubMed

Dykens J.A., Jamieson J.D., Marroquin L.D., Nadanaciva S., Xu J.J., Dunn M.C., Smith A.R., Will Y. In vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone. Toxicol. Sci. 2008;103:335–345. doi: 10.1093/toxsci/kfn056. PubMed DOI

Rana P., Nadanaciva S., Will Y. Mitochondrial membrane potential measurement of H9c2 cells grown in high-glucose and galactose-containing media does not provide additional predictivity towards mitochondrial assessment. Toxicol. Vitr. 2011;25:580–587. doi: 10.1016/j.tiv.2010.11.016. PubMed DOI

Swiss R., Niles A., Cali J.J., Nadanaciva S., Will Y. Validation of a HTS-amenable assay to detect drug-induced mitochondrial toxicity in the absence and presence of cell death. Toxicol. Vitr. 2013;27:1789–1797. doi: 10.1016/j.tiv.2013.05.007. PubMed DOI

Nabekura T., Ishikawa S., Tanase M., Okumura T., Kawasaki T. Antidepressants induce toxicity in human placental BeWo cells. Curr. Res. Toxicol. 2022;3:100073. doi: 10.1016/j.crtox.2022.100073. PubMed DOI PMC

Rodrigues D.O., Bristot I.J., Klamt F., Frizzo M.E. Sertraline reduces glutamate uptake in human platelets. Neurotoxicology. 2015;51:192–197. doi: 10.1016/j.neuro.2015.10.014. PubMed DOI

Gerö D., Szoleczky P., Suzuki K., Módis K., Oláh G., Coletta C., Szabo C. Cell-based screening identifies paroxetine as an inhibitor of diabetic endothelial dysfunction. Diabetes. 2013;62:953–964. doi: 10.2337/db12-0789. PubMed DOI PMC

Salin K., Auer S.K., Rey B., Selman C., Metcalfe N.B. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. Biol. Sci. 2015;282:20151028. doi: 10.1098/rspb.2015.1028. PubMed DOI PMC

Brand M.D. The efficiency and plasticity of mitochondrial energy transduction. Pt 5Biochem. Soc. Trans. 2005;33:897–904. doi: 10.1042/BST0330897. PubMed DOI

Finberg J.P., Rabey J.M. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front. Pharmacol. 2016;7:340. doi: 10.3389/fphar.2016.00340. PubMed DOI PMC

Bryant S.G., Guernsey B.G., Ingrim N.B. Review of bupropion. Clin. Pharm. 1983;2:525–537. PubMed

Gandolfi O., Barbaccia M.L., Chuang D.M., Costa E. Daily bupropion injections for 3 weeks attenuate the NE stimulation of adenylate cyclase and the number of beta-adrenergic recognition sites in rat frontal cortex. Neuropharmacology. 1983;22:927–929. doi: 10.1016/0028-3908(83)90143-0. PubMed DOI

Ferris R.M., Cooper B.R., Maxwell R.A. Studies of bupropion’s mechanism of antidepressant activity. Pt 2J. Clin. Psychiatry. 1983;44:74–78. PubMed

Johnson A.M. An overview of the animal pharmacology of paroxetine. Acta Psychiatr. Scand. Suppl. 1989;350:14–20. doi: 10.1111/j.1600-0447.1989.tb07161.x. PubMed DOI

Pivac N., Mück-Seler D., Sagud M., Jakovljević M., Mustapić M., Mihaljević-Peles A. Long-term sertraline treatment and peripheral biochemical markers in female depressed patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2003;27:759–765. doi: 10.1016/S0278-5846(03)00105-2. PubMed DOI

Mukherjee J., Yang Z.Y. Monoamine oxidase A inhibition by fluoxetine: An in vitro and in vivo study. Synapse. 1999;31:285–289. doi: 10.1002/(SICI)1098-2396(19990315)31:4<285::AID-SYN6>3.0.CO;2-5. PubMed DOI

Mukherjee J., Yang Z.Y. Evaluation of monoamine oxidase B inhibition by fluoxetine (Prozac): An In Vitro and In Vivo study. Eur. J. Pharmacol. 1997;337:111–114. doi: 10.1016/S0014-2999(97)01233-8. PubMed DOI

Fisar Z., Hroudová J., Raboch J. Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers. Neuro Endocrinol. Lett. 2010;31:645–656. PubMed

Baumann P., Hiemke C., Ulrich S., Eckermann G., Gaertner I., Gerlach M., Kuss H.J., Laux G., Müller-Oerlinghausen B., Rao M.L., et al. The AGNP-TDM Expert Group Consensus Guidelines: Therapeutic Drug Monitoring in Psychiatry. Pharmacopsychiatry. 2004;37:243–265. doi: 10.1055/s-2004-832687. PubMed DOI

Laib K., Brünen S., Pfeifer P., Vincent P., Hiemke C. 1023—Therapeutic drug-monitoring of bupropion for depression. Eur. Psychiatry. 2013;28:1. doi: 10.1016/S0924-9338(13)76150-9. PubMed DOI

Szewczyk A., Wojtczak L. Mitochondria as a pharmacological target. Pharmacol. Rev. 2002;54:101–127. doi: 10.1124/pr.54.1.101. PubMed DOI

D’Sa C., Duman R.S. Antidepressants and neuroplasticity. Bipolar Disord. 2002;4:183–194. doi: 10.1034/j.1399-5618.2002.01203.x. PubMed DOI

Stahl S.M., Pradko J.F., Haight B.R., Modell J.G., Rockett C.B., Learned-Coughlin S. A Review of the Neuropharmacology of Bupropion, a Dual Norepinephrine and Dopamine Reuptake Inhibitor. Prim. Care Companion J. Clin. Psychiatry. 2004;6:159–166. doi: 10.4088/PCC.v06n0403. PubMed DOI PMC

Bundgaard C., Jørgensen M., Larsen F. Pharmacokinetic modelling of blood-brain barrier transport of escitalopram in rats. Biopharm. Drug Dispos. 2007;28:349–360. doi: 10.1002/bdd.562. PubMed DOI

Jacobsen J., Plenge P., Sachs B., Pehrson A., Cajina M., Du Y., Roberts W., Rudder M., Dalvi P., Robinson T., et al. The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse. Psychopharmacology. 2014;231:4527–4540. doi: 10.1007/s00213-014-3595-1. PubMed DOI PMC

Bolo N.R., Hodé Y., Nédélec J.F., Lainé E., Wagner G., Macher J.P. Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacology. 2000;23:428–438. doi: 10.1016/S0893-133X(00)00116-0. PubMed DOI

Nedahl M., Johansen S.S., Linnet K. Reference Brain/Blood Concentrations of Citalopram, Duloxetine, Mirtazapine and Sertraline. J. Anal. Toxicol. 2018;42:149–156. doi: 10.1093/jat/bkx098. PubMed DOI

Chow J., Thompson A.J., Iqbal F., Zaidi W., Syed N.I. The Antidepressant Sertraline Reduces Synaptic Transmission Efficacy and Synaptogenesis Between Identified Lymnaea Neurons. Front. Mar. Sci. 2020;7:603789. doi: 10.3389/fmars.2020.603789. DOI

Solek P., Mytych J., Tabecka-Lonczynska A., Sowa-Kucma M., Koziorowski M. Toxic effect of antidepressants on male reproductive system cells: Evaluation of possible fertility reduction mechanism. J. Physiol. Pharmacol. 2021;72:367–379. doi: 10.26402/jpp.2021.3.06. PubMed DOI

Chen F., Wegener G., Madsen T.M., Nyengaard J.R. Mitochondrial plasticity of the hippocampus in a genetic rat model of depression after antidepressant treatment. Synapse. 2013;67:127–134. doi: 10.1002/syn.21622. PubMed DOI

Filipović D., Novak B., Xiao J., Yan Y., Bernardi R.E., Turck C.W. Chronic fluoxetine treatment in socially-isolated rats modulates the prefrontal cortex synaptoproteome. J. Proteom. 2023;282:104925. doi: 10.1016/j.jprot.2023.104925. PubMed DOI

Ait Tayeb A.E.K., Poinsignon V., Chappell K., Bouligand J., Becquemont L., Verstuyft C. Major Depressive Disorder and Oxidative Stress: A Review of Peripheral and Genetic Biomarkers According to Clinical Characteristics and Disease Stages. Antioxidants. 2023;12:942. doi: 10.3390/antiox12040942. PubMed DOI PMC

Shao A., Lin D., Wang L., Tu S., Lenahan C., Zhang J. Oxidative Stress at the Crossroads of Aging, Stroke and Depression. Aging Dis. 2020;11:1537–1566. doi: 10.14336/AD.2020.0225. PubMed DOI PMC

Vaváková M., Ďuračková Z., Trebatická J. Markers of Oxidative Stress and Neuroprogression in Depression Disorder. Oxidative Med. Cell. Longev. 2015;2015:898393. doi: 10.1155/2015/898393. PubMed DOI PMC

Westenberg H.G., Sandner C. Tolerability and safety of fluvoxamine and other antidepressants. Int. J. Clin. Pract. 2006;60:482–491. doi: 10.1111/j.1368-5031.2006.00865.x. PubMed DOI PMC

Sanchez C., Reines E.H., Montgomery S.A. A comparative review of escitalopram, paroxetine, and sertraline: Are they all alike? Int. Clin. Psychopharmacol. 2014;29:185–196. doi: 10.1097/YIC.0000000000000023. PubMed DOI PMC

Nieuwstraten C.E., Dolovich L.R. Bupropion versus selective serotonin-reuptake inhibitors for treatment of depression. Ann. Pharmacother. 2001;35:1608–1613. doi: 10.1345/aph.1A099. PubMed DOI

Patel K., Allen S., Haque M.N., Angelescu I., Baumeister D., Tracy D.K. Bupropion: A systematic review and meta-analysis of effectiveness as an antidepressant. Ther. Adv. Psychopharmacol. 2016;6:99–144. doi: 10.1177/2045125316629071. PubMed DOI PMC

Fagiolini A., Comandini A., Catena Dell’Osso M., Kasper S. Rediscovering trazodone for the treatment of major depressive disorder. CNS Drugs. 2012;26:1033–1049. doi: 10.1007/s40263-012-0010-5. PubMed DOI PMC

Prado C.E., Watt S., Crowe S.F. A meta-analysis of the effects of antidepressants on cognitive functioning in depressed and non-depressed samples. Neuropsychol. Rev. 2018;28:32–72. doi: 10.1007/s11065-018-9369-5. PubMed DOI

Bartels C., Wagner M., Wolfsgruber S., Ehrenreich H., Schneider A. Impact of SSRI Therapy on Risk of Conversion from Mild Cognitive Impairment to Alzheimer’s Dementia in Individuals with Previous Depression. Am. J. Psychiatry. 2018;175:232–241. doi: 10.1176/appi.ajp.2017.17040404. PubMed DOI

Blumberg M.J., Vaccarino S.R., McInerney S.J. Procognitive Effects of Antidepressants and Other Therapeutic Agents in Major Depressive Disorder: A Systematic Review. J. Clin. Psychiatry. 2020;81:19r13200. doi: 10.4088/JCP.19r13200. PubMed DOI

Gonçalo A.M.G., Vieira-Coelho M.A. The effects of trazodone on human cognition: A systematic review. Eur. J. Clin. Pharmacol. 2021;77:1623–1637. doi: 10.1007/s00228-021-03161-6. PubMed DOI PMC

Sommerlad A., Werbeloff N., Perera G., Smith T., Costello H., Mueller C., Kormilitzin A., Broadbent M., Nevado-Holgado A., Lovestone S., et al. Effect of trazodone on cognitive decline in people with dementia: Cohort study using UK routinely collected data. Int. J. Geriatr. Psychiatry. 2021;37:1–12. doi: 10.1002/gps.5625. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...