CoQ10 and Mitochondrial Dysfunction in Alzheimer's Disease

. 2024 Feb 02 ; 13 (2) : . [epub] 20240202

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38397789

Grantová podpora
Cooperatio Charles University
MH CZ-DRO VFN64165 General University Hospital in Prague
NU23-04-00032 Ministry of Health Czech Republic

The progress in understanding the pathogenesis and treatment of Alzheimer's disease (AD) is based on the recognition of the primary causes of the disease, which can be deduced from the knowledge of risk factors and biomarkers measurable in the early stages of the disease. Insights into the risk factors and the time course of biomarker abnormalities point to a role for the connection of amyloid beta (Aβ) pathology, tau pathology, mitochondrial dysfunction, and oxidative stress in the onset and development of AD. Coenzyme Q10 (CoQ10) is a lipid antioxidant and electron transporter in the mitochondrial electron transport system. The availability and activity of CoQ10 is crucial for proper mitochondrial function and cellular bioenergetics. Based on the mitochondrial hypothesis of AD and the hypothesis of oxidative stress, the regulation of the efficiency of the oxidative phosphorylation system by means of CoQ10 can be considered promising in restoring the mitochondrial function impaired in AD, or in preventing the onset of mitochondrial dysfunction and the development of amyloid and tau pathology in AD. This review summarizes the knowledge on the pathophysiology of AD, in which CoQ10 may play a significant role, with the aim of evaluating the perspective of the pharmacotherapy of AD with CoQ10 and its analogues.

Zobrazit více v PubMed

Mattson M.P., Arumugam T.V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab. 2018;27:1176–1199. doi: 10.1016/j.cmet.2018.05.011. PubMed DOI PMC

Zia A., Pourbagher-Shahri A.M., Farkhondeh T., Samarghandian S. Molecular and cellular pathways contributing to brain aging. Behav. Brain Funct. 2021;17:6. doi: 10.1186/s12993-021-00179-9. PubMed DOI PMC

Tanaka M., Vecsei L. Editorial of Special Issue ‘Dissecting Neurological and Neuropsychiatric Diseases: Neurodegeneration and Neuroprotection’. Int. J. Mol. Sci. 2022;23:6991. doi: 10.3390/ijms23136991. PubMed DOI PMC

Picca A., Calvani R., Coelho-Junior H.J., Landi F., Bernabei R., Marzetti E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants. 2020;9:647. doi: 10.3390/antiox9080647. PubMed DOI PMC

Hroudová J., Singh N., Fišar Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer’s disease. BioMed Res. Int. 2014;2014:175062. doi: 10.1155/2014/175062. PubMed DOI PMC

Grimm A., Eckert A. Brain aging and neurodegeneration: From a mitochondrial point of view. J. Neurochem. 2017;143:418–431. doi: 10.1111/jnc.14037. PubMed DOI PMC

Wu Y., Chen M., Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019;49:35–45. doi: 10.1016/j.mito.2019.07.003. PubMed DOI

Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer’s Disease and Identifying Promising Drug Targets. Biomolecules. 2022;12:1676. doi: 10.3390/biom12111676. PubMed DOI PMC

Hroudová J., Fišar Z. Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen. Res. 2013;8:363–375. doi: 10.3969/j.issn.1673-5374.2013.04.009. PubMed DOI PMC

Rauchova H. Coenzyme Q10 effects in neurological diseases. Physiol. Res. 2021;70((Suppl. 4)):S683–S714. doi: 10.33549/physiolres.934712. PubMed DOI PMC

Pereira C.F., Santos A.E., Moreira P.I., Pereira A.C., Sousa F.J., Cardoso S.M., Cruz M.T. Is Alzheimer’s disease an inflammasomopathy? Ageing Res. Rev. 2019;56:100966. doi: 10.1016/j.arr.2019.100966. PubMed DOI

2023 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2023;19:1598–1695. doi: 10.1002/alz.13016. PubMed DOI

Liu P.P., Xie Y., Meng X.Y., Kang J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther. 2019;4:29. doi: 10.1038/s41392-019-0063-8. PubMed DOI PMC

Penke B., Szucs M., Bogar F. New Pathways Identify Novel Drug Targets for the Prevention and Treatment of Alzheimer’s Disease. Int. J. Mol. Sci. 2023;24:5383. doi: 10.3390/ijms24065383. PubMed DOI PMC

Penke B., Bogar F., Fulop L. beta-Amyloid and the Pathomechanisms of Alzheimer’s Disease: A Comprehensive View. Molecules. 2017;22:1692. doi: 10.3390/molecules22101692. PubMed DOI PMC

Schon E.A., Area-Gomez E. Mitochondria-associated ER membranes in Alzheimer disease. Mol. Cell. Neurosci. 2013;55:26–36. doi: 10.1016/j.mcn.2012.07.011. PubMed DOI

Eysert F., Kinoshita P.F., Mary A., Vaillant-Beuchot L., Checler F., Chami M. Molecular Dysfunctions of Mitochondria-Associated Membranes (MAMs) in Alzheimer’s Disease. Int. J. Mol. Sci. 2020;21:9521. doi: 10.3390/ijms21249521. PubMed DOI PMC

Jack C.R., Jr., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B., Holtzman D.M., Jagust W., Jessen F., Karlawish J., et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018. PubMed DOI PMC

McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC

Cummings J., Zhou Y., Lee G., Zhong K., Fonseca J., Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dement. 2023;9:e12385. doi: 10.1002/trc2.12385. PubMed DOI PMC

Jack C.R., Jr., Knopman D.S., Jagust W.J., Shaw L.M., Aisen P.S., Weiner M.W., Petersen R.C., Trojanowski J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–128. doi: 10.1016/S1474-4422(09)70299-6. PubMed DOI PMC

Wareham L.K., Liddelow S.A., Temple S., Benowitz L.I., Di Polo A., Wellington C., Goldberg J.L., He Z., Duan X., Bu G., et al. Solving neurodegeneration: Common mechanisms and strategies for new treatments. Mol. Neurodegener. 2022;17:23. doi: 10.1186/s13024-022-00524-0. PubMed DOI PMC

Rysz J., Franczyk B., Rysz-Gorzynska M., Gluba-Brzozka A. Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int. J. Mol. Sci. 2021;23:183. doi: 10.3390/ijms23010183. PubMed DOI PMC

Avramopoulos D. Genetics of Alzheimer’s disease: Recent advances. Genome Med. 2009;1:34. doi: 10.1186/gm34. PubMed DOI PMC

Sims R., Hill M., Williams J. The multiplex model of the genetics of Alzheimer’s disease. Nat. Neurosci. 2020;23:311–322. doi: 10.1038/s41593-020-0599-5. PubMed DOI

Troutwine B.R., Hamid L., Lysaker C.R., Strope T.A., Wilkins H.M. Apolipoprotein E and Alzheimer’s disease. Acta Pharm. Sin. B. 2022;12:496–510. doi: 10.1016/j.apsb.2021.10.002. PubMed DOI PMC

Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G.W., Roses A.D., Haines J.L., Pericak-Vance M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–923. doi: 10.1126/science.8346443. PubMed DOI

Shi Y., Yamada K., Liddelow S.A., Smith S.T., Zhao L., Luo W., Tsai R.M., Spina S., Grinberg L.T., Rojas J.C., et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549:523–527. doi: 10.1038/nature24016. PubMed DOI PMC

Gao X., Chen Q., Yao H., Tan J., Liu Z., Zhou Y., Zou Z. Epigenetics in Alzheimer’s Disease. Front. Aging Neurosci. 2022;14:911635. doi: 10.3389/fnagi.2022.911635. PubMed DOI PMC

Bateman R.J., Xiong C., Benzinger T.L., Fagan A.M., Goate A., Fox N.C., Marcus D.S., Cairns N.J., Xie X., Blazey T.M., et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 2012;367:795–804. doi: 10.1056/NEJMoa1202753. PubMed DOI PMC

van der Flier W.M., Scheltens P. Epidemiology and risk factors of dementia. J. Neurol. Neurosurg. Psychiatry. 2005;76((Suppl. 5)):v2–v7. doi: 10.1136/jnnp.2005.082867. PubMed DOI PMC

Demetrius L.A., Eckert A., Grimm A. Sex differences in Alzheimer’s disease: Metabolic reprogramming and therapeutic intervention. Trends Endocrinol. Metab. 2021;32:963–979. doi: 10.1016/j.tem.2021.09.004. PubMed DOI

Andrews S.J., Fulton-Howard B., Goate A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 2020;19:326–335. doi: 10.1016/S1474-4422(19)30435-1. PubMed DOI PMC

Ramos-Cejudo J., Wisniewski T., Marmar C., Zetterberg H., Blennow K., de Leon M.J., Fossati S. Traumatic Brain Injury and Alzheimer’s Disease: The Cerebrovascular Link. EBioMedicine. 2018;28:21–30. doi: 10.1016/j.ebiom.2018.01.021. PubMed DOI PMC

Gaugler J., James B., Johnson T., Reimer J., Solis M., Weuve J., Buckley R.F., Hohman T.J. 2022 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2022;18:700–789. doi: 10.1002/alz.12638. PubMed DOI

Bellou V., Belbasis L., Tzoulaki I., Middleton L.T., Ioannidis J.P.A., Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: An umbrella review of systematic reviews and meta-analyses. Alzheimer’s Dement. 2017;13:406–418. doi: 10.1016/j.jalz.2016.07.152. PubMed DOI

Evans D.A., Hebert L.E., Beckett L.A., Scherr P.A., Albert M.S., Chown M.J., Pilgrim D.M., Taylor J.O. Education and other measures of socioeconomic status and risk of incident Alzheimer disease in a defined population of older persons. Arch. Neurol. 1997;54:1399–1405. doi: 10.1001/archneur.1997.00550230066019. PubMed DOI

Flicker L. Modifiable lifestyle risk factors for Alzheimer’s disease. J. Alzheimer’s Dis. 2010;20:803–811. doi: 10.3233/JAD-2010-091624. PubMed DOI

Douros A., Santella C., Dell’Aniello S., Azoulay L., Renoux C., Suissa S., Brassard P. Infectious Disease Burden and the Risk of Alzheimer’s Disease: A Population-Based Study. J. Alzheimer’s Dis. 2021;81:329–338. doi: 10.3233/JAD-201534. PubMed DOI

Luchsinger J.A., Reitz C., Honig L.S., Tang M.X., Shea S., Mayeux R. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology. 2005;65:545–551. doi: 10.1212/01.wnl.0000172914.08967.dc. PubMed DOI PMC

Yan X., Hu Y., Wang B., Wang S., Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer’s Disease. Front. Neurosci. 2020;14:530219. doi: 10.3389/fnins.2020.530219. PubMed DOI PMC

Patel V.N., Chorawala M.R., Shah M.B., Shah K.C., Dave B.P., Shah M.P., Patel T.M. Emerging Pathophysiological Mechanisms Linking Diabetes Mellitus and Alzheimer’s Disease: An Old Wine in a New Bottle. J. Alzheimer’s Dis. Rep. 2022;6:349–357. doi: 10.3233/ADR-220021. PubMed DOI PMC

Baldeiras I., Santana I., Leitao M.J., Vieira D., Duro D., Mroczko B., Kornhuber J., Lewczuk P. Erlangen Score as a tool to predict progression from mild cognitive impairment to dementia in Alzheimer’s disease. Alzheimer’s Res. Ther. 2019;11:2. doi: 10.1186/s13195-018-0456-x. PubMed DOI PMC

Marquez F., Yassa M.A. Neuroimaging Biomarkers for Alzheimer’s Disease. Mol. Neurodegener. 2019;14:21. doi: 10.1186/s13024-019-0325-5. PubMed DOI PMC

Leuzy A., Chiotis K., Lemoine L., Gillberg P.G., Almkvist O., Rodriguez-Vieitez E., Nordberg A. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol. Psychiatry. 2019;24:1112–1134. doi: 10.1038/s41380-018-0342-8. PubMed DOI PMC

Vlassenko A.G., Benzinger T.L., Morris J.C. PET amyloid-beta imaging in preclinical Alzheimer’s disease. Biochim. Biophys. Acta. 2012;1822:370–379. doi: 10.1016/j.bbadis.2011.11.005. PubMed DOI PMC

Gordon B.A., Blazey T.M., Su Y., Hari-Raj A., Dincer A., Flores S., Christensen J., McDade E., Wang G., Xiong C., et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: A longitudinal study. Lancet Neurol. 2018;17:241–250. doi: 10.1016/S1474-4422(18)30028-0. PubMed DOI PMC

Hampel H., Nistico R., Seyfried N.T., Levey A.I., Modeste E., Lemercier P., Baldacci F., Toschi N., Garaci F., Perry G., et al. Omics sciences for systems biology in Alzheimer’s disease: State-of-the-art of the evidence. Ageing Res. Rev. 2021;69:101346. doi: 10.1016/j.arr.2021.101346. PubMed DOI

Butterfield D.A., Reed T., Newman S.F., Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic. Biol. Med. 2007;43:658–677. doi: 10.1016/j.freeradbiomed.2007.05.037. PubMed DOI PMC

Fišar Z., Hroudová J., Hansiková H., Spáčilová J., Lelková P., Wenchich L., Jirák R., Zvěřová M., Zeman J., Martásek P., et al. Mitochondrial respiration in the platelets of patients with Alzheimer’s disease. Curr. Alzheimer Res. 2016;13:930–941. doi: 10.2174/1567205013666160314150856. PubMed DOI

Fišar Z., Hansíková H., Křížová J., Jirák R., Kitzlerová E., Zvěřová M., Hroudová J., Wenchich L., Zeman J., Raboch J. Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion. 2019;48:67–77. doi: 10.1016/j.mito.2019.07.013. PubMed DOI

Zheng C., Zhou X.W., Wang J.Z. The dual roles of cytokines in Alzheimer’s disease: Update on interleukins, TNF-alpha, TGF-beta and IFN-gamma. Transl. Neurodegener. 2016;5:7. doi: 10.1186/s40035-016-0054-4. PubMed DOI PMC

Sperling R.A., Aisen P.S., Beckett L.A., Bennett D.A., Craft S., Fagan A.M., Iwatsubo T., Jack C.R., Jr., Kaye J., Montine T.J., et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:280–292. doi: 10.1016/j.jalz.2011.03.003. PubMed DOI PMC

Long J.M., Holtzman D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell. 2019;179:312–339. doi: 10.1016/j.cell.2019.09.001. PubMed DOI PMC

Swerdlow R.H., Khan S.M. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses. 2004;63:8–20. doi: 10.1016/j.mehy.2003.12.045. PubMed DOI

Swerdlow R.H., Burns J.M., Khan S.M. The Alzheimer’s disease mitochondrial cascade hypothesis. J. Alzheimer’s Dis. 2010;20((Suppl. 2)):S265–S279. doi: 10.3233/JAD-2010-100339. PubMed DOI PMC

Swerdlow R.H. Mitochondria and Mitochondrial Cascades in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018;62:1403–1416. doi: 10.3233/JAD-170585. PubMed DOI PMC

Pires M., Rego A.C. Apoe4 and Alzheimer’s Disease Pathogenesis-Mitochondrial Deregulation and Targeted Therapeutic Strategies. Int. J. Mol. Sci. 2023;24:778. doi: 10.3390/ijms24010778. PubMed DOI PMC

Yang K., Chen Z., Gao J., Shi W., Li L., Jiang S., Hu H., Liu Z., Xu D., Wu L. The Key Roles of GSK-3beta in Regulating Mitochondrial Activity. Cell. Physiol. Biochem. 2017;44:1445–1459. doi: 10.1159/000485580. PubMed DOI

Beurel E., Grieco S.F., Jope R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther. 2015;148:114–131. doi: 10.1016/j.pharmthera.2014.11.016. PubMed DOI PMC

Behl T., Kaur D., Sehgal A., Singh S., Sharma N., Zengin G., Andronie-Cioara F.L., Toma M.M., Bungau S., Bumbu A.G. Role of Monoamine Oxidase Activity in Alzheimer’s Disease: An Insight into the Therapeutic Potential of Inhibitors. Molecules. 2021;26:3724. doi: 10.3390/molecules26123724. PubMed DOI PMC

Lakatos A., Derbeneva O., Younes D., Keator D., Bakken T., Lvova M., Brandon M., Guffanti G., Reglodi D., Saykin A., et al. Association between mitochondrial DNA variations and Alzheimer’s disease in the ADNI cohort. Neurobiol. Aging. 2010;31:1355–1363. doi: 10.1016/j.neurobiolaging.2010.04.031. PubMed DOI PMC

Chaturvedi R.K., Flint Beal M. Mitochondrial diseases of the brain. Free Radic. Biol. Med. 2013;63:1–29. doi: 10.1016/j.freeradbiomed.2013.03.018. PubMed DOI

Macdonald R., Barnes K., Hastings C., Mortiboys H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: Can mitochondria be targeted therapeutically? Biochem. Soc. Trans. 2018;46:891–909. doi: 10.1042/BST20170501. PubMed DOI

Shen X., Sun P., Zhang H., Yang H. Mitochondrial quality control in the brain: The physiological and pathological roles. Front. Neurosci. 2022;16:1075141. doi: 10.3389/fnins.2022.1075141. PubMed DOI PMC

Lee D., Jo M.G., Kim S.Y., Chung C.G., Lee S.B. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson’s Disease Treatment. Antioxidants. 2020;9:1056. doi: 10.3390/antiox9111056. PubMed DOI PMC

Du H., Guo L., Yan S., Sosunov A.A., McKhann G.M., Yan S.S. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA. 2010;107:18670–18675. doi: 10.1073/pnas.1006586107. PubMed DOI PMC

Du H., Yan S.S. Mitochondrial permeability transition pore in Alzheimer’s disease: Cyclophilin D and amyloid beta. Biochim. Biophys. Acta. 2010;1802:198–204. doi: 10.1016/j.bbadis.2009.07.005. PubMed DOI PMC

Calkins M.J., Reddy P.H. Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons. Biochim. Biophys. Acta. 2011;1812:507–513. doi: 10.1016/j.bbadis.2011.01.007. PubMed DOI PMC

Pavlov P.F., Hansson Petersen C., Glaser E., Ankarcrona M. Mitochondrial accumulation of APP and Abeta: Significance for Alzheimer disease pathogenesis. J. Cell. Mol. Med. 2009;13:4137–4145. doi: 10.1111/j.1582-4934.2009.00892.x. PubMed DOI PMC

Pagani L., Eckert A. Amyloid-Beta interaction with mitochondria. Int. J. Alzheimer’s Dis. 2011;2011:925050. doi: 10.4061/2011/925050. PubMed DOI PMC

Supnet C., Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium. 2010;47:183–189. doi: 10.1016/j.ceca.2009.12.014. PubMed DOI PMC

Manczak M., Calkins M.J., Reddy P.H. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: Implications for neuronal damage. Hum. Mol. Genet. 2011;20:2495–2509. doi: 10.1093/hmg/ddr139. PubMed DOI PMC

Manczak M., Reddy P.H. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum. Mol. Genet. 2012;21:5131–5146. doi: 10.1093/hmg/dds360. PubMed DOI PMC

Yao J., Irwin R.W., Zhao L., Nilsen J., Hamilton R.T., Brinton R.D. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2009;106:14670–14675. doi: 10.1073/pnas.0903563106. PubMed DOI PMC

Manczak M., Anekonda T.S., Henson E., Park B.S., Quinn J., Reddy P.H. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: Implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet. 2006;15:1437–1449. doi: 10.1093/hmg/ddl066. PubMed DOI

Caspersen C., Wang N., Yao J., Sosunov A., Chen X., Lustbader J.W., Xu H.W., Stern D., McKhann G., Yan S.D. Mitochondrial Aβ: A potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005;19:2040–2041. doi: 10.1096/fj.05-3735fje. PubMed DOI

Rhein V., Song X., Wiesner A., Ittner L.M., Baysang G., Meier F., Ozmen L., Bluethmann H., Drose S., Brandt U., et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc. Natl. Acad. Sci. USA. 2009;106:20057–20062. doi: 10.1073/pnas.0905529106. PubMed DOI PMC

Padurariu M., Ciobica A., Lefter R., Serban I.L., Stefanescu C., Chirita R. The oxidative stress hypothesis in Alzheimer’s disease. Psychiatr. Danub. 2013;25:401–409. PubMed

Miles E.A., Calder P.C. Effects of Citrus Fruit Juices and Their Bioactive Components on Inflammation and Immunity: A Narrative Review. Front. Immunol. 2021;12:712608. doi: 10.3389/fimmu.2021.712608. PubMed DOI PMC

Plascencia-Villa G., Perry G. Roles of Oxidative Stress in Synaptic Dysfunction and Neuronal Cell Death in Alzheimer’s Disease. Antioxidants. 2023;12:1628. doi: 10.3390/antiox12081628. PubMed DOI PMC

Mattson M.P. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp. Gerontol. 2009;44:625–633. doi: 10.1016/j.exger.2009.07.003. PubMed DOI PMC

Aberg F., Appelkvist E.L., Dallner G., Ernster L. Distribution and redox state of ubiquinones in rat and human tissues. Arch. Biochem. Biophys. 1992;295:230–234. doi: 10.1016/0003-9861(92)90511-T. PubMed DOI

Dallner G., Sindelar P.J. Regulation of ubiquinone metabolism. Free Radic. Biol. Med. 2000;29:285–294. doi: 10.1016/S0891-5849(00)00307-5. PubMed DOI

Pradhan N., Singh C., Singh A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021;394:2197–2222. doi: 10.1007/s00210-021-02161-8. PubMed DOI

Staiano C., Garcia-Corzo L., Mantle D., Turton N., Millichap L.E., Brea-Calvo G., Hargreaves I. Biosynthesis, Deficiency, and Supplementation of Coenzyme Q. Antioxidants. 2023;12:1469. doi: 10.3390/antiox12071469. PubMed DOI PMC

Fernandez-Del-Rio L., Clarke C.F. Coenzyme Q Biosynthesis: An Update on the Origins of the Benzenoid Ring and Discovery of New Ring Precursors. Metabolites. 2021;11:385. doi: 10.3390/metabo11060385. PubMed DOI PMC

Stefely J.A., Pagliarini D.J. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem. Sci. 2017;42:824–843. doi: 10.1016/j.tibs.2017.06.008. PubMed DOI PMC

Barcelos I.P., Haas R.H. CoQ10 and Aging. Biology. 2019;8:28. doi: 10.3390/biology8020028. PubMed DOI PMC

Bentinger M., Tekle M., Dallner G. Coenzyme Q–biosynthesis and functions. Biochem. Biophys. Res. Commun. 2010;396:74–79. doi: 10.1016/j.bbrc.2010.02.147. PubMed DOI

Manzar H., Abdulhussein D., Yap T.E., Cordeiro M.F. Cellular Consequences of Coenzyme Q10 Deficiency in Neurodegeneration of the Retina and Brain. Int. J. Mol. Sci. 2020;21:9299. doi: 10.3390/ijms21239299. PubMed DOI PMC

Ernster L., Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta. 1995;1271:195–204. doi: 10.1016/0925-4439(95)00028-3. PubMed DOI

Bentinger M., Brismar K., Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007;7:S41–S50. doi: 10.1016/j.mito.2007.02.006. PubMed DOI

Eriksson E.K., Agmo Hernandez V., Edwards K. Effect of ubiquinone-10 on the stability of biomimetic membranes of relevance for the inner mitochondrial membrane. Biochim. Biophys. Acta Biomembr. 2018;1860:1205–1215. doi: 10.1016/j.bbamem.2018.02.015. PubMed DOI

Echtay K.S., Winkler E., Klingenberg M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature. 2000;408:609–613. doi: 10.1038/35046114. PubMed DOI

Walter L., Miyoshi H., Leverve X., Bernard P., Fontaine E. Regulation of the mitochondrial permeability transition pore by ubiquinone analogs. A progress report. Free Radic. Res. 2002;36:405–412. doi: 10.1080/10715760290021252. PubMed DOI

Li X., Zhan J., Hou Y., Chen S., Hou Y., Xiao Z., Luo D., Lin D. Coenzyme Q10 suppresses oxidative stress and apoptosis via activating the Nrf-2/NQO-1 and NF-kappaB signaling pathway after spinal cord injury in rats. Am. J. Transl. Res. 2019;11:6544–6552. PubMed PMC

Genova M.L., Lenaz G. New developments on the functions of coenzyme Q in mitochondria. Biofactors. 2011;37:330–354. doi: 10.1002/biof.168. PubMed DOI

Hidalgo-Gutierrez A., Gonzalez-Garcia P., Diaz-Casado M.E., Barriocanal-Casado E., Lopez-Herrador S., Quinzii C.M., Lopez L.C. Metabolic Targets of Coenzyme Q10 in Mitochondria. Antioxidants. 2021;10:520. doi: 10.3390/antiox10040520. PubMed DOI PMC

Linnane A.W., Kios M., Vitetta L. Coenzyme Q10—Its role as a prooxidant in the formation of superoxide anion/hydrogen peroxide and the regulation of the metabolome. Mitochondrion. 2007;7:S51–S61. doi: 10.1016/j.mito.2007.03.005. PubMed DOI

Hunte C., Palsdottir H., Trumpower B.L. Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett. 2003;545:39–46. doi: 10.1016/S0014-5793(03)00391-0. PubMed DOI

Crofts A.R. The cytochrome bc1 complex: Function in the context of structure. Annu. Rev. Physiol. 2004;66:689–733. doi: 10.1146/annurev.physiol.66.032102.150251. PubMed DOI

Barragan A.M., Crofts A.R., Schulten K., Solov’yov I.A. Identification of ubiquinol binding motifs at the Qo-site of the cytochrome bc1 complex. J. Phys. Chem. B. 2015;119:433–447. doi: 10.1021/jp510022w. PubMed DOI PMC

Fišar Z., Hroudová J. Measurement of Mitochondrial Respiration in Platelets. Methods Mol. Biol. 2021;2277:269–276. doi: 10.1007/978-1-0716-1270-5_16. PubMed DOI

Hroudová J., Fišar Z. Assessment of the Effects of Drugs on Mitochondrial Respiration. Methods Mol. Biol. 2021;2277:133–142. doi: 10.1007/978-1-0716-1270-5_9. PubMed DOI

Enriquez J.A. Supramolecular Organization of Respiratory Complexes. Annu. Rev. Physiol. 2016;78:533–561. doi: 10.1146/annurev-physiol-021115-105031. PubMed DOI

Genova M.L., Lenaz G. Functional role of mitochondrial respiratory supercomplexes. Biochim. Biophys. Acta. 2014;1837:427–443. doi: 10.1016/j.bbabio.2013.11.002. PubMed DOI

Zhang M., Mileykovskaya E., Dowhan W. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J. Biol. Chem. 2002;277:43553–43556. doi: 10.1074/jbc.C200551200. PubMed DOI

Lapuente-Brun E., Moreno-Loshuertos R., Acin-Perez R., Latorre-Pellicer A., Colas C., Balsa E., Perales-Clemente E., Quiros P.M., Calvo E., Rodriguez-Hernandez M.A., et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340:1567–1570. doi: 10.1126/science.1230381. PubMed DOI

Lenaz G., Genova M.L. Supramolecular organisation of the mitochondrial respiratory chain: A new challenge for the mechanism and control of oxidative phosphorylation. Adv. Exp. Med. Biol. 2012;748:107–144. doi: 10.1007/978-1-4614-3573-0_5. PubMed DOI

Moreno-Loshuertos R., Enriquez J.A. Respiratory supercomplexes and the functional segmentation of the CoQ pool. Free Radic. Biol. Med. 2016;100:5–13. doi: 10.1016/j.freeradbiomed.2016.04.018. PubMed DOI

Hernansanz-Agustin P., Enriquez J.A. Functional segmentation of CoQ and cyt c pools by respiratory complex superassembly. Free Radic. Biol. Med. 2021;167:232–242. doi: 10.1016/j.freeradbiomed.2021.03.010. PubMed DOI

Hackenbrock C.R., Chazotte B., Gupte S.S. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J. Bioenerg. Biomembr. 1986;18:331–368. doi: 10.1007/BF00743010. PubMed DOI

Schagger H., Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000;19:1777–1783. doi: 10.1093/emboj/19.8.1777. PubMed DOI PMC

Cogliati S., Cabrera-Alarcon J.L., Enriquez J.A. Regulation and functional role of the electron transport chain supercomplexes. Biochem. Soc. Trans. 2021;49:2655–2668. doi: 10.1042/BST20210460. PubMed DOI PMC

Enriquez J.A., Lenaz G. Coenzyme q and the respiratory chain: Coenzyme q pool and mitochondrial supercomplexes. Mol. Syndromol. 2014;5:119–140. doi: 10.1159/000363364. PubMed DOI PMC

Acin-Perez R., Enriquez J.A. The function of the respiratory supercomplexes: The plasticity model. Biochim. Biophys. Acta. 2014;1837:444–450. doi: 10.1016/j.bbabio.2013.12.009. PubMed DOI

Lenaz G., Genova M.L. Kinetics of integrated electron transfer in the mitochondrial respiratory chain: Random collisions vs. solid state electron channeling. Am. J. Physiol. Cell Physiol. 2007;292:C1221–C1239. doi: 10.1152/ajpcell.00263.2006. PubMed DOI

Sheykhhasan M., Amini R., Soleimani Asl S., Saidijam M., Hashemi S.M., Najafi R. Neuroprotective effects of coenzyme Q10-loaded exosomes obtained from adipose-derived stem cells in a rat model of Alzheimer’s disease. Biomed. Pharmacother. 2022;152:113224. doi: 10.1016/j.biopha.2022.113224. PubMed DOI

Fišar Z., Hroudová J., Singh N., Kopřivová A., Macečková D. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration. Folia Biol. 2016;62:53–66. PubMed

Cardoso S., Carvalho C., Correia S.C., Seica R.M., Moreira P.I. Alzheimer’s Disease: From Mitochondrial Perturbations to Mitochondrial Medicine. Brain Pathol. 2016;26:632–647. doi: 10.1111/bpa.12402. PubMed DOI PMC

Bosetti F., Brizzi F., Barogi S., Mancuso M., Siciliano G., Tendi E.A., Murri L., Rapoport S.I., Solaini G. Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol. Aging. 2002;23:371–376. doi: 10.1016/S0197-4580(01)00314-1. PubMed DOI

Cardoso S.M., Santana I., Swerdlow R.H., Oliveira C.R. Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Abeta toxicity. J. Neurochem. 2004;89:1417–1426. doi: 10.1111/j.1471-4159.2004.02438.x. PubMed DOI

Fišar Z., Jirák R., Zvěřová M., Setnička V., Habartová L., Hroudová J., Vaníčková Z., Raboch J. Plasma amyloid beta levels and platelet mitochondrial respiration in patients with Alzheimer’s disease. Clin. Biochem. 2019;72:71–80. doi: 10.1016/j.clinbiochem.2019.04.003. PubMed DOI

Choi H., Park H.H., Koh S.H., Choi N.Y., Yu H.J., Park J., Lee Y.J., Lee K.Y. Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway. Neurotoxicology. 2012;33:85–90. doi: 10.1016/j.neuro.2011.12.005. PubMed DOI

Yamagishi K., Ikeda A., Moriyama Y., Chei C.L., Noda H., Umesawa M., Cui R., Nagao M., Kitamura A., Yamamoto Y., et al. Serum coenzyme Q10 and risk of disabling dementia: The Circulatory Risk in Communities Study (CIRCS) Atherosclerosis. 2014;237:400–403. doi: 10.1016/j.atherosclerosis.2014.09.017. PubMed DOI

Santa-Mara I., Santpere G., MacDonald M.J., Gomez de Barreda E., Hernandez F., Moreno F.J., Ferrer I., Avila J. Coenzyme q induces tau aggregation, tau filaments, and Hirano bodies. J. Neuropathol. Exp. Neurol. 2008;67:428–434. doi: 10.1097/NEN.0b013e31816fc9b6. PubMed DOI

Jimenez-Jimenez F.J., Alonso-Navarro H., Garcia-Martin E., Agundez J.A.G. Coenzyme Q10 and Dementia: A Systematic Review. Antioxidants. 2023;12:533. doi: 10.3390/antiox12020533. PubMed DOI PMC

Hampel H., Hardy J., Blennow K., Chen C., Perry G., Kim S.H., Villemagne V.L., Aisen P., Vendruscolo M., Iwatsubo T., et al. The Amyloid-beta Pathway in Alzheimer’s Disease. Mol. Psychiatry. 2021;26:5481–5503. doi: 10.1038/s41380-021-01249-0. PubMed DOI PMC

Frontinan-Rubio J., Rabanal-Ruiz Y., Duran-Prado M., Alcain F.J. The Protective Effect of Ubiquinone against the Amyloid Peptide in Endothelial Cells Is Isoprenoid Chain Length-Dependent. Antioxidants. 2021;10:1806. doi: 10.3390/antiox10111806. PubMed DOI PMC

Cummings J., Aisen P.S., DuBois B., Frolich L., Jack C.R., Jr., Jones R.W., Morris J.C., Raskin J., Dowsett S.A., Scheltens P. Drug development in Alzheimer’s disease: The path to 2025. Alzheimer’s Res. Ther. 2016;8:39. doi: 10.1186/s13195-016-0207-9. PubMed DOI PMC

Ishrat T., Khan M.B., Hoda M.N., Yousuf S., Ahmad M., Ansari M.A., Ahmad A.S., Islam F. Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav. Brain Res. 2006;171:9–16. doi: 10.1016/j.bbr.2006.03.009. PubMed DOI

Llanos-Gonzalez E., Sancho-Bielsa F.J., Frontinan-Rubio J., Rabanal-Ruiz Y., Garcia-Carpintero S., Chicano E., Ubeda-Banon I., Flores-Cuadrado A., Gimenez-Llort L., Alcain F.J., et al. Spatial and Temporal Protein Modules Signatures Associated with Alzheimer Disease in 3xTg-AD Mice Are Restored by Early Ubiquinol Supplementation. Antioxidants. 2023;12:747. doi: 10.3390/antiox12030747. PubMed DOI PMC

Duran-Prado M., Frontinan J., Santiago-Mora R., Peinado J.R., Parrado-Fernandez C., Gomez-Almagro M.V., Moreno M., Lopez-Dominguez J.A., Villalba J.M., Alcain F.J. Coenzyme Q10 protects human endothelial cells from beta-amyloid uptake and oxidative stress-induced injury. PLoS ONE. 2014;9:e109223. doi: 10.1371/journal.pone.0109223. PubMed DOI PMC

Galasko D.R., Peskind E., Clark C.M., Quinn J.F., Ringman J.M., Jicha G.A., Cotman C., Cottrell B., Montine T.J., Thomas R.G., et al. Antioxidants for Alzheimer disease: A randomized clinical trial with cerebrospinal fluid biomarker measures. Arch. Neurol. 2012;69:836–841. doi: 10.1001/archneurol.2012.85. PubMed DOI PMC

Testai L., Martelli A., Flori L., Cicero A.F.G., Colletti A. Coenzyme Q(10): Clinical Applications beyond Cardiovascular Diseases. Nutrients. 2021;13:1697. doi: 10.3390/nu13051697. PubMed DOI PMC

Jiang X., Guo Y., Cui L., Huang L., Guo Q., Huang G. Study of Diet Habits and Cognitive Function in the Chinese Middle-Aged and Elderly Population: The Association between Folic Acid, B Vitamins, Vitamin D, Coenzyme Q10 Supplementation and Cognitive Ability. Nutrients. 2023;15:1243. doi: 10.3390/nu15051243. PubMed DOI PMC

Kleinová L., Cerman J., Hlávka J., Hort J. New pharmacological options in the treatment of Alzheimer’s disease (Nové farmakologické možnosti v léčbě Alzheimerovy nemoci) Ceska a Slovenska Neurologie a Neurochirurgie. 2022;85:462–469. doi: 10.48095/cccsnn2022462. DOI

Butler M., Nelson V.A., Davila H., Ratner E., Fink H.A., Hemmy L.S., McCarten J.R., Barclay T.R., Brasure M., Kane R.L. Over-the-Counter Supplement Interventions to Prevent Cognitive Decline, Mild Cognitive Impairment, and Clinical Alzheimer-Type Dementia: A Systematic Review. Ann. Intern. Med. 2018;168:52–62. doi: 10.7326/M17-1530. PubMed DOI

Cenini G., Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front. Pharmacol. 2019;10:902. doi: 10.3389/fphar.2019.00902. PubMed DOI PMC

Singh A., Kukreti R., Saso L., Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. 2019;24:1583. doi: 10.3390/molecules24081583. PubMed DOI PMC

Ristow M., Schmeisser S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 2011;51:327–336. doi: 10.1016/j.freeradbiomed.2011.05.010. PubMed DOI

DiMauro S., Quinzii C.M., Hirano M. Mutations in coenzyme Q10 biosynthetic genes. J. Clin. Investig. 2007;117:587–589. doi: 10.1172/JCI31423. PubMed DOI PMC

Singh R.B., Niaz M.A., Kumar A., Sindberg C.D., Moesgaard S., Littarru G.P. Effect on absorption and oxidative stress of different oral Coenzyme Q10 dosages and intake strategy in healthy men. Biofactors. 2005;25:219–224. doi: 10.1002/biof.5520250127. PubMed DOI

Ehrenhaus Masotta N., Hocht C., Contin M., Lucangioli S., Rojas A.M., Tripodi V.P. Bioavailability of coenzyme Q(10) loaded in an oleogel formulation for oral therapy: Comparison with a commercial-grade solid formulation. Int. J. Pharm. 2020;582:119315. doi: 10.1016/j.ijpharm.2020.119315. PubMed DOI

Pastor-Maldonado C.J., Suarez-Rivero J.M., Povea-Cabello S., Alvarez-Cordoba M., Villalon-Garcia I., Munuera-Cabeza M., Suarez-Carrillo A., Talaveron-Rey M., Sanchez-Alcazar J.A. Coenzyme Q(10): Novel Formulations and Medical Trends. Int. J. Mol. Sci. 2020;21:8432. doi: 10.3390/ijms21228432. PubMed DOI PMC

Pravst I., Rodriguez Aguilera J.C., Cortes Rodriguez A.B., Jazbar J., Locatelli I., Hristov H., Zmitek K. Comparative Bioavailability of Different Coenzyme Q10 Formulations in Healthy Elderly Individuals. Nutrients. 2020;12:784. doi: 10.3390/nu12030784. PubMed DOI PMC

Takahashi M., Takahashi K. Water-soluble CoQ10 as A Promising Anti-aging Agent for Neurological Dysfunction in Brain Mitochondria. Antioxidants. 2019;8:61. doi: 10.3390/antiox8030061. PubMed DOI PMC

Bhagavan H.N., Chopra R.K. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion. 2007;7:S78–S88. doi: 10.1016/j.mito.2007.03.003. PubMed DOI

Suarez-Rivero J.M., Pastor-Maldonado C.J., Povea-Cabello S., Alvarez-Cordoba M., Villalon-Garcia I., Munuera-Cabeza M., Suarez-Carrillo A., Talaveron-Rey M., Sanchez-Alcazar J.A. Coenzyme Q(10) Analogues: Benefits and Challenges for Therapeutics. Antioxidants. 2021;10:236. doi: 10.3390/antiox10020236. PubMed DOI PMC

Bhagavan H.N., Chopra R.K. Coenzyme Q10: Absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic. Res. 2006;40:445–453. doi: 10.1080/10715760600617843. PubMed DOI

Mantle D., Dybring A. Bioavailability of Coenzyme Q(10): An Overview of the Absorption Process and Subsequent Metabolism. Antioxidants. 2020;9:386. doi: 10.3390/antiox9050386. PubMed DOI PMC

Smith K.M., Matson S., Matson W.R., Cormier K., Del Signore S.J., Hagerty S.W., Stack E.C., Ryu H., Ferrante R.J. Dose ranging and efficacy study of high-dose coenzyme Q10 formulations in Huntington’s disease mice. Biochim. Biophys. Acta. 2006;1762:616–626. doi: 10.1016/j.bbadis.2006.03.004. PubMed DOI

Belousova M., Tokareva O.G., Gorodetskaya E., Kalenikova E.I., Medvedev O.S. Intravenous Treatment With Coenzyme Q10 Improves Neurological Outcome and Reduces Infarct Volume After Transient Focal Brain Ischemia in Rats. J. Cardiovasc. Pharmacol. 2016;67:103–109. doi: 10.1097/FJC.0000000000000320. PubMed DOI

Kamzalov S., Sumien N., Forster M.J., Sohal R.S. Coenzyme Q intake elevates the mitochondrial and tissue levels of Coenzyme Q and alpha-tocopherol in young mice. J. Nutr. 2003;133:3175–3180. doi: 10.1093/jn/133.10.3175. PubMed DOI

Matthews R.T., Yang L., Browne S., Baik M., Beal M.F. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl. Acad. Sci. USA. 1998;95:8892–8897. doi: 10.1073/pnas.95.15.8892. PubMed DOI PMC

Kwong L.K., Kamzalov S., Rebrin I., Bayne A.C., Jana C.K., Morris P., Forster M.J., Sohal R.S. Effects of coenzyme Q(10) administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat. Free Radic. Biol. Med. 2002;33:627–638. doi: 10.1016/S0891-5849(02)00916-4. PubMed DOI

Acosta M.J., Vazquez Fonseca L., Desbats M.A., Cerqua C., Zordan R., Trevisson E., Salviati L. Coenzyme Q biosynthesis in health and disease. Biochim. Biophys. Acta. 2016;1857:1079–1085. doi: 10.1016/j.bbabio.2016.03.036. PubMed DOI

Beal M.F. Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J. Bioenerg. Biomembr. 2004;36:381–386. doi: 10.1023/B:JOBB.0000041772.74810.92. PubMed DOI

Ebrahimi A., Kamyab A., Hosseini S., Ebrahimi S., Ashkani-Esfahani S. Involvement of Coenzyme Q10 in Various Neurodegenerative and Psychiatric Diseases. Biochem. Res. Int. 2023;2023:5510874. doi: 10.1155/2023/5510874. PubMed DOI PMC

Dumont M., Kipiani K., Yu F., Wille E., Katz M., Calingasan N.Y., Gouras G.K., Lin M.T., Beal M.F. Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer’s disease. J. Alzheimer’s Dis. 2011;27:211–223. doi: 10.3233/JAD-2011-110209. PubMed DOI PMC

Komaki H., Faraji N., Komaki A., Shahidi S., Etaee F., Raoufi S., Mirzaei F. Investigation of protective effects of coenzyme Q10 on impaired synaptic plasticity in a male rat model of Alzheimer’s disease. Brain Res. Bull. 2019;147:14–21. doi: 10.1016/j.brainresbull.2019.01.025. PubMed DOI

Mantle D., Heaton R.A., Hargreaves I.P. Coenzyme Q10, Ageing and the Nervous System: An Overview. Antioxidants. 2021;11:2. doi: 10.3390/antiox11010002. PubMed DOI PMC

Hooff G.P., Wood W.G., Muller W.E., Eckert G.P. Isoprenoids, small GTPases and Alzheimer’s disease. Biochim. Biophys. Acta. 2010;1801:896–905. doi: 10.1016/j.bbalip.2010.03.014. PubMed DOI PMC

Raizner A.E. Coenzyme Q(10) Methodist. Debakey Cardiovasc. J. 2019;15:185–191. doi: 10.14797/mdcj-15-3-185. PubMed DOI PMC

Gueven N., Ravishankar P., Eri R., Rybalka E. Idebenone: When an antioxidant is not an antioxidant. Redox Biol. 2021;38:101812. doi: 10.1016/j.redox.2020.101812. PubMed DOI PMC

Rauchova H., Drahota Z., Bergamini C., Fato R., Lenaz G. Modification of respiratory-chain enzyme activities in brown adipose tissue mitochondria by idebenone (hydroxydecyl-ubiquinone) J. Bioenerg. Biomembr. 2008;40:85–93. doi: 10.1007/s10863-008-9134-1. PubMed DOI

Gutzmann H., Hadler D. Sustained efficacy and safety of idebenone in the treatment of Alzheimer’s disease: Update on a 2-year double-blind multicentre study. J. Neural Transm. Suppl. 1998;54:301–310. doi: 10.1007/978-3-7091-7508-8_30. PubMed DOI

Thal L.J., Grundman M., Berg J., Ernstrom K., Margolin R., Pfeiffer E., Weiner M.F., Zamrini E., Thomas R.G. Idebenone treatment fails to slow cognitive decline in Alzheimer’s disease. Neurology. 2003;61:1498–1502. doi: 10.1212/01.WNL.0000096376.03678.C1. PubMed DOI

Murphy M.P., Smith R.A. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007;47:629–656. doi: 10.1146/annurev.pharmtox.47.120505.105110. PubMed DOI

Ng L.F., Gruber J., Cheah I.K., Goo C.K., Cheong W.F., Shui G., Sit K.P., Wenk M.R., Halliwell B. The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease. Free Radic. Biol. Med. 2014;71:390–401. doi: 10.1016/j.freeradbiomed.2014.03.003. PubMed DOI

Manczak M., Mao P., Calkins M.J., Cornea A., Reddy A.P., Murphy M.P., Szeto H.H., Park B., Reddy P.H. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J. Alzheimer’s Dis. 2010;20((Suppl. 2)):S609–S631. doi: 10.3233/JAD-2010-100564. PubMed DOI PMC

McManus M.J., Murphy M.P., Franklin J.L. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci. 2011;31:15703–15715. doi: 10.1523/JNEUROSCI.0552-11.2011. PubMed DOI PMC

Young M.L., Franklin J.L. The mitochondria-targeted antioxidant MitoQ inhibits memory loss, neuropathology, and extends lifespan in aged 3xTg-AD mice. Mol. Cell. Neurosci. 2019;101:103409. doi: 10.1016/j.mcn.2019.103409. PubMed DOI PMC

Lenaz G., Fato R., Di Bernardo S., Jarreta D., Costa A., Genova M.L., Parenti Castelli G. Localization and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors. 1999;9:87–93. doi: 10.1002/biof.5520090202. PubMed DOI

Wada H., Goto H., Hagiwara S., Yamamoto Y. Redox status of coenzyme Q10 is associated with chronological age. J. Am. Geriatr. Soc. 2007;55:1141–1142. doi: 10.1111/j.1532-5415.2007.01209.x. PubMed DOI

Onur S., Niklowitz P., Fischer A., Metges C.C., Grune T., Menke T., Rimbach G., Doring F. A comparative study into alterations of coenzyme Q redox status in ageing pigs, mice, and worms. Biofactors. 2014;40:346–354. doi: 10.1002/biof.1160. PubMed DOI

Niklowitz P., Onur S., Fischer A., Laudes M., Palussen M., Menke T., Doring F. Coenzyme Q10 serum concentration and redox status in European adults: Influence of age, sex, and lipoprotein concentration. J. Clin. Biochem. Nutr. 2016;58:240–245. doi: 10.3164/jcbn.15-73. PubMed DOI PMC

Nagase M., Yamamoto Y., Mitsui J., Tsuji S. Simultaneous detection of reduced and oxidized forms of coenzyme Q10 in human cerebral spinal fluid as a potential marker of oxidative stress. J. Clin. Biochem. Nutr. 2018;63:205–210. doi: 10.3164/jcbn.17-131. PubMed DOI PMC

Fišar Z., Hroudová J., Zvěřová M., Jirák R., Raboch J., Kitzlerová E. Age-Dependent Alterations in Platelet Mitochondrial Respiration. Biomedicines. 2023;11:1564. doi: 10.3390/biomedicines11061564. PubMed DOI PMC

Hidaka T., Fujii K., Funahashi I., Fukutomi N., Hosoe K. Safety assessment of coenzyme Q10 (CoQ10) Biofactors. 2008;32:199–208. doi: 10.1002/biof.5520320124. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...