Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36421690
PubMed Central
PMC9687482
DOI
10.3390/biom12111676
PII: biom12111676
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, amyloid beta, drug, mitochondria, tau protein,
- MeSH
- Alzheimerova nemoc * metabolismus MeSH
- amyloid metabolismus MeSH
- amyloidní beta-protein metabolismus MeSH
- amyloidogenní proteiny metabolismus MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- amyloid MeSH
- amyloidní beta-protein MeSH
- amyloidogenní proteiny MeSH
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Zobrazit více v PubMed
Pereira C.F., Santos A.E., Moreira P.I., Pereira A.C., Sousa F.J., Cardoso S.M., Cruz M.T. Is Alzheimer’s disease an inflammasomopathy? Ageing Res. Rev. 2019;56:100966. doi: 10.1016/j.arr.2019.100966. PubMed DOI
Wang J., Gu B.J., Masters C.L., Wang Y.J. A systemic view of Alzheimer disease—Insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol. 2017;13:703. doi: 10.1038/nrneurol.2017.147. PubMed DOI
Goedert M., Klug A., Crowther R.A. Tau protein, the paired helical filament and Alzheimer’s disease. J. Alzheimer’s Dis. 2006;9:195–207. doi: 10.3233/JAD-2006-9S323. PubMed DOI
Moreira P.I., Carvalho C., Zhu X., Smith M.A., Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta. 2010;1802:2–10. doi: 10.1016/j.bbadis.2009.10.006. PubMed DOI
Butterfield D.A., Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019;20:148–160. doi: 10.1038/s41583-019-0132-6. PubMed DOI PMC
Plascencia-Villa G., Perry G. Neuropathologic Changes Provide Insights into Key Mechanisms Related to Alzheimer Disease and Related Dementia. Am. J. Pathol. 2022;192:1340–1346. doi: 10.1016/j.ajpath.2022.07.002. PubMed DOI PMC
Hashimoto M., Rockenstein E., Crews L., Masliah E. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromol. Med. 2003;4:21–36. doi: 10.1385/NMM:4:1-2:21. PubMed DOI
Lasagna-Reeves C.A., Castillo-Carranza D.L., Sengupta U., Guerrero-Munoz M.J., Kiritoshi T., Neugebauer V., Jackson G.R., Kayed R. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci. Rep. 2012;2:700. doi: 10.1038/srep00700. PubMed DOI PMC
Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J., Selkoe D.J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–539. doi: 10.1038/416535a. PubMed DOI
Balducci C., Beeg M., Stravalaci M., Bastone A., Sclip A., Biasini E., Tapella L., Colombo L., Manzoni C., Borsello T., et al. Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA. 2010;107:2295–2300. doi: 10.1073/pnas.0911829107. PubMed DOI PMC
Cline E.N., Bicca M.A., Viola K.L., Klein W.L. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J. Alzheimer’s Dis. 2018;64:S567–S610. doi: 10.3233/JAD-179941. PubMed DOI PMC
Hartley D.M., Walsh D.M., Ye C.P., Diehl T., Vasquez S., Vassilev P.M., Teplow D.B., Selkoe D.J. Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 1999;19:8876–8884. doi: 10.1523/JNEUROSCI.19-20-08876.1999. PubMed DOI PMC
Haass C., Selkoe D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 2007;8:101–112. doi: 10.1038/nrm2101. PubMed DOI
Griffiths J., Grant S.G.N. Synapse Pathology in Alzheimer’s Disease. Semin. Cell Dev. Biol. 2022. in press . PubMed DOI
Forloni G., Artuso V., La Vitola P., Balducci C. Oligomeropathies and pathogenesis of Alzheimer and Parkinson’s diseases. Mov. Disord. 2016;31:771–781. doi: 10.1002/mds.26624. PubMed DOI
Tasaki M., Ueda M., Ochiai S., Tanabe Y., Murata S., Misumi Y., Su Y., Sun X., Shinriki S., Jono H., et al. Transmission of circulating cell-free AA amyloid oligomers in exosomes vectors via a prion-like mechanism. Biochem. Biophys. Res. Commun. 2010;400:559–562. doi: 10.1016/j.bbrc.2010.08.101. PubMed DOI
Bloom G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71:505–508. doi: 10.1001/jamaneurol.2013.5847. PubMed DOI
Swardfager W., Lanctot K., Rothenburg L., Wong A., Cappell J., Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry. 2010;68:930–941. doi: 10.1016/j.biopsych.2010.06.012. PubMed DOI
Liu Z., Zhou T., Ziegler A.C., Dimitrion P., Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid. Med. Cell. Longev. 2017;2017:2525967. doi: 10.1155/2017/2525967. PubMed DOI PMC
Bhatia V., Sharma S. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J. Neurol. Sci. 2021;421:117253. doi: 10.1016/j.jns.2020.117253. PubMed DOI
Demetrius L.A., Driver J. Alzheimer’s as a metabolic disease. Biogerontology. 2013;14:641–649. doi: 10.1007/s10522-013-9479-7. PubMed DOI
De la Monte S.M., Tong M. Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem. Pharmacol. 2014;88:548–559. doi: 10.1016/j.bcp.2013.12.012. PubMed DOI PMC
Bonda D.J., Wang X., Lee H.G., Smith M.A., Perry G., Zhu X. Neuronal failure in Alzheimer’s disease: A view through the oxidative stress looking-glass. Neurosci. Bull. 2014;30:243–252. doi: 10.1007/s12264-013-1424-x. PubMed DOI PMC
Liu Z., Li T., Li P., Wei N., Zhao Z., Liang H., Ji X., Chen W., Xue M., Wei J. The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2015;2015:352723. doi: 10.1155/2015/352723. PubMed DOI PMC
Eckert A., Schmitt K., Gotz J. Mitochondrial dysfunction—The beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-β toxicity. Alzheimer’s Res. Ther. 2011;3:15. doi: 10.1186/alzrt74. PubMed DOI PMC
Jack C.R., Jr., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B., Holtzman D.M., Jagust W., Jessen F., Karlawish J., et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018. PubMed DOI PMC
McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC
Bateman R.J., Aisen P.S., De Strooper B., Fox N.C., Lemere C.A., Ringman J.M., Salloway S., Sperling R.A., Windisch M., Xiong C. Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimer’s Res. Ther. 2011;3:1. doi: 10.1186/alzrt59. PubMed DOI PMC
Bateman R.J., Xiong C., Benzinger T.L., Fagan A.M., Goate A., Fox N.C., Marcus D.S., Cairns N.J., Xie X., Blazey T.M., et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 2012;367:795–804. doi: 10.1056/NEJMoa1202753. PubMed DOI PMC
Hroudova J., Singh N., Fisar Z., Ghosh K.K. Progress in drug development for Alzheimer’s disease: An overview in relation to mitochondrial energy metabolism. Eur. J. Med. Chem. 2016;121:774–784. doi: 10.1016/j.ejmech.2016.03.084. PubMed DOI
Atkinson A.J., Colburn W.A., DeGruttola V.G., DeMets D.L., Downing G.J., Hoth D.F., Oates J.A., Peck C.C., Schooley R.T., Spilker B.A., et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001;69:89–95. doi: 10.1067/mcp.2000.113989. PubMed DOI
Yu L., Boyle P.A., Segawa E., Leurgans S., Schneider J.A., Wilson R.S., Bennett D.A. Residual decline in cognition after adjustment for common neuropathologic conditions. Neuropsychology. 2015;29:335–343. doi: 10.1037/neu0000159. PubMed DOI PMC
Bennett D.A., Buchman A.S., Boyle P.A., Barnes L.L., Wilson R.S., Schneider J.A. Religious Orders Study and Rush Memory and Aging Project. J. Alzheimer’s Dis. 2018;64:S161–S189. doi: 10.3233/JAD-179939. PubMed DOI PMC
Van der Flier W.M., Scheltens P. Epidemiology and risk factors of dementia. J. Neurol. Neurosurg. Psychiatry. 2005;76((Suppl. S5)):v2–v7. doi: 10.1136/jnnp.2005.082867. PubMed DOI PMC
Brookmeyer R., Gray S., Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health. 1998;88:1337–1342. doi: 10.2105/AJPH.88.9.1337. PubMed DOI PMC
Andrews S.J., Fulton-Howard B., Goate A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 2020;19:326–335. doi: 10.1016/S1474-4422(19)30435-1. PubMed DOI PMC
Morris J.C., Roe C.M., Xiong C., Fagan A.M., Goate A.M., Holtzman D.M., Mintun M.A. APOE predicts amyloid-β but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 2010;67:122–131. doi: 10.1002/ana.21843. PubMed DOI PMC
Troutwine B.R., Hamid L., Lysaker C.R., Strope T.A., Wilkins H.M. Apolipoprotein E and Alzheimer’s disease. Acta Pharm. Sin. B. 2022;12:496–510. doi: 10.1016/j.apsb.2021.10.002. PubMed DOI PMC
Ramos-Cejudo J., Wisniewski T., Marmar C., Zetterberg H., Blennow K., de Leon M.J., Fossati S. Traumatic Brain Injury and Alzheimer’s Disease: The Cerebrovascular Link. EBioMedicine. 2018;28:21–30. doi: 10.1016/j.ebiom.2018.01.021. PubMed DOI PMC
Bellou V., Belbasis L., Tzoulaki I., Middleton L.T., Ioannidis J.P.A., Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: An umbrella review of systematic reviews and meta-analyses. Alzheimer’s Dement. 2017;13:406–418. doi: 10.1016/j.jalz.2016.07.152. PubMed DOI
Gaugler J., James B., Johnson T., Reimer J., Solis M., Weuve J., Buckley R.F., Hohman T.J. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2022;18:700–789. doi: 10.1002/alz.12638. PubMed DOI
Ott A., Breteler M.M., van Harskamp F., Claus J.J., van der Cammen T.J., Grobbee D.E., Hofman A. Prevalence of Alzheimer’s disease and vascular dementia: Association with education. The Rotterdam study. BMJ. 1995;310:970–973. doi: 10.1136/bmj.310.6985.970. PubMed DOI PMC
Evans D.A., Hebert L.E., Beckett L.A., Scherr P.A., Albert M.S., Chown M.J., Pilgrim D.M., Taylor J.O. Education and other measures of socioeconomic status and risk of incident Alzheimer disease in a defined population of older persons. Arch. Neurol. 1997;54:1399–1405. doi: 10.1001/archneur.1997.00550230066019. PubMed DOI
Flicker L. Modifiable lifestyle risk factors for Alzheimer’s disease. J. Alzheimer’s Dis. 2010;20:803–811. doi: 10.3233/JAD-2010-091624. PubMed DOI
Douros A., Santella C., Dell’Aniello S., Azoulay L., Renoux C., Suissa S., Brassard P. Infectious Disease Burden and the Risk of Alzheimer’s Disease: A Population-Based Study. J. Alzheimer’s Dis. 2021;81:329–338. doi: 10.3233/JAD-201534. PubMed DOI
Hofman A., Ott A., Breteler M.M., Bots M.L., Slooter A.J., van Harskamp F., van Duijn C.N., Van Broeckhoven C., Grobbee D.E. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet. 1997;349:151–154. doi: 10.1016/S0140-6736(96)09328-2. PubMed DOI
Luchsinger J.A., Reitz C., Honig L.S., Tang M.X., Shea S., Mayeux R. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology. 2005;65:545–551. doi: 10.1212/01.wnl.0000172914.08967.dc. PubMed DOI PMC
Carlsson C.M. Type 2 diabetes mellitus, dyslipidemia, and Alzheimer’s disease. J. Alzheimer’s Dis. 2010;20:711–722. doi: 10.3233/JAD-2010-100012. PubMed DOI PMC
Patel V.N., Chorawala M.R., Shah M.B., Shah K.C., Dave B.P., Shah M.P., Patel T.M. Emerging Pathophysiological Mechanisms Linking Diabetes Mellitus and Alzheimer’s Disease: An Old Wine in a New Bottle. J. Alzheimer’s Dis. Rep. 2022;6:349–357. doi: 10.3233/ADR-220021. PubMed DOI PMC
Yan X., Hu Y., Wang B., Wang S., Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer’s Disease. Front. Neurosci. 2020;14:530219. doi: 10.3389/fnins.2020.530219. PubMed DOI PMC
Nelson P.T., Head E., Schmitt F.A., Davis P.R., Neltner J.H., Jicha G.A., Abner E.L., Smith C.D., Van Eldik L.J., Kryscio R.J., et al. Alzheimer’s disease is not “brain aging”: Neuropathological, genetic, and epidemiological human studies. Acta Neuropathol. 2011;121:571–587. doi: 10.1007/s00401-011-0826-y. PubMed DOI PMC
Corral-Debrinski M., Horton T., Lott M.T., Shoffner J.M., Beal M.F., Wallace D.C. Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age. Nat. Genet. 1992;2:324–329. doi: 10.1038/ng1292-324. PubMed DOI
Ojaimi J., Masters C.L., McLean C., Opeskin K., McKelvie P., Byrne E. Irregular distribution of cytochrome c oxidase protein subunits in aging and Alzheimer’s disease. Ann. Neurol. 1999;46:656–660. doi: 10.1002/1531-8249(199910)46:4<656::AID-ANA16>3.0.CO;2-Q. PubMed DOI
Weidling I., Swerdlow R.H. Mitochondrial Dysfunction and Stress Responses in Alzheimer’s Disease. Biology. 2019;8:39. doi: 10.3390/biology8020039. PubMed DOI PMC
Weidling I.W., Swerdlow R.H. Mitochondria in Alzheimer’s disease and their potential role in Alzheimer’s proteostasis. Exp. Neurol. 2020;330:113321. doi: 10.1016/j.expneurol.2020.113321. PubMed DOI PMC
Mielke M.M., Vemuri P., Rocca W.A. Clinical epidemiology of Alzheimer’s disease: Assessing sex and gender differences. Clin. Epidemiol. 2014;6:37–48. doi: 10.2147/CLEP.S37929. PubMed DOI PMC
Snyder H.M., Asthana S., Bain L., Brinton R., Craft S., Dubal D.B., Espeland M.A., Gatz M., Mielke M.M., Raber J., et al. Sex biology contributions to vulnerability to Alzheimer’s disease: A think tank convened by the Women’s Alzheimer’s Research Initiative. Alzheimer’s Dement. 2016;12:1186–1196. doi: 10.1016/j.jalz.2016.08.004. PubMed DOI PMC
Demetrius L.A., Eckert A., Grimm A. Sex differences in Alzheimer’s disease: Metabolic reprogramming and therapeutic intervention. Trends Endocrinol. Metab. 2021;32:963–979. doi: 10.1016/j.tem.2021.09.004. PubMed DOI
Breijyeh Z., Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. 2020;25:5789. doi: 10.3390/molecules25245789. PubMed DOI PMC
Samieri C., Perier M.C., Gaye B., Proust-Lima C., Helmer C., Dartigues J.F., Berr C., Tzourio C., Empana J.P. Association of Cardiovascular Health Level in Older Age with Cognitive Decline and Incident Dementia. JAMA. 2018;320:657–664. doi: 10.1001/jama.2018.11499. PubMed DOI PMC
Ogino E., Manly J.J., Schupf N., Mayeux R., Gu Y. Current and past leisure time physical activity in relation to risk of Alzheimer’s disease in older adults. Alzheimer’s Dement. 2019;15:1603–1611. doi: 10.1016/j.jalz.2019.07.013. PubMed DOI PMC
Morris M.C., Tangney C.C., Wang Y., Sacks F.M., Bennett D.A., Aggarwal N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s Dement. 2015;11:1007–1014. doi: 10.1016/j.jalz.2014.11.009. PubMed DOI PMC
Sando S.B., Melquist S., Cannon A., Hutton M., Sletvold O., Saltvedt I., White L.R., Lydersen S., Aasly J. Risk-reducing effect of education in Alzheimer’s disease. Int. J. Geriatr. Psychiatry. 2008;23:1156–1162. doi: 10.1002/gps.2043. PubMed DOI
Fann J.R., Ribe A.R., Pedersen H.S., Fenger-Gron M., Christensen J., Benros M.E., Vestergaard M. Long-term risk of dementia among people with traumatic brain injury in Denmark: A population-based observational cohort study. Lancet Psychiatry. 2018;5:424–431. doi: 10.1016/S2215-0366(18)30065-8. PubMed DOI
Plassman B.L., Havlik R.J., Steffens D.C., Helms M.J., Newman T.N., Drosdick D., Phillips C., Gau B.A., Welsh-Bohmer K.A., Burke J.R., et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology. 2000;55:1158–1166. doi: 10.1212/WNL.55.8.1158. PubMed DOI
Cherbuin N., Kim S., Anstey K.J. Dementia risk estimates associated with measures of depression: A systematic review and meta-analysis. BMJ Open. 2015;5:e008853. doi: 10.1136/bmjopen-2015-008853. PubMed DOI PMC
Terracciano A., Sutin A.R., An Y., O’Brien R.J., Ferrucci L., Zonderman A.B., Resnick S.M. Personality and risk of Alzheimer’s disease: New data and meta-analysis. Alzheimer’s Dement. 2014;10:179–186. doi: 10.1016/j.jalz.2013.03.002. PubMed DOI PMC
Avramopoulos D. Genetics of Alzheimer’s disease: Recent advances. Genome Med. 2009;1:34. doi: 10.1186/gm34. PubMed DOI PMC
Loy C.T., Schofield P.R., Turner A.M., Kwok J.B. Genetics of dementia. Lancet. 2014;383:828–840. doi: 10.1016/S0140-6736(13)60630-3. PubMed DOI
Ramos C., Aguillon D., Cordano C., Lopera F. Genetics of dementia: Insights from Latin America. Dement. Neuropsychol. 2020;14:223–236. doi: 10.1590/1980-57642020dn14-030004. PubMed DOI PMC
Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G.W., Roses A.D., Haines J.L., Pericak-Vance M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–923. doi: 10.1126/science.8346443. PubMed DOI
Chen H., Chen F., Jiang Y., Zhang L., Hu G., Sun F., Zhang M., Ji Y., Chen Y., Che G., et al. A Review of ApoE4 Interference Targeting Mitophagy Molecular Pathways for Alzheimer’s Disease. Front. Aging Neurosci. 2022;14:881239. doi: 10.3389/fnagi.2022.881239. PubMed DOI PMC
Zhao N., Liu C.C., Van Ingelgom A.J., Martens Y.A., Linares C., Knight J.A., Painter M.M., Sullivan P.M., Bu G. Apolipoprotein E4 Impairs Neuronal Insulin Signaling by Trapping Insulin Receptor in the Endosomes. Neuron. 2017;96:115–129.e5. doi: 10.1016/j.neuron.2017.09.003. PubMed DOI PMC
Shi Y., Yamada K., Liddelow S.A., Smith S.T., Zhao L., Luo W., Tsai R.M., Spina S., Grinberg L.T., Rojas J.C., et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549:523–527. doi: 10.1038/nature24016. PubMed DOI PMC
Harold D., Abraham R., Hollingworth P., Sims R., Gerrish A., Hamshere M.L., Pahwa J.S., Moskvina V., Dowzell K., Williams A., et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 2009;41:1088–1093. doi: 10.1038/ng.440. PubMed DOI PMC
Lambert J.C., Ibrahim-Verbaas C.A., Harold D., Naj A.C., Sims R., Bellenguez C., DeStafano A.L., Bis J.C., Beecham G.W., Grenier-Boley B., et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013;45:1452–1458. doi: 10.1038/ng.2802. PubMed DOI PMC
Jansen I.E., Savage J.E., Watanabe K., Bryois J., Williams D.M., Steinberg S., Sealock J., Karlsson I.K., Hagg S., Athanasiu L., et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019;51:404–413. doi: 10.1038/s41588-018-0311-9. PubMed DOI PMC
Marioni R.E., Harris S.E., Zhang Q., McRae A.F., Hagenaars S.P., Hill W.D., Davies G., Ritchie C.W., Gale C.R., Starr J.M., et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry. 2018;8:99. doi: 10.1038/s41398-018-0150-6. PubMed DOI PMC
Kunkle B.W., Grenier-Boley B., Sims R., Bis J.C., Damotte V., Naj A.C., Boland A., Vronskaya M., van der Lee S.J., Amlie-Wolf A., et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat. Genet. 2019;51:414–430. doi: 10.1038/s41588-019-0358-2. PubMed DOI PMC
Murray M.E., Lowe V.J., Graff-Radford N.R., Liesinger A.M., Cannon A., Przybelski S.A., Rawal B., Parisi J.E., Petersen R.C., Kantarci K., et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain. 2015;138:1370–1381. doi: 10.1093/brain/awv050. PubMed DOI PMC
Bellenguez C., Charbonnier C., Grenier-Boley B., Quenez O., Le Guennec K., Nicolas G., Chauhan G., Wallon D., Rousseau S., Richard A.C., et al. Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol. Aging. 2017;59:220.e1–220.e9. doi: 10.1016/j.neurobiolaging.2017.07.001. PubMed DOI
Fu W.Y., Ip N.Y. The role of genetic risk factors of Alzheimer’s disease in synaptic dysfunction. Semin. Cell Dev. Biol. 2022 doi: 10.1016/j.semcdb.2022.07.011. in press . PubMed DOI
Nikolac Perkovic M., Videtic Paska A., Konjevod M., Kouter K., Svob Strac D., Nedic Erjavec G., Pivac N. Epigenetics of Alzheimer’s Disease. Biomolecules. 2021;11:195. doi: 10.3390/biom11020195. PubMed DOI PMC
Villa C., Stoccoro A. Epigenetic Peripheral Biomarkers for Early Diagnosis of Alzheimer’s Disease. Genes. 2022;13:1308. doi: 10.3390/genes13081308. PubMed DOI PMC
Gao X., Chen Q., Yao H., Tan J., Liu Z., Zhou Y., Zou Z. Epigenetics in Alzheimer’s Disease. Front. Aging Neurosci. 2022;14:911635. doi: 10.3389/fnagi.2022.911635. PubMed DOI PMC
Maity S., Farrell K., Navabpour S., Narayanan S.N., Jarome T.J. Epigenetic Mechanisms in Memory and Cognitive Decline Associated with Aging and Alzheimer’s Disease. Int. J. Mol. Sci. 2021;22:12280. doi: 10.3390/ijms222212280. PubMed DOI PMC
Pellegrini C., Pirazzini C., Sala C., Sambati L., Yusipov I., Kalyakulina A., Ravaioli F., Kwiatkowska K.M., Durso D.F., Ivanchenko M., et al. A Meta-Analysis of Brain DNA Methylation across Sex, Age, and Alzheimer’s Disease Points for Accelerated Epigenetic Aging in Neurodegeneration. Front. Aging Neurosci. 2021;13:639428. doi: 10.3389/fnagi.2021.639428. PubMed DOI PMC
Zhao Y., Jaber V., Alexandrov P.N., Vergallo A., Lista S., Hampel H., Lukiw W.J. microRNA-Based Biomarkers in Alzheimer’s Disease (AD) Front. Neurosci. 2020;14:585432. doi: 10.3389/fnins.2020.585432. PubMed DOI PMC
Arora T., Prashar V., Singh R., Barwal T.S., Changotra H., Sharma A., Parkash J. Dysregulated miRNAs in Progression and Pathogenesis of Alzheimer’s Disease. Mol. Neurobiol. 2022;59:6107–6124. doi: 10.1007/s12035-022-02950-z. PubMed DOI
Zetterberg H. Blood-based biomarkers for Alzheimer’s disease—An update. J. Neurosci. Methods. 2019;319:2–6. doi: 10.1016/j.jneumeth.2018.10.025. PubMed DOI
Marquez F., Yassa M.A. Neuroimaging Biomarkers for Alzheimer’s Disease. Mol. Neurodegener. 2019;14:21. doi: 10.1186/s13024-019-0325-5. PubMed DOI PMC
Jack C.R., Jr., Bennett D.A., Blennow K., Carrillo M.C., Feldman H.H., Frisoni G.B., Hampel H., Jagust W.J., Johnson K.A., Knopman D.S., et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–547. doi: 10.1212/WNL.0000000000002923. PubMed DOI PMC
Hampel H., Cummings J., Blennow K., Gao P., Jack C.R., Jr., Vergallo A. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat. Rev. Neurol. 2021;17:580–589. doi: 10.1038/s41582-021-00520-w. PubMed DOI
Baldeiras I., Santana I., Leitao M.J., Vieira D., Duro D., Mroczko B., Kornhuber J., Lewczuk P. Erlangen Score as a tool to predict progression from mild cognitive impairment to dementia in Alzheimer’s disease. Alzheimer’s Res. Ther. 2019;11:2. doi: 10.1186/s13195-018-0456-x. PubMed DOI PMC
Leuzy A., Chiotis K., Lemoine L., Gillberg P.G., Almkvist O., Rodriguez-Vieitez E., Nordberg A. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol. Psychiatry. 2019;24:1112–1134. doi: 10.1038/s41380-018-0342-8. PubMed DOI PMC
Vlassenko A.G., Benzinger T.L., Morris J.C. PET amyloid-β imaging in preclinical Alzheimer’s disease. Biochim. Biophys. Acta. 2012;1822:370–379. doi: 10.1016/j.bbadis.2011.11.005. PubMed DOI PMC
Campese N., Palermo G., Del Gamba C., Beatino M.F., Galgani A., Belli E., Del Prete E., Della Vecchia A., Vergallo A., Siciliano G., et al. Progress regarding the context-of-use of tau as biomarker of Alzheimer’s disease and other neurodegenerative diseases. Expert Rev. Proteomics. 2021;18:27–48. doi: 10.1080/14789450.2021.1886929. PubMed DOI
Hampel H., Burger K., Teipel S.J., Bokde A.L., Zetterberg H., Blennow K. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimer’s Dement. 2008;4:38–48. doi: 10.1016/j.jalz.2007.08.006. PubMed DOI
Zetterberg H. Applying fluid biomarkers to Alzheimer’s disease. Am. J. Physiol. Cell Physiol. 2017;313:C3–C10. doi: 10.1152/ajpcell.00007.2017. PubMed DOI PMC
Gordon B.A., Blazey T.M., Su Y., Hari-Raj A., Dincer A., Flores S., Christensen J., McDade E., Wang G., Xiong C., et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: A longitudinal study. Lancet Neurol. 2018;17:241–250. doi: 10.1016/S1474-4422(18)30028-0. PubMed DOI PMC
Murray M.E., Kouri N., Lin W.L., Jack C.R., Jr., Dickson D.W., Vemuri P. Clinicopathologic assessment and imaging of tauopathies in neurodegenerative dementias. Alzheimer’s Res. Ther. 2014;6:1. doi: 10.1186/alzrt231. PubMed DOI PMC
Nakamura A., Kaneko N., Villemagne V.L., Kato T., Doecke J., Dore V., Fowler C., Li Q.X., Martins R., Rowe C., et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554:249–254. doi: 10.1038/nature25456. PubMed DOI
Li Y., Schindler S.E., Bollinger J.G., Ovod V., Mawuenyega K.G., Weiner M.W., Shaw L.M., Masters C.L., Fowler C.J., Trojanowski J.Q., et al. Validation of Plasma Amyloid-β 42/40 for Detecting Alzheimer Disease Amyloid Plaques. Neurology. 2022;98:e688–e699. doi: 10.1212/WNL.0000000000013211. PubMed DOI PMC
Leuzy A., Mattsson-Carlgren N., Palmqvist S., Janelidze S., Dage J.L., Hansson O. Blood-based biomarkers for Alzheimer’s disease. EMBO Mol. Med. 2022;14:e14408. doi: 10.15252/emmm.202114408. PubMed DOI PMC
Cummings J., Kinney J. Biomarkers for Alzheimer’s Disease: Context of Use, Qualification, and Roadmap for Clinical Implementation. Medicina. 2022;58:952. doi: 10.3390/medicina58070952. PubMed DOI PMC
Saint-Pol J., Gosselet F., Duban-Deweer S., Pottiez G., Karamanos Y. Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells. 2020;9:851. doi: 10.3390/cells9040851. PubMed DOI PMC
Park S.A., Jang Y.J., Kim M.K., Lee S.M., Moon S.Y. Promising Blood Biomarkers for Clinical Use in Alzheimer’s Disease: A Focused Update. J. Clin. Neurol. 2022;18:401–409. doi: 10.3988/jcn.2022.18.4.401. PubMed DOI PMC
Carmona P., Molina M., Lopez-Tobar E., Toledano A. Vibrational spectroscopic analysis of peripheral blood plasma of patients with Alzheimer’s disease. Anal. Bioanal. Chem. 2015;407:7747–7756. doi: 10.1007/s00216-015-8940-7. PubMed DOI
O’Bryant S.E., Edwards M., Johnson L., Hall J., Villarreal A.E., Britton G.B., Quiceno M., Cullum C.M., Graff-Radford N.R. A blood screening test for Alzheimer’s disease. Alzheimer’s Dement. 2016;3:83–90. doi: 10.1016/j.dadm.2016.06.004. PubMed DOI PMC
Wang G., Zhou Y., Huang F.J., Tang H.D., Xu X.H., Liu J.J., Wang Y., Deng Y.L., Ren R.J., Xu W., et al. Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. J. Proteome Res. 2014;13:2649–2658. doi: 10.1021/pr5000895. PubMed DOI
Platenik J., Fisar Z., Buchal R., Jirak R., Kitzlerova E., Zverova M., Raboch J. GSK3β, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014;50:83–93. doi: 10.1016/j.pnpbp.2013.12.001. PubMed DOI
Hampel H., Nistico R., Seyfried N.T., Levey A.I., Modeste E., Lemercier P., Baldacci F., Toschi N., Garaci F., Perry G., et al. Omics sciences for systems biology in Alzheimer’s disease: State-of-the-art of the evidence. Ageing Res. Rev. 2021;69:101346. doi: 10.1016/j.arr.2021.101346. PubMed DOI
Habartova L., Hrubesova K., Syslova K., Vondrousova J., Fisar Z., Jirak R., Raboch J., Setnicka V. Blood-based molecular signature of Alzheimer’s disease via spectroscopy and metabolomics. Clin. Biochem. 2019;72:58–63. doi: 10.1016/j.clinbiochem.2019.04.004. PubMed DOI
Butterfield D.A., Reed T., Newman S.F., Sultana R. Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic. Biol. Med. 2007;43:658–677. doi: 10.1016/j.freeradbiomed.2007.05.037. PubMed DOI PMC
Fišar Z., Hroudová J., Hansiková H., Spáčilová J., Lelková P., Wenchich L., Jirák R., Zeman J., Martásek P., Raboch J. Mitochondrial respiration in the platelets of patients with Alzheimer’s disease. Curr. Alzheimer Res. 2016;13:930–941. doi: 10.2174/1567205013666160314150856. PubMed DOI
Fisar Z., Hansikova H., Krizova J., Jirak R., Kitzlerova E., Zverova M., Hroudova J., Wenchich L., Zeman J., Raboch J. Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion. 2019;48:67–77. doi: 10.1016/j.mito.2019.07.013. PubMed DOI
Zheng C., Zhou X.W., Wang J.Z. The dual roles of cytokines in Alzheimer’s disease: Update on interleukins, TNF-α, TGF-β and IFN-γ. Transl. Neurodegener. 2016;5:7. doi: 10.1186/s40035-016-0054-4. PubMed DOI PMC
Mazzucchi S., Palermo G., Campese N., Galgani A., Della Vecchia A., Vergallo A., Siciliano G., Ceravolo R., Hampel H., Baldacci F. The role of synaptic biomarkers in the spectrum of neurodegenerative diseases. Expert Rev. Proteom. 2020;17:543–559. doi: 10.1080/14789450.2020.1831388. PubMed DOI
Alawode D.O.T., Fox N.C., Zetterberg H., Heslegrave A.J. Alzheimer’s Disease Biomarkers Revisited from the Amyloid Cascade Hypothesis Standpoint. Front. Neurosci. 2022;16:837390. doi: 10.3389/fnins.2022.837390. PubMed DOI PMC
Chatterjee P., Pedrini S., Stoops E., Goozee K., Villemagne V.L., Asih P.R., Verberk I.M.W., Dave P., Taddei K., Sohrabi H.R., et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl. Psychiatry. 2021;11:27. doi: 10.1038/s41398-020-01137-1. PubMed DOI PMC
Guerreiro R., Wojtas A., Bras J., Carrasquillo M., Rogaeva E., Majounie E., Cruchaga C., Sassi C., Kauwe J.S., Younkin S., et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 2013;368:117–127. doi: 10.1056/NEJMoa1211851. PubMed DOI PMC
Wolfe C.M., Fitz N.F., Nam K.N., Lefterov I., Koldamova R. The Role of APOE and TREM2 in Alzheimer’s Disease-Current Understanding and Perspectives. Int. J. Mol. Sci. 2018;20:81. doi: 10.3390/ijms20010081. PubMed DOI PMC
Lewczuk P., Riederer P., O’Bryant S.E., Verbeek M.M., Dubois B., Visser P.J., Jellinger K.A., Engelborghs S., Ramirez A., Parnetti L., et al. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J. Biol. Psychiatry. 2018;19:244–328. doi: 10.1080/15622975.2017.1375556. PubMed DOI PMC
Jack C.R., Jr., Holtzman D.M. Biomarker modeling of Alzheimer’s disease. Neuron. 2013;80:1347–1358. doi: 10.1016/j.neuron.2013.12.003. PubMed DOI PMC
Leuzy A., Ashton N.J., Mattsson-Carlgren N., Dodich A., Boccardi M., Corre J., Drzezga A., Nordberg A., Ossenkoppele R., Zetterberg H., et al. 2020 update on the clinical validity of cerebrospinal fluid amyloid, tau, and phospho-tau as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:2121–2139. doi: 10.1007/s00259-021-05258-7. PubMed DOI PMC
Li R.X., Ma Y.H., Tan L., Yu J.T. Prospective biomarkers of Alzheimer’s disease: A systematic review and meta-analysis. Ageing Res. Rev. 2022;81:101699. doi: 10.1016/j.arr.2022.101699. PubMed DOI
Cullen N.C., Leuzy A., Janelidze S., Palmqvist S., Svenningsson A.L., Stomrud E., Dage J.L., Mattsson-Carlgren N., Hansson O. Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat. Commun. 2021;12:3555. doi: 10.1038/s41467-021-23746-0. PubMed DOI PMC
Fisar Z., Jirak R., Zverova M., Setnicka V., Habartova L., Hroudova J., Vanickova Z., Raboch J. Plasma amyloid β levels and platelet mitochondrial respiration in patients with Alzheimer’s disease. Clin. Biochem. 2019;72:71–80. doi: 10.1016/j.clinbiochem.2019.04.003. PubMed DOI
Kitzlerova E., Fisar Z., Jirak R., Zverova M., Hroudova J., Benakova H., Raboch J. Plasma homocysteine in Alzheimer’s disease with or without co-morbid depressive symptoms. Neuro Endocrinol. Lett. 2014;35:42–49. PubMed
Zverova M., Fisar Z., Jirak R., Kitzlerova E., Hroudova J., Raboch J. Plasma cortisol in Alzheimer’s disease with or without depressive symptoms. Med. Sci. Monit. 2013;19:681–689. doi: 10.12659/MSM.889110. PubMed DOI PMC
Zverova M., Kitzlerova E., Fisar Z., Jirak R., Hroudova J., Benakova H., Lelkova P., Martasek P., Raboch J. Interplay between the APOE Genotype and Possible Plasma Biomarkers in Alzheimer’s Disease. Curr. Alzheimer Res. 2018;15:938–950. doi: 10.2174/1567205015666180601090533. PubMed DOI
Hansson O., Edelmayer R.M., Boxer A.L., Carrillo M.C., Mielke M.M., Rabinovici G.D., Salloway S., Sperling R., Zetterberg H., Teunissen C.E. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimer’s Dement. 2022:1–18. doi: 10.1002/alz.12756. PubMed DOI PMC
Jack C.R., Jr., Knopman D.S., Jagust W.J., Petersen R.C., Weiner M.W., Aisen P.S., Shaw L.M., Vemuri P., Wiste H.J., Weigand S.D., et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–216. doi: 10.1016/S1474-4422(12)70291-0. PubMed DOI PMC
Villemagne V.L., Burnham S., Bourgeat P., Brown B., Ellis K.A., Salvado O., Szoeke C., Macaulay S.L., Martins R., Maruff P., et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol. 2013;12:357–367. doi: 10.1016/S1474-4422(13)70044-9. PubMed DOI
Hyman B.T., Phelps C.H., Beach T.G., Bigio E.H., Cairns N.J., Carrillo M.C., Dickson D.W., Duyckaerts C., Frosch M.P., Masliah E., et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement. 2012;8:1–13. doi: 10.1016/j.jalz.2011.10.007. PubMed DOI PMC
Thal D.R., Rub U., Orantes M., Braak H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–1800. doi: 10.1212/WNL.58.12.1791. PubMed DOI
Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–259. doi: 10.1007/BF00308809. PubMed DOI
Braak H., Alafuzoff I., Arzberger T., Kretzschmar H., Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112:389–404. doi: 10.1007/s00401-006-0127-z. PubMed DOI PMC
Mirra S.S., Heyman A., McKeel D., Sumi S.M., Crain B.J., Brownlee L.M., Vogel F.S., Hughes J.P., van Belle G., Berg L. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology. 1991;41:479–486. doi: 10.1212/WNL.41.4.479. PubMed DOI
Alafuzoff I., Arzberger T., Al-Sarraj S., Bodi I., Bogdanovic N., Braak H., Bugiani O., Del-Tredici K., Ferrer I., Gelpi E., et al. Staging of neurofibrillary pathology in Alzheimer’s disease: A study of the BrainNet Europe Consortium. Brain Pathol. 2008;18:484–496. doi: 10.1111/j.1750-3639.2008.00147.x. PubMed DOI PMC
Tissot C., Therriault J., Kunach P., Benedet A.L., Pascoal T.A., Ashton N.J., Karikari T.K., Servaes S., Lussier F.Z., Chamoun M., et al. Comparing tau status determined via plasma pTau181, pTau231 and [(18)F]MK6240 tau-PET. EBioMedicine. 2022;76:103837. doi: 10.1016/j.ebiom.2022.103837. PubMed DOI PMC
Sperling R.A., Aisen P.S., Beckett L.A., Bennett D.A., Craft S., Fagan A.M., Iwatsubo T., Jack C.R., Jr., Kaye J., Montine T.J., et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:280–292. doi: 10.1016/j.jalz.2011.03.003. PubMed DOI PMC
Long J.M., Holtzman D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell. 2019;179:312–339. doi: 10.1016/j.cell.2019.09.001. PubMed DOI PMC
Lowe V.J., Lundt E.S., Albertson S.M., Przybelski S.A., Senjem M.L., Parisi J.E., Kantarci K., Boeve B., Jones D.T., Knopman D., et al. Neuroimaging correlates with neuropathologic schemes in neurodegenerative disease. Alzheimer’s Dement. 2019;15:927–939. doi: 10.1016/j.jalz.2019.03.016. PubMed DOI PMC
Sato C., Barthelemy N.R., Mawuenyega K.G., Patterson B.W., Gordon B.A., Jockel-Balsarotti J., Sullivan M., Crisp M.J., Kasten T., Kirmess K.M., et al. Tau Kinetics in Neurons and the Human Central Nervous System. Neuron. 2018;97:1284–1298.e7. doi: 10.1016/j.neuron.2018.02.015. PubMed DOI PMC
Di J., Cohen L.S., Corbo C.P., Phillips G.R., El Idrissi A., Alonso A.D. Abnormal tau induces cognitive impairment through two different mechanisms: Synaptic dysfunction and neuronal loss. Sci. Rep. 2016;6:20833. doi: 10.1038/srep20833. PubMed DOI PMC
Barthelemy N.R., Li Y., Joseph-Mathurin N., Gordon B.A., Hassenstab J., Benzinger T.L.S., Buckles V., Fagan A.M., Perrin R.J., Goate A.M., et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat. Med. 2020;26:398–407. doi: 10.1038/s41591-020-0781-z. PubMed DOI PMC
Koss D.J., Jones G., Cranston A., Gardner H., Kanaan N.M., Platt B. Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer’s disease and track disease progression and cognitive decline. Acta Neuropathol. 2016;132:875–895. doi: 10.1007/s00401-016-1632-3. PubMed DOI PMC
Pimplikar S.W., Nixon R.A., Robakis N.K., Shen J., Tsai L.H. Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J. Neurosci. 2010;30:14946–14954. doi: 10.1523/JNEUROSCI.4305-10.2010. PubMed DOI PMC
Herrup K. Reimagining Alzheimer’s disease—An age-based hypothesis. J. Neurosci. 2010;30:16755–16762. doi: 10.1523/JNEUROSCI.4521-10.2010. PubMed DOI PMC
Wareham L.K., Liddelow S.A., Temple S., Benowitz L.I., Di Polo A., Wellington C., Goldberg J.L., He Z., Duan X., Bu G., et al. Solving neurodegeneration: Common mechanisms and strategies for new treatments. Mol. Neurodegener. 2022;17:23. doi: 10.1186/s13024-022-00524-0. PubMed DOI PMC
Liu P.P., Xie Y., Meng X.Y., Kang J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther. 2019;4:29. doi: 10.1038/s41392-019-0063-8. PubMed DOI PMC
Karran E., De Strooper B. The amyloid cascade hypothesis: Are we poised for success or failure? J. Neurochem. 2016;139((Suppl. S2)):237–252. doi: 10.1111/jnc.13632. PubMed DOI
Hardy J.A., Higgins G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science. 1992;256:184–185. doi: 10.1126/science.1566067. PubMed DOI
Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 1991;12:383–388. doi: 10.1016/0165-6147(91)90609-V. PubMed DOI
Walsh D.M., Selkoe D.J. Aβ oligomers—A decade of discovery. J. Neurochem. 2007;101:1172–1184. doi: 10.1111/j.1471-4159.2006.04426.x. PubMed DOI
Yang T., Li S., Xu H., Walsh D.M., Selkoe D.J. Large Soluble Oligomers of Amyloid β-Protein from Alzheimer Brain Are Far Less Neuroactive Than the Smaller Oligomers to Which They Dissociate. J. Neurosci. 2017;37:152–163. doi: 10.1523/JNEUROSCI.1698-16.2016. PubMed DOI PMC
Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016;8:595–608. doi: 10.15252/emmm.201606210. PubMed DOI PMC
Jellinger K.A. Basic mechanisms of neurodegeneration: A critical update. J. Cell. Mol. Med. 2010;14:457–487. doi: 10.1111/j.1582-4934.2010.01010.x. PubMed DOI PMC
Harris L.D., Jasem S., Licchesi J.D.F. The Ubiquitin System in Alzheimer’s Disease. Adv. Exp. Med. Biol. 2020;1233:195–221. doi: 10.1007/978-3-030-38266-7_8. PubMed DOI
Richard R., Mousa S. Necroptosis in Alzheimer’s disease: Potential therapeutic target. Biomed. Pharmacother. 2022;152:113203. doi: 10.1016/j.biopha.2022.113203. PubMed DOI
Mangalmurti A., Lukens J.R. How neurons die in Alzheimer’s disease: Implications for neuroinflammation. Curr. Opin. Neurobiol. 2022;75:102575. doi: 10.1016/j.conb.2022.102575. PubMed DOI PMC
Musiek E.S., Holtzman D.M. Three dimensions of the amyloid hypothesis: Time, space and ‘wingmen’. Nat. Neurosci. 2015;18:800–806. doi: 10.1038/nn.4018. PubMed DOI PMC
Folch J., Ettcheto M., Petrov D., Abad S., Pedros I., Marin M., Olloquequi J., Camins A. Review of the advances in treatment for Alzheimer disease: Strategies for combating β-amyloid protein. Neurol. Engl. Ed. 2018;33:47–58. doi: 10.1016/j.nrleng.2015.03.019. PubMed DOI
De Strooper B., Karran E. The Cellular Phase of Alzheimer’s Disease. Cell. 2016;164:603–615. doi: 10.1016/j.cell.2015.12.056. PubMed DOI
Haass C., Kaether C., Thinakaran G., Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med. 2012;2:a006270. doi: 10.1101/cshperspect.a006270. PubMed DOI PMC
Delport A., Hewer R. The amyloid precursor protein: A converging point in Alzheimer’s disease. Mol. Neurobiol. 2022;59:4501–4516. doi: 10.1007/s12035-022-02863-x. PubMed DOI
Li X., Uemura K., Hashimoto T., Nasser-Ghodsi N., Arimon M., Lill C.M., Palazzolo I., Krainc D., Hyman B.T., Berezovska O. Neuronal activity and secreted amyloid β lead to altered amyloid β precursor protein and presenilin 1 interactions. Neurobiol. Dis. 2013;50:127–134. doi: 10.1016/j.nbd.2012.10.002. PubMed DOI PMC
Chang Y.J., Chen Y.R. The coexistence of an equal amount of Alzheimer’s amyloid-β 40 and 42 forms structurally stable and toxic oligomers through a distinct pathway. FEBS J. 2014;281:2674–2687. doi: 10.1111/febs.12813. PubMed DOI
Verma M., Vats A., Taneja V. Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann. Indian Acad. Neurol. 2015;18:138–145. doi: 10.4103/0972-2327.144284. PubMed DOI PMC
Chen G.F., Xu T.H., Yan Y., Zhou Y.R., Jiang Y., Melcher K., Xu H.E. Amyloid β: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017;38:1205–1235. doi: 10.1038/aps.2017.28. PubMed DOI PMC
Jarosz-Griffiths H.H., Noble E., Rushworth J.V., Hooper N.M. Amyloid-β Receptors: The Good, the Bad, and the Prion Protein. J. Biol. Chem. 2016;291:3174–3183. doi: 10.1074/jbc.R115.702704. PubMed DOI PMC
Canale C., Seghezza S., Vilasi S., Carrotta R., Bulone D., Diaspro A., San Biagio P.L., Dante S. Different effects of Alzheimer’s peptide Aβ(1–40) oligomers and fibrils on supported lipid membranes. Biophys. Chem. 2013;182:23–29. doi: 10.1016/j.bpc.2013.07.010. PubMed DOI
Evangelisti E., Cascella R., Becatti M., Marrazza G., Dobson C.M., Chiti F., Stefani M., Cecchi C. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases. Sci. Rep. 2016;6:32721. doi: 10.1038/srep32721. PubMed DOI PMC
Kayed R., Lasagna-Reeves C.A. Molecular mechanisms of amyloid oligomers toxicity. J. Alzheimer’s Dis. 2013;33((Suppl. S1)):S67–S78. doi: 10.3233/JAD-2012-129001. PubMed DOI
Shankar G.M., Li S., Mehta T.H., Garcia-Munoz A., Shepardson N.E., Smith I., Brett F.M., Farrell M.A., Rowan M.J., Lemere C.A., et al. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 2008;14:837–842. doi: 10.1038/nm1782. PubMed DOI PMC
Muller-Schiffmann A., Herring A., Abdel-Hafiz L., Chepkova A.N., Schable S., Wedel D., Horn A.H., Sticht H., de Souza Silva M.A., Gottmann K., et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509–525. doi: 10.1093/brain/awv355. PubMed DOI
Narayan P., Meehan S., Carver J.A., Wilson M.R., Dobson C.M., Klenerman D. Amyloid-β oligomers are sequestered by both intracellular and extracellular chaperones. Biochemistry. 2012;51:9270–9276. doi: 10.1021/bi301277k. PubMed DOI PMC
Overk C.R., Masliah E. Toward a unified therapeutics approach targeting putative amyloid-β oligomer receptors. Proc. Natl. Acad. Sci. USA. 2014;111:13680–13681. doi: 10.1073/pnas.1414554111. PubMed DOI PMC
Takuma K., Fang F., Zhang W., Yan S., Fukuzaki E., Du H., Sosunov A., McKhann G., Funatsu Y., Nakamichi N., et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-β and neuronal dysfunction. Proc. Natl. Acad. Sci. USA. 2009;106:20021–20026. doi: 10.1073/pnas.0905686106. PubMed DOI PMC
Deane R., Du Yan S., Submamaryan R.K., LaRue B., Jovanovic S., Hogg E., Welch D., Manness L., Lin C., Yu J., et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 2003;9:907–913. doi: 10.1038/nm890. PubMed DOI
Li X.H., Du L.L., Cheng X.S., Jiang X., Zhang Y., Lv B.L., Liu R., Wang J.Z., Zhou X.W. Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis. 2013;4:e673. doi: 10.1038/cddis.2013.180. PubMed DOI PMC
Batkulwar K., Godbole R., Banarjee R., Kassaar O., Williams R.J., Kulkarni M.J. Advanced Glycation End Products Modulate Amyloidogenic APP Processing and Tau Phosphorylation: A Mechanistic Link between Glycation and the Development of Alzheimer’s Disease. ACS Chem. Neurosci. 2018;9:988–1000. doi: 10.1021/acschemneuro.7b00410. PubMed DOI
Deane R., Singh I., Sagare A.P., Bell R.D., Ross N.T., LaRue B., Love R., Perry S., Paquette N., Deane R.J., et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J. Clin. Investig. 2012;122:1377–1392. doi: 10.1172/JCI58642. PubMed DOI PMC
Hampel H., Hardy J., Blennow K., Chen C., Perry G., Kim S.H., Villemagne V.L., Aisen P., Vendruscolo M., Iwatsubo T., et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry. 2021;26:5481–5503. doi: 10.1038/s41380-021-01249-0. PubMed DOI PMC
Zerbinatti C.V., Bu G. LRP and Alzheimer’s disease. Rev. Neurosci. 2005;16:123–135. doi: 10.1515/REVNEURO.2005.16.2.123. PubMed DOI
Shinohara M., Tachibana M., Kanekiyo T., Bu G. Role of LRP1 in the pathogenesis of Alzheimer’s disease: Evidence from clinical and preclinical studies. J. Lipid Res. 2017;58:1267–1281. doi: 10.1194/jlr.R075796. PubMed DOI PMC
Shibata M., Yamada S., Kumar S.R., Calero M., Bading J., Frangione B., Holtzman D.M., Miller C.A., Strickland D.K., Ghiso J., et al. Clearance of Alzheimer’s amyloid-β(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Investig. 2000;106:1489–1499. doi: 10.1172/JCI10498. PubMed DOI PMC
Viola K.L., Klein W.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 2015;129:183–206. doi: 10.1007/s00401-015-1386-3. PubMed DOI PMC
Kosik K.S., Joachim C.L., Selkoe D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA. 1986;83:4044–4048. doi: 10.1073/pnas.83.11.4044. PubMed DOI PMC
Martin L., Latypova X., Terro F. Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem. Int. 2011;58:458–471. doi: 10.1016/j.neuint.2010.12.023. PubMed DOI
Arnsten A.F.T., Datta D., Del Tredici K., Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimer’s Dement. 2021;17:115–124. doi: 10.1002/alz.12192. PubMed DOI PMC
Kametani F., Hasegawa M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer’s Disease. Front. Neurosci. 2018;12:25. doi: 10.3389/fnins.2018.00025. PubMed DOI PMC
Ward S.M., Himmelstein D.S., Lancia J.K., Binder L.I. Tau oligomers and tau toxicity in neurodegenerative disease. Biochem. Soc. Trans. 2012;40:667–671. doi: 10.1042/BST20120134. PubMed DOI PMC
Cardenas-Aguayo Mdel C., Gomez-Virgilio L., DeRosa S., Meraz-Rios M.A. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem. Neurosci. 2014;5:1178–1191. doi: 10.1021/cn500148z. PubMed DOI
Berger Z., Roder H., Hanna A., Carlson A., Rangachari V., Yue M., Wszolek Z., Ashe K., Knight J., Dickson D., et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J. Neurosci. 2007;27:3650–3662. doi: 10.1523/JNEUROSCI.0587-07.2007. PubMed DOI PMC
Lasagna-Reeves C.A., Castillo-Carranza D.L., Sengupta U., Clos A.L., Jackson G.R., Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol. Neurodegener. 2011;6:39. doi: 10.1186/1750-1326-6-39. PubMed DOI PMC
Lasagna-Reeves C.A., Sengupta U., Castillo-Carranza D., Gerson J.E., Guerrero-Munoz M., Troncoso J.C., Jackson G.R., Kayed R. The formation of tau pore-like structures is prevalent and cell specific: Possible implications for the disease phenotypes. Acta Neuropathol. Commun. 2014;2:56. doi: 10.1186/2051-5960-2-56. PubMed DOI PMC
Gerson J.E., Sengupta U., Lasagna-Reeves C.A., Guerrero-Munoz M.J., Troncoso J., Kayed R. Characterization of tau oligomeric seeds in progressive supranuclear palsy. Acta Neuropathol. Commun. 2014;2:73. doi: 10.1186/2051-5960-2-73. PubMed DOI PMC
Hernandez F., Lucas J.J., Avila J. GSK3 and tau: Two convergence points in Alzheimer’s disease. J. Alzheimer’s Dis. 2013;33((Suppl. S1)):S141–S144. doi: 10.3233/JAD-2012-129025. PubMed DOI
Hooper C., Killick R., Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 2008;104:1433–1439. doi: 10.1111/j.1471-4159.2007.05194.x. PubMed DOI PMC
Muralidar S., Ambi S.V., Sekaran S., Thirumalai D., Palaniappan B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol. 2020;163:1599–1617. doi: 10.1016/j.ijbiomac.2020.07.327. PubMed DOI
Hanger D.P., Anderton B.H., Noble W. Tau phosphorylation: The therapeutic challenge for neurodegenerative disease. Trends Mol. Med. 2009;15:112–119. doi: 10.1016/j.molmed.2009.01.003. PubMed DOI
Wang J.Z., Xia Y.Y., Grundke-Iqbal I., Iqbal K. Abnormal hyperphosphorylation of tau: Sites, regulation, and molecular mechanism of neurofibrillary degeneration. J. Alzheimer’s Dis. 2013;33((Suppl. S1)):S123–S139. doi: 10.3233/JAD-2012-129031. PubMed DOI
Soeda Y., Takashima A. New Insights Into Drug Discovery Targeting Tau Protein. Front. Mol. Neurosci. 2020;13:590896. doi: 10.3389/fnmol.2020.590896. PubMed DOI PMC
Zhang H., Cao Y., Ma L., Wei Y., Li H. Possible Mechanisms of Tau Spread and Toxicity in Alzheimer’s Disease. Front. Cell Dev. Biol. 2021;9:707268. doi: 10.3389/fcell.2021.707268. PubMed DOI PMC
Blurton-Jones M., Laferla F.M. Pathways by which Aβ facilitates tau pathology. Curr. Alzheimer Res. 2006;3:437–448. doi: 10.2174/156720506779025242. PubMed DOI
Pascoal T.A., Mathotaarachchi S., Shin M., Benedet A.L., Mohades S., Wang S., Beaudry T., Kang M.S., Soucy J.P., Labbe A., et al. Synergistic interaction between amyloid and tau predicts the progression to dementia. Alzheimer’s Dement. 2017;13:644–653. doi: 10.1016/j.jalz.2016.11.005. PubMed DOI
Um J.W., Kaufman A.C., Kostylev M., Heiss J.K., Stagi M., Takahashi H., Kerrisk M.E., Vortmeyer A., Wisniewski T., Koleske A.J., et al. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron. 2013;79:887–902. doi: 10.1016/j.neuron.2013.06.036. PubMed DOI PMC
Zhao Y., Kuca K., Wu W., Wang X., Nepovimova E., Musilek K., Wu Q. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimer’s Dement. 2022;18:152–158. doi: 10.1002/alz.12370. PubMed DOI
Swerdlow R.H. Mitochondria and Mitochondrial Cascades in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018;62:1403–1416. doi: 10.3233/JAD-170585. PubMed DOI PMC
Swerdlow R.H. The mitochondrial hypothesis: Dysfunction, bioenergetic defects, and the metabolic link to Alzheimer’s disease. Int. Rev. Neurobiol. 2020;154:207–233. doi: 10.1016/bs.irn.2020.01.008. PubMed DOI PMC
Torres A.K., Jara C., Park-Kang H.S., Polanco C.M., Tapia D., Alarcon F., de la Pena A., Llanquinao J., Vargas-Mardones G., Indo J.A., et al. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer’s Disease. J. Alzheimer’s Dis. 2021;84:1391–1414. doi: 10.3233/JAD-215139. PubMed DOI
Vance J.E. MAM (mitochondria-associated membranes) in mammalian cells: Lipids and beyond. Biochim. Biophys. Acta. 2014;1841:595–609. doi: 10.1016/j.bbalip.2013.11.014. PubMed DOI
Giacomello M., Pellegrini L. The coming of age of the mitochondria-ER contact: A matter of thickness. Cell Death Differ. 2016;23:1417–1427. doi: 10.1038/cdd.2016.52. PubMed DOI PMC
Area-Gomez E., de Groof A.J., Boldogh I., Bird T.D., Gibson G.E., Koehler C.M., Yu W.H., Duff K.E., Yaffe M.P., Pon L.A., et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol. 2009;175:1810–1816. doi: 10.2353/ajpath.2009.090219. PubMed DOI PMC
Del Prete D., Suski J.M., Oules B., Debayle D., Gay A.S., Lacas-Gervais S., Bussiere R., Bauer C., Pinton P., Paterlini-Brechot P., et al. Localization and Processing of the Amyloid-β Protein Precursor in Mitochondria-Associated Membranes. J. Alzheimer’s Dis. 2017;55:1549–1570. doi: 10.3233/JAD-160953. PubMed DOI PMC
Schon E.A., Area-Gomez E. Mitochondria-associated ER membranes in Alzheimer disease. Mol. Cell. Neurosci. 2013;55:26–36. doi: 10.1016/j.mcn.2012.07.011. PubMed DOI
Eysert F., Kinoshita P.F., Mary A., Vaillant-Beuchot L., Checler F., Chami M. Molecular Dysfunctions of Mitochondria-Associated Membranes (MAMs) in Alzheimer’s Disease. Int. J. Mol. Sci. 2020;21:9521. doi: 10.3390/ijms21249521. PubMed DOI PMC
Bishop N.A., Lu T., Yankner B.A. Neural mechanisms of ageing and cognitive decline. Nature. 2010;464:529–535. doi: 10.1038/nature08983. PubMed DOI PMC
Payne B.A., Chinnery P.F. Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochim. Biophys. Acta. 2015;1847:1347–1353. doi: 10.1016/j.bbabio.2015.05.022. PubMed DOI PMC
Cenini G., Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front. Pharmacol. 2019;10:902. doi: 10.3389/fphar.2019.00902. PubMed DOI PMC
Swerdlow R.H., Koppel S., Weidling I., Hayley C., Ji Y., Wilkins H.M. Mitochondria, Cybrids, Aging, and Alzheimer’s Disease. Prog. Mol. Biol. Transl. Sci. 2017;146:259–302. doi: 10.1016/bs.pmbts.2016.12.017. PubMed DOI PMC
Jia K., Du H. Mitochondrial Permeability Transition: A Pore Intertwines Brain Aging and Alzheimer’s Disease. Cells. 2021;10:649. doi: 10.3390/cells10030649. PubMed DOI PMC
Hroudova J., Singh N., Fisar Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer’s disease. BioMed Res. Int. 2014;2014:175062. doi: 10.1155/2014/175062. PubMed DOI PMC
Paradies G., Paradies V., Ruggiero F.M., Petrosillo G. Changes in the mitochondrial permeability transition pore in aging and age-associated diseases. Mech. Ageing Dev. 2013;134:1–9. doi: 10.1016/j.mad.2012.12.006. PubMed DOI
Reiss A.B., Ahmed S., Dayaramani C., Glass A.D., Gomolin I.H., Pinkhasov A., Stecker M.M., Wisniewski T., De Leon J. The role of mitochondrial dysfunction in Alzheimer’s disease: A potential pathway to treatment. Exp. Gerontol. 2022;164:111828. doi: 10.1016/j.exger.2022.111828. PubMed DOI
Blagov A.V., Grechko A.V., Nikiforov N.G., Borisov E.E., Sadykhov N.K., Orekhov A.N. Role of Impaired Mitochondrial Dynamics Processes in the Pathogenesis of Alzheimer’s Disease. Int. J. Mol. Sci. 2022;23:6954. doi: 10.3390/ijms23136954. PubMed DOI PMC
Hroudova J., Fisar Z. Connectivity between mitochondrial functions and psychiatric disorders. Psychiatry Clin. Neurosci. 2011;65:130–141. doi: 10.1111/j.1440-1819.2010.02178.x. PubMed DOI
Bernardi P. Why F-ATP Synthase Remains a Strong Candidate as the Mitochondrial Permeability Transition Pore. Front. Physiol. 2018;9:1543. doi: 10.3389/fphys.2018.01543. PubMed DOI PMC
Amadoro G., Corsetti V., Atlante A., Florenzano F., Capsoni S., Bussani R., Mercanti D., Calissano P. Interaction between NH2-tau fragment and Aβ in Alzheimer’s disease mitochondria contributes to the synaptic deterioration. Neurobiol. Aging. 2012;33:833.e1–833.e25. doi: 10.1016/j.neurobiolaging.2011.08.001. PubMed DOI
John A., Reddy P.H. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid β, P-tau and mitochondria. Ageing Res. Rev. 2021;65:101208. doi: 10.1016/j.arr.2020.101208. PubMed DOI PMC
Kocahan S., Dogan Z. Mechanisms of Alzheimer’s Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N-methyl-D-aspartate Receptors, Tau Protein and Other Risk Factors. Clin. Psychopharmacol. Neurosci. 2017;15:1–8. doi: 10.9758/cpn.2017.15.1.1. PubMed DOI PMC
Neill D. Alzheimer’s disease: Maladaptive synaptoplasticity hypothesis. Neurodegeneration. 1995;4:217–232. doi: 10.1006/neur.1995.0027. PubMed DOI
Mesulam M.M. Neuroplasticity failure in Alzheimer’s disease: Bridging the gap between plaques and tangles. Neuron. 1999;24:521–529. doi: 10.1016/S0896-6273(00)81109-5. PubMed DOI
Citri A., Malenka R.C. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41. doi: 10.1038/sj.npp.1301559. PubMed DOI
Bello-Medina P.C., Gonzalez-Franco D.A., Vargas-Rodriguez I., Diaz-Cintra S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. Neurol. Engl. Ed. 2022;37:682–690. doi: 10.1016/j.nrleng.2019.06.008. PubMed DOI
Merceron-Martinez D., Ibaceta-Gonzalez C., Salazar C., Almaguer-Melian W., Bergado-Rosado J.A., Palacios A.G. Alzheimer’s Disease, Neural Plasticity, and Functional Recovery. J. Alzheimer’s Dis. 2021;82:S37–S50. doi: 10.3233/JAD-201178. PubMed DOI
Teter B., Ashford J.W. Neuroplasticity in Alzheimer’s disease. J. Neurosci. Res. 2002;70:402–437. doi: 10.1002/jnr.10441. PubMed DOI
Bailey C.H., Giustetto M., Huang Y.Y., Hawkins R.D., Kandel E.R. Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nat. Rev. Neurosci. 2000;1:11–20. doi: 10.1038/35036191. PubMed DOI
Abraham W.C. Metaplasticity: Tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 2008;9:387. doi: 10.1038/nrn2356. PubMed DOI
Jang S.S., Chung H.J. Emerging Link between Alzheimer’s Disease and Homeostatic Synaptic Plasticity. Neural Plast. 2016;2016:7969272. doi: 10.1155/2016/7969272. PubMed DOI PMC
Li S., Selkoe D.J. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer’s brain. J. Neurochem. 2020;154:583–597. doi: 10.1111/jnc.15007. PubMed DOI PMC
Walsh C., Drinkenburg W.H., Ahnaou A. Neurophysiological assessment of neural network plasticity and connectivity: Progress towards early functional biomarkers for disease interception therapies in Alzheimer’s disease. Neurosci. Biobehav. Rev. 2017;73:340–358. doi: 10.1016/j.neubiorev.2016.12.020. PubMed DOI
Long H.Z., Zhou Z.W., Cheng Y., Luo H.Y., Li F.J., Xu S.G., Gao L.C. The Role of Microglia in Alzheimer’s Disease from the Perspective of Immune Inflammation and Iron Metabolism. Front. Aging Neurosci. 2022;14:888989. doi: 10.3389/fnagi.2022.888989. PubMed DOI PMC
Vainchtein I.D., Molofsky A.V. Astrocytes and Microglia: In Sickness and in Health. Trends Neurosci. 2020;43:144–154. doi: 10.1016/j.tins.2020.01.003. PubMed DOI PMC
Voet S., Srinivasan S., Lamkanfi M., van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol. Med. 2019;11:e10248. doi: 10.15252/emmm.201810248. PubMed DOI PMC
Hylén U., Eklund D., Humble M., Bartoszek J., Sarndahl E., Bejerot S. Increased inflammasome activity in markedly ill psychiatric patients: An explorative study. J. Neuroimmunol. 2020;339:577119. doi: 10.1016/j.jneuroim.2019.577119. PubMed DOI
Weng S., Lai Q.L., Wang J., Zhuang L., Cheng L., Mo Y., Liu L., Zhao Z., Zhang Y., Qiao S. The Role of Exosomes as Mediators of Neuroinflammation in the Pathogenesis and Treatment of Alzheimer’s Disease. Front. Aging Neurosci. 2022;14:899944. doi: 10.3389/fnagi.2022.899944. PubMed DOI PMC
Zhao Y., Liu B., Wang J., Xu L., Yu S., Fu J., Yan X., Su J. Aβ and Tau Regulate Microglia Metabolism via Exosomes in Alzheimer’s Disease. Biomedicines. 2022;10:1800. doi: 10.3390/biomedicines10081800. PubMed DOI PMC
Noonin C., Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics. 2021;11:4436–4451. doi: 10.7150/thno.54004. PubMed DOI PMC
Efthymiou A.G., Goate A.M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol. Neurodegener. 2017;12:43. doi: 10.1186/s13024-017-0184-x. PubMed DOI PMC
Kinney J.W., Bemiller S.M., Murtishaw A.S., Leisgang A.M., Salazar A.M., Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement. 2018;4:575–590. doi: 10.1016/j.trci.2018.06.014. PubMed DOI PMC
Forloni G., Balducci C. Alzheimer’s Disease, Oligomers, and Inflammation. J. Alzheimer’s Dis. 2018;62:1261–1276. doi: 10.3233/JAD-170819. PubMed DOI PMC
Chung W.S., Welsh C.A., Barres B.A., Stevens B. Do glia drive synaptic and cognitive impairment in disease? Nat. Neurosci. 2015;18:1539–1545. doi: 10.1038/nn.4142. PubMed DOI PMC
Meraz-Rios M.A., Toral-Rios D., Franco-Bocanegra D., Villeda-Hernandez J., Campos-Pena V. Inflammatory process in Alzheimer’s Disease. Front. Integr. Neurosci. 2013;7:59. doi: 10.3389/fnint.2013.00059. PubMed DOI PMC
Ghosh S., Wu M.D., Shaftel S.S., Kyrkanides S., LaFerla F.M., Olschowka J.A., O’Banion M.K. Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J. Neurosci. 2013;33:5053–5064. doi: 10.1523/JNEUROSCI.4361-12.2013. PubMed DOI PMC
Kitazawa M., Cheng D., Tsukamoto M.R., Koike M.A., Wes P.D., Vasilevko V., Cribbs D.H., LaFerla F.M. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J. Immunol. 2011;187:6539–6549. doi: 10.4049/jimmunol.1100620. PubMed DOI PMC
Rivers-Auty J., Mather A.E., Peters R., Lawrence C.B., Brough D. Anti-inflammatories in Alzheimer’s disease-potential therapy or spurious correlate? Brain Commun. 2020;2:fcaa109. doi: 10.1093/braincomms/fcaa109. PubMed DOI PMC
Wei Z., Koya J., Reznik S.E. Insulin Resistance Exacerbates Alzheimer Disease via Multiple Mechanisms. Front. Neurosci. 2021;15:687157. doi: 10.3389/fnins.2021.687157. PubMed DOI PMC
Murrow B.A., Hoehn K.L. Mitochondrial regulation of insulin action. Int. J. Biochem. Cell Biol. 2010;42:1936–1939. doi: 10.1016/j.biocel.2010.08.020. PubMed DOI
Clark I.A., Vissel B. Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, alpha-synuclein, amyloid-β and insulin resistance in neurodegenerative diseases. Br. J. Pharmacol. 2018;175:3859–3875. doi: 10.1111/bph.14471. PubMed DOI PMC
Munoz S.S., Garner B., Ooi L. Understanding the Role of ApoE Fragments in Alzheimer’s Disease. Neurochem. Res. 2019;44:1297–1305. doi: 10.1007/s11064-018-2629-1. PubMed DOI
Butterfield D.A., Mattson M.P. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease. Neurobiol. Dis. 2020;138:104795. doi: 10.1016/j.nbd.2020.104795. PubMed DOI PMC
Harris F.M., Brecht W.J., Xu Q., Tesseur I., Kekonius L., Wyss-Coray T., Fish J.D., Masliah E., Hopkins P.C., Scearce-Levie K., et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc. Natl. Acad. Sci. USA. 2003;100:10966–10971. doi: 10.1073/pnas.1434398100. PubMed DOI PMC
Chang S., ran Ma T., Miranda R.D., Balestra M.E., Mahley R.W., Huang Y. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl. Acad. Sci. USA. 2005;102:18694–18699. doi: 10.1073/pnas.0508254102. PubMed DOI PMC
Dafnis I., Tzinia A.K., Tsilibary E.C., Zannis V.I., Chroni A. An apolipoprotein E4 fragment affects matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 1 and cytokine levels in brain cell lines. Neuroscience. 2012;210:21–32. doi: 10.1016/j.neuroscience.2012.03.013. PubMed DOI PMC
Hohn A., Tramutola A., Cascella R. Proteostasis Failure in Neurodegenerative Diseases: Focus on Oxidative Stress. Oxid. Med. Cell. Longev. 2020;2020:5497046. doi: 10.1155/2020/5497046. PubMed DOI PMC
Tramutola A., Di Domenico F., Barone E., Perluigi M., Butterfield D.A. It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease. Oxid. Med. Cell. Longev. 2016;2016:2756068. doi: 10.1155/2016/2756068. PubMed DOI PMC
Hong L., Huang H.C., Jiang Z.F. Relationship between amyloid-β and the ubiquitin-proteasome system in Alzheimer’s disease. Neurol. Res. 2014;36:276–282. doi: 10.1179/1743132813Y.0000000288. PubMed DOI
Reddy P.H., Oliver D.M. Amyloid β and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer’s Disease. Cells. 2019;8:488. doi: 10.3390/cells8050488. PubMed DOI PMC
Salminen A., Kaarniranta K., Kauppinen A., Ojala J., Haapasalo A., Soininen H., Hiltunen M. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog. Neurobiol. 2013;106–107:33–54. doi: 10.1016/j.pneurobio.2013.06.002. PubMed DOI
Lee M.J., Lee J.H., Rubinsztein D.C. Tau degradation: The ubiquitin-proteasome system versus the autophagy-lysosome system. Prog. Neurobiol. 2013;105:49–59. doi: 10.1016/j.pneurobio.2013.03.001. PubMed DOI
Manczak M., Anekonda T.S., Henson E., Park B.S., Quinn J., Reddy P.H. Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: Implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet. 2006;15:1437–1449. doi: 10.1093/hmg/ddl066. PubMed DOI
Supnet C., Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium. 2010;47:183–189. doi: 10.1016/j.ceca.2009.12.014. PubMed DOI PMC
Jack C.R., Jr., Knopman D.S., Jagust W.J., Shaw L.M., Aisen P.S., Weiner M.W., Petersen R.C., Trojanowski J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–128. doi: 10.1016/S1474-4422(09)70299-6. PubMed DOI PMC
Small S.A., Duff K. Linking Aβ and tau in late-onset Alzheimer’s disease: A dual pathway hypothesis. Neuron. 2008;60:534–542. doi: 10.1016/j.neuron.2008.11.007. PubMed DOI PMC
Han P., Shi J. A Theoretical Analysis of the Synergy of Amyloid and Tau in Alzheimer’s Disease. J. Alzheimer’s Dis. 2016;52:1461–1470. doi: 10.3233/JAD-151206. PubMed DOI
Reiman E.M., Chen K., Alexander G.E., Caselli R.J., Bandy D., Osborne D., Saunders A.M., Hardy J. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl. Acad. Sci. USA. 2004;101:284–289. doi: 10.1073/pnas.2635903100. PubMed DOI PMC
Mosconi L., Brys M., Switalski R., Mistur R., Glodzik L., Pirraglia E., Tsui W., De Santi S., de Leon M.J. Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proc. Natl. Acad. Sci. USA. 2007;104:19067–19072. doi: 10.1073/pnas.0705036104. PubMed DOI PMC
Jagust W.J., Mormino E.C. Lifespan brain activity, β-amyloid, and Alzheimer’s disease. Trends Cogn. Sci. 2011;15:520–526. doi: 10.1016/j.tics.2011.09.004. PubMed DOI PMC
Kukreja L., Kujoth G.C., Prolla T.A., Van Leuven F., Vassar R. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer’s disease. Mol. Neurodegener. 2014;9:16. doi: 10.1186/1750-1326-9-16. PubMed DOI PMC
Goyal S., Chaturvedi R.K. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol. Neurobiol. 2021;58:1418–1437. doi: 10.1007/s12035-020-02200-0. PubMed DOI
Fernandez-Vizarra P., Fernandez A.P., Castro-Blanco S., Serrano J., Bentura M.L., Martinez-Murillo R., Martinez A., Rodrigo J. Intra- and extracellular Aβ and PHF in clinically evaluated cases of Alzheimer’s disease. Histol. Histopathol. 2004;19:823–844. doi: 10.14670/HH-19.823. PubMed DOI
Hu W., Wang Z., Zheng H. Mitochondrial accumulation of amyloid β (Aβ) peptides requires TOMM22 as a main Aβ receptor in yeast. J. Biol. Chem. 2018;293:12681–12689. doi: 10.1074/jbc.RA118.002713. PubMed DOI PMC
Hansson Petersen C.A., Alikhani N., Behbahani H., Wiehager B., Pavlov P.F., Alafuzoff I., Leinonen V., Ito A., Winblad B., Glaser E., et al. The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc. Natl. Acad. Sci. USA. 2008;105:13145–13150. doi: 10.1073/pnas.0806192105. PubMed DOI PMC
Kawahara M. Neurotoxicity of β-amyloid protein: Oligomerization, channel formation, and calcium dyshomeostasis. Curr. Pharm. Des. 2010;16:2779–2789. doi: 10.2174/138161210793176545. PubMed DOI
Lustbader J.W., Cirilli M., Lin C., Xu H.W., Takuma K., Wang N., Caspersen C., Chen X., Pollak S., Chaney M., et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304:448–452. doi: 10.1126/science.1091230. PubMed DOI
Takuma K., Yao J., Huang J., Xu H., Chen X., Luddy J., Trillat A.C., Stern D.M., Arancio O., Yan S.S. ABAD enhances Aβ-induced cell stress via mitochondrial dysfunction. FASEB J. 2005;19:597–598. doi: 10.1096/fj.04-2582fje. PubMed DOI
Du H., Guo L., Fang F., Chen D., Sosunov A.A., McKhann G.M., Yan Y., Wang C., Zhang H., Molkentin J.D., et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat. Med. 2008;14:1097–1105. doi: 10.1038/nm.1868. PubMed DOI PMC
Bogorodskiy A., Okhrimenko I., Burkatovskii D., Jakobs P., Maslov I., Gordeliy V., Dencher N.A., Gensch T., Voos W., Altschmied J., et al. Role of Mitochondrial Protein Import in Age-Related Neurodegenerative and Cardiovascular Diseases. Cells. 2021;10:3528. doi: 10.3390/cells10123528. PubMed DOI PMC
Mary A., Eysert F., Checler F., Chami M. Mitophagy in Alzheimer’s disease: Molecular defects and therapeutic approaches. Mol. Psychiatry. 2022:1–15. doi: 10.1038/s41380-022-01631-6. PubMed DOI PMC
Du H., Yan S.S. Mitochondrial permeability transition pore in Alzheimer’s disease: Cyclophilin D and amyloid β. Biochim. Biophys. Acta. 2010;1802:198–204. doi: 10.1016/j.bbadis.2009.07.005. PubMed DOI PMC
Chaturvedi R.K., Flint Beal M. Mitochondrial diseases of the brain. Free Radic. Biol. Med. 2013;63:1–29. doi: 10.1016/j.freeradbiomed.2013.03.018. PubMed DOI
Caspersen C., Wang N., Yao J., Sosunov A., Chen X., Lustbader J.W., Xu H.W., Stern D., McKhann G., Yan S.D. Mitochondrial Aβ: A potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005;19:2040–2041. doi: 10.1096/fj.05-3735fje. PubMed DOI
Chen J.X., Yan S.D. Amyloid-β-induced mitochondrial dysfunction. J. Alzheimer’s Dis. 2007;12:177–184. doi: 10.3233/JAD-2007-12208. PubMed DOI PMC
Shearman M.S., Ragan C.I., Iversen L.L. Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of β-amyloid-mediated cell death. Proc. Natl. Acad. Sci. USA. 1994;91:1470–1474. doi: 10.1073/pnas.91.4.1470. PubMed DOI PMC
Casley C.S., Canevari L., Land J.M., Clark J.B., Sharpe M.A. Β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 2002;80:91–100. doi: 10.1046/j.0022-3042.2001.00681.x. PubMed DOI
Moreira P.I., Santos M.S., Moreno A., Rego A.C., Oliveira C. Effect of amyloid β-peptide on permeability transition pore: A comparative study. J. Neurosci. Res. 2002;69:257–267. doi: 10.1002/jnr.10282. PubMed DOI
Tillement L., Lecanu L., Yao W.G., Greeson J., Papadopoulos V. The spirostenol (22R, 25R)-20 alpha-spirost-5-en-3 β-yl hexanoate blocks mitochondrial uptake of Aβ in neuronal cells and prevents Aβ-induced impairment of mitochondrial function. Steroids. 2006;71:725–735. doi: 10.1016/j.steroids.2006.05.003. PubMed DOI
Falkevall A., Alikhani N., Bhushan S., Pavlov P.F., Busch K., Johnson K.A., Eneqvist T., Tjernberg L., Ankarcrona M., Glaser E. Degradation of the amyloid β-protein by the novel mitochondrial peptidasome, PreP. J. Biol. Chem. 2006;281:29096–29104. doi: 10.1074/jbc.M602532200. PubMed DOI
De Strooper B. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process. Physiol. Rev. 2010;90:465–494. doi: 10.1152/physrev.00023.2009. PubMed DOI
Manczak M., Reddy P.H. Abnormal interaction of VDAC1 with amyloid β and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum. Mol. Genet. 2012;21:5131–5146. doi: 10.1093/hmg/dds360. PubMed DOI PMC
Atlante A., Valenti D., Latina V., Amadoro G. Dysfunction of Mitochondria in Alzheimer’s Disease: ANT and VDAC Interact with Toxic Proteins and Aid to Determine the Fate of Brain Cells. Int. J. Mol. Sci. 2022;23:7722. doi: 10.3390/ijms23147722. PubMed DOI PMC
Karikari T.K., Nagel D.A., Grainger A., Clarke-Bland C., Hill E.J., Moffat K.G. Preparation of stable tau oligomers for cellular and biochemical studies. Anal. Biochem. 2019;566:67–74. doi: 10.1016/j.ab.2018.10.013. PubMed DOI PMC
Cieri D., Vicario M., Vallese F., D’Orsi B., Berto P., Grinzato A., Catoni C., De Stefani D., Rizzuto R., Brini M., et al. Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca2+ handling. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864:3247–3256. doi: 10.1016/j.bbadis.2018.07.011. PubMed DOI
Shafiei S.S., Guerrero-Munoz M.J., Castillo-Carranza D.L. Tau Oligomers: Cytotoxicity, Propagation, and Mitochondrial Damage. Front. Aging Neurosci. 2017;9:83. doi: 10.3389/fnagi.2017.00083. PubMed DOI PMC
Manczak M., Calkins M.J., Reddy P.H. Impaired mitochondrial dynamics and abnormal interaction of amyloid β with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: Implications for neuronal damage. Hum. Mol. Genet. 2011;20:2495–2509. doi: 10.1093/hmg/ddr139. PubMed DOI PMC
Manczak M., Reddy P.H. Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: Implications for mitochondrial dysfunction and neuronal damage. Hum. Mol. Genet. 2012;21:2538–2547. doi: 10.1093/hmg/dds072. PubMed DOI PMC
Camilleri A., Ghio S., Caruana M., Weckbecker D., Schmidt F., Kamp F., Leonov A., Ryazanov S., Griesinger C., Giese A., et al. Tau-induced mitochondrial membrane perturbation is dependent upon cardiolipin. Biochim. Biophys. Acta Biomembr. 2020;1862:183064. doi: 10.1016/j.bbamem.2019.183064. PubMed DOI
Li X.C., Hu Y., Wang Z.H., Luo Y., Zhang Y., Liu X.P., Feng Q., Wang Q., Ye K., Liu G.P., et al. Human wild-type full-length tau accumulation disrupts mitochondrial dynamics and the functions via increasing mitofusins. Sci. Rep. 2016;6:24756. doi: 10.1038/srep24756. PubMed DOI PMC
Perez M.J., Jara C., Quintanilla R.A. Contribution of Tau Pathology to Mitochondrial Impairment in Neurodegeneration. Front. Neurosci. 2018;12:441. doi: 10.3389/fnins.2018.00441. PubMed DOI PMC
Aleardi A.M., Benard G., Augereau O., Malgat M., Talbot J.C., Mazat J.P., Letellier T., Dachary-Prigent J., Solaini G.C., Rossignol R. Gradual alteration of mitochondrial structure and function by β-amyloids: Importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J. Bioenerg. Biomembr. 2005;37:207–225. doi: 10.1007/s10863-005-6631-3. PubMed DOI
Kaminsky Y.G., Tikhonova L.A., Kosenko E.A. Critical analysis of Alzheimer’s amyloid-β toxicity to mitochondria. Front. Biosci. 2015;20:173–197. doi: 10.2741/4304. PubMed DOI
Pagani L., Eckert A. Amyloid-β interaction with mitochondria. Int. J. Alzheimer’s Dis. 2011;2011:925050. doi: 10.4061/2011/925050. PubMed DOI PMC
Kerr J.S., Adriaanse B.A., Greig N.H., Mattson M.P., Cader M.Z., Bohr V.A., Fang E.F. Mitophagy and Alzheimer’s Disease: Cellular and Molecular Mechanisms. Trends Neurosci. 2017;40:151–166. doi: 10.1016/j.tins.2017.01.002. PubMed DOI PMC
Cummings J., Lee G., Nahed P., Kambar M., Zhong K., Fonseca J., Taghva K. Alzheimer’s disease drug development pipeline: 2022. Alzheimer’s Dement. 2022;8:e12295. doi: 10.1002/trc2.12295. PubMed DOI PMC
Athar T., Al Balushi K., Khan S.A. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol. Biol. Rep. 2021;48:5629–5645. doi: 10.1007/s11033-021-06512-9. PubMed DOI PMC
Pardo-Moreno T., Gonzalez-Acedo A., Rivas-Dominguez A., Garcia-Morales V., Garcia-Cozar F.J., Ramos-Rodriguez J.J., Melguizo-Rodriguez L. Therapeutic Approach to Alzheimer’s Disease: Current Treatments and New Perspectives. Pharmaceutics. 2022;14:1117. doi: 10.3390/pharmaceutics14061117. PubMed DOI PMC
Fisar Z., Musilek K., Benek O., Hroch L., Vinklarova L., Schmidt M., Hroudova J., Raboch J. Effects of novel 17β-hydroxysteroid dehydrogenase type 10 inhibitors on mitochondrial respiration. Toxicol. Lett. 2021;339:12–19. doi: 10.1016/j.toxlet.2020.12.012. PubMed DOI
Pogacnik L., Ota A., Ulrih N.P. An Overview of Crucial Dietary Substances and Their Modes of Action for Prevention of Neurodegenerative Diseases. Cells. 2020;9:576. doi: 10.3390/cells9030576. PubMed DOI PMC
Thu Thuy Nguyen V., Endres K. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer’s disease. Adv. Drug Deliv. Rev. 2022;188:114418. doi: 10.1016/j.addr.2022.114418. PubMed DOI
Meltzer C.C., Smith G., DeKosky S.T., Pollock B.G., Mathis C.A., Moore R.Y., Kupfer D.J., Reynolds C.F., 3rd Serotonin in aging, late-life depression, and Alzheimer’s disease: The emerging role of functional imaging. Neuropsychopharmacology. 1998;18:407–430. doi: 10.1016/S0893-133X(97)00194-2. PubMed DOI
Dringenberg H.C. Alzheimer’s disease: More than a ‘cholinergic disorder’—Evidence that cholinergic-monoaminergic interactions contribute to EEG slowing and dementia. Behav. Brain Res. 2000;115:235–249. doi: 10.1016/S0166-4328(00)00261-8. PubMed DOI
Guzman-Ramos K., Osorio-Gomez D., Bermudez-Rattoni F. Cognitive Impairment in Alzheimer’s and Metabolic Diseases: A Catecholaminergic Hypothesis. Neuroscience. 2022;497:308–323. doi: 10.1016/j.neuroscience.2022.05.031. PubMed DOI
Wang W., Karamanlidis G., Tian R. Novel targets for mitochondrial medicine. Sci. Transl. Med. 2016;8:326rv323. doi: 10.1126/scitranslmed.aac7410. PubMed DOI PMC
Fisar Z., Hroudova J. Measurement of Mitochondrial Respiration in Platelets. Methods Mol. Biol. 2021;2277:269–276. doi: 10.1007/978-1-0716-1270-5_16. PubMed DOI
Grimm A., Schmitt K., Eckert A. Advanced Mitochondrial Respiration Assay for Evaluation of Mitochondrial Dysfunction in Alzheimer’s Disease. Methods Mol. Biol. 2016;1303:171–183. doi: 10.1007/978-1-4939-2627-5_9. PubMed DOI
Hroudova J., Fisar Z. Assessment of the Effects of Drugs on Mitochondrial Respiration. Methods Mol. Biol. 2021;2277:133–142. doi: 10.1007/978-1-0716-1270-5_9. PubMed DOI
Singh N., Hroudova J., Fisar Z. In Vitro Effects of Cognitives and Nootropics on Mitochondrial Respiration and Monoamine Oxidase Activity. Mol. Neurobiol. 2017;54:5894–5904. doi: 10.1007/s12035-016-0121-y. PubMed DOI
Hroudova J., Novakova T., Korabecny J., Malinak D., Gorecki L., Fisar Z. Effects of Novel Tacrine Derivatives on Mitochondrial Energy Metabolism and Monoamine Oxidase Activity—In Vitro Study. Mol. Neurobiol. 2021;58:1102–1113. doi: 10.1007/s12035-020-02172-1. PubMed DOI
Nicoll J.A.R., Buckland G.R., Harrison C.H., Page A., Harris S., Love S., Neal J.W., Holmes C., Boche D. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer’s disease. Brain. 2019;142:2113–2126. doi: 10.1093/brain/awz142. PubMed DOI PMC
Morris G.P., Clark I.A., Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol. Commun. 2014;2:135. doi: 10.1186/s40478-014-0135-5. PubMed DOI PMC
Tolar M., Hey J., Power A., Abushakra S. Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer’s Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. Int. J. Mol. Sci. 2021;22:6355. doi: 10.3390/ijms22126355. PubMed DOI PMC
Puzzo D., Privitera L., Fa M., Staniszewski A., Hashimoto G., Aziz F., Sakurai M., Ribe E.M., Troy C.M., Mercken M., et al. Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann. Neurol. 2011;69:819–830. doi: 10.1002/ana.22313. PubMed DOI PMC
Ghazanfari D., Noori M.S., Bergmeier S.C., Hines J.V., McCall K.D., Goetz D.J. A novel GSK-3 inhibitor binds to GSK-3β via a reversible, time and Cys-199-dependent mechanism. Bioorg. Med. Chem. 2021;40:116179. doi: 10.1016/j.bmc.2021.116179. PubMed DOI PMC
Wang L., Bharti, Kumar R., Pavlov P.F., Winblad B. Small molecule therapeutics for tauopathy in Alzheimer’s disease: Walking on the path of most resistance. Eur. J. Med. Chem. 2021;209:112915. doi: 10.1016/j.ejmech.2020.112915. PubMed DOI
Medina M. An Overview on the Clinical Development of Tau-Based Therapeutics. Int. J. Mol. Sci. 2018;19:1160. doi: 10.3390/ijms19041160. PubMed DOI PMC
Tolar M., Abushakra S., Sabbagh M. The path forward in Alzheimer’s disease therapeutics: Reevaluating the amyloid cascade hypothesis. Alzheimer’s Dement. 2020;16:1553–1560. doi: 10.1016/j.jalz.2019.09.075. PubMed DOI
Sengupta U., Nilson A.N., Kayed R. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine. 2016;6:42–49. doi: 10.1016/j.ebiom.2016.03.035. PubMed DOI PMC
Krafft G.A., Jerecic J., Siemers E., Cline E.N. ACU193: An Immunotherapeutic Poised to Test the Amyloid β Oligomer Hypothesis of Alzheimer’s Disease. Front. Neurosci. 2022;16:848215. doi: 10.3389/fnins.2022.848215. PubMed DOI PMC
Youdim M.B., Buccafusco J.J. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci. 2005;26:27–35. doi: 10.1016/j.tips.2004.11.007. PubMed DOI
Hroch L., Guest P., Benek O., Soukup O., Janockova J., Dolezal R., Kuca K., Aitken L., Smith T.K., Gunn-Moore F., et al. Synthesis and evaluation of frentizole-based indolyl thiourea analogues as MAO/ABAD inhibitors for Alzheimer’s disease treatment. Bioorg. Med. Chem. 2017;25:1143–1152. doi: 10.1016/j.bmc.2016.12.029. PubMed DOI
Benek O., Hroch L., Aitken L., Gunn-Moore F., Vinklarova L., Kuca K., Perez D.I., Perez C., Martinez A., Fisar Z., et al. 1-(Benzo[d]thiazol-2-yl)-3-phenylureas as dual inhibitors of casein kinase 1 and ABAD enzymes for treatment of neurodegenerative disorders. J. Enzyme Inhib. Med. Chem. 2018;33:665–670. doi: 10.1080/14756366.2018.1445736. PubMed DOI PMC
Moreira N., Lima J., Marchiori M.F., Carvalho I., Sakamoto-Hojo E.T. Neuroprotective Effects of Cholinesterase Inhibitors: Current Scenario in Therapies for Alzheimer’s Disease and Future Perspectives. J. Alzheimer’s Dis. Rep. 2022;6:177–193. doi: 10.3233/ADR-210061. PubMed DOI PMC
Sang Z., Wang K., Dong J., Tang L. Alzheimer’s disease: Updated multi-targets therapeutics are in clinical and in progress. Eur. J. Med. Chem. 2022;238:114464. doi: 10.1016/j.ejmech.2022.114464. PubMed DOI
Weinreb O., Mandel S., Bar-Am O., Yogev-Falach M., Avramovich-Tirosh Y., Amit T., Youdim M.B. Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer’s disease drugs. Neurotherapeutics. 2009;6:163–174. doi: 10.1016/j.nurt.2008.10.030. PubMed DOI PMC
Weinstock M., Luques L., Bejar C., Shoham S. Ladostigil, a novel multifunctional drug for the treatment of dementia co-morbid with depression. J. Neural Transm. Suppl. 2006:443–446. doi: 10.1007/978-3-211-45295-0_67. PubMed DOI
Haddad H.W., Malone G.W., Comardelle N.J., Degueure A.E., Poliwoda S., Kaye R.J., Murnane K.S., Kaye A.M., Kaye A.D. Aduhelm, a novel anti-amyloid monoclonal antibody, for the treatment of Alzheimer’s Disease: A comprehensive review. Health Psychol. Res. 2022;10:37023. doi: 10.52965/001c.37023. PubMed DOI PMC
Vaz M., Silva V., Monteiro C., Silvestre S. Role of Aducanumab in the Treatment of Alzheimer’s Disease: Challenges and Opportunities. Clin. Interv. Aging. 2022;17:797–810. doi: 10.2147/CIA.S325026. PubMed DOI PMC
Khoury R., Rajamanickam J., Grossberg G.T. An update on the safety of current therapies for Alzheimer’s disease: Focus on rivastigmine. Ther. Adv. Drug Saf. 2018;9:171–178. doi: 10.1177/2042098617750555. PubMed DOI PMC
Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006;2006:CD005593. doi: 10.1002/14651858.CD005593. PubMed DOI PMC
McShane R., Westby M.J., Roberts E., Minakaran N., Schneider L., Farrimond L.E., Maayan N., Ware J., Debarros J. Memantine for dementia. Cochrane Database Syst. Rev. 2019;3:CD003154. doi: 10.1002/14651858.CD003154.pub6. PubMed DOI PMC
Dai J., Ports K.D., Corrada M.M., Odegaard A.O., O’Connell J., Jiang L. Metformin and Dementia Risk: A Systematic Review with Respect to Time Related Biases. J. Alzheimer’s Dis. Rep. 2022;6:443–459. doi: 10.3233/ADR-220002. PubMed DOI PMC
Rena G., Hardie D.G., Pearson E.R. The mechanisms of action of metformin. Diabetologia. 2017;60:1577–1585. doi: 10.1007/s00125-017-4342-z. PubMed DOI PMC
Mahapatra M.K., Karuppasamy M., Sahoo B.M. Therapeutic Potential of Semaglutide, a Newer GLP-1 Receptor Agonist, in Abating Obesity, Non-Alcoholic Steatohepatitis and Neurodegenerative diseases: A Narrative Review. Pharm. Res. 2022;39:1233–1248. doi: 10.1007/s11095-022-03302-1. PubMed DOI PMC
Henderson S.T., Vogel J.L., Barr L.J., Garvin F., Jones J.J., Costantini L.C. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. 2009;6:31. doi: 10.1186/1743-7075-6-31. PubMed DOI PMC
Croteau E., Castellano C.A., Richard M.A., Fortier M., Nugent S., Lepage M., Duchesne S., Whittingstall K., Turcotte E.E., Bocti C., et al. Ketogenic Medium Chain Triglycerides Increase Brain Energy Metabolism in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018;64:551–561. doi: 10.3233/JAD-180202. PubMed DOI
Wood A.H.R., Chappell H.F., Zulyniak M.A. Dietary and supplemental long-chain omega-3 fatty acids as moderators of cognitive impairment and Alzheimer’s disease. Eur. J. Nutr. 2022;61:589–604. doi: 10.1007/s00394-021-02655-4. PubMed DOI PMC
Bhatt D.L., Hull M.A., Song M., Van Hulle C., Carlsson C., Chapman M.J., Toth P.P. Beyond cardiovascular medicine: Potential future uses of icosapent ethyl. Eur. Heart J. Suppl. 2020;22:J54–J64. doi: 10.1093/eurheartj/suaa119. PubMed DOI PMC
Hampel H., Williams C., Etcheto A., Goodsaid F., Parmentier F., Sallantin J., Kaufmann W.E., Missling C.U., Afshar M. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer’s disease therapy: Analysis of the blarcamesine (ANAVEX2-73) Phase 2a clinical study. Alzheimer’s Dement. 2020;6:e12013. doi: 10.1002/trc2.12013. PubMed DOI PMC
Sanati M., Aminyavari S., Afshari A.R., Sahebkar A. Mechanistic insight into the role of metformin in Alzheimer’s disease. Life Sci. 2022;291:120299. doi: 10.1016/j.lfs.2021.120299. PubMed DOI
Sabbagh M.N., Decourt B. COR388 (atuzaginstat): An investigational gingipain inhibitor for the treatment of Alzheimer disease. Expert Opin. Investig. Drugs. 2022;31:987–993. doi: 10.1080/13543784.2022.2117605. PubMed DOI PMC
Piscopo P., Crestini A., Carbone E., Rivabene R., Ancidoni A., Lo Giudice M., Corbo M., Vanacore N., Lacorte E. A systematic review on drugs for synaptic plasticity in the treatment of dementia. Ageing Res. Rev. 2022;81:101726. doi: 10.1016/j.arr.2022.101726. PubMed DOI
Zheng X.Y., Zhang H.C., Lv Y.D., Jin F.Y., Wu X.J., Zhu J., Ruan Y. Levetiracetam alleviates cognitive decline in Alzheimer’s disease animal model by ameliorating the dysfunction of the neuronal network. Front. Aging Neurosci. 2022;14:888784. doi: 10.3389/fnagi.2022.888784. PubMed DOI PMC
Wang H.Y., Bakshi K., Frankfurt M., Stucky A., Goberdhan M., Shah S.M., Burns L.H. Reducing amyloid-related Alzheimer’s disease pathogenesis by a small molecule targeting filamin A. J. Neurosci. 2012;32:9773–9784. doi: 10.1523/JNEUROSCI.0354-12.2012. PubMed DOI PMC
Tolar M., Abushakra S., Hey J.A., Porsteinsson A., Sabbagh M. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimer’s Res. Ther. 2020;12:95. doi: 10.1186/s13195-020-00663-w. PubMed DOI PMC
Abushakra S., Porsteinsson A., Scheltens P., Sadowsky C., Vellas B., Cummings J., Gauthier S., Hey J.A., Power A., Wang P., et al. Clinical Effects of Tramiprosate in APOE4/4 Homozygous Patients with Mild Alzheimer’s Disease Suggest Disease Modification Potential. J. Prev. Alzheimer’s Dis. 2017;4:149–156. doi: 10.14283/jpad.2017.26. PubMed DOI
Reading C.L., Ahlem C.N., Murphy M.F. NM101 Phase III study of NE3107 in Alzheimer’s disease: Rationale, design and therapeutic modulation of neuroinflammation and insulin resistance. Neurodegener. Dis. Manag. 2021;11:289–298. doi: 10.2217/nmt-2021-0022. PubMed DOI
Hamaguchi T., Ono K., Yamada M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci. Ther. 2010;16:285–297. doi: 10.1111/j.1755-5949.2010.00147.x. PubMed DOI PMC
Malafaia D., Albuquerque H.M.T., Silva A.M.S. Amyloid-β and tau aggregation dual-inhibitors: A synthetic and structure-activity relationship focused review. Eur. J. Med. Chem. 2021;214:113209. doi: 10.1016/j.ejmech.2021.113209. PubMed DOI
Yang F., Lim G.P., Begum A.N., Ubeda O.J., Simmons M.R., Ambegaokar S.S., Chen P.P., Kayed R., Glabe C.G., Frautschy S.A., et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005;280:5892–5901. doi: 10.1074/jbc.M404751200. PubMed DOI
Jakubowski J.M., Orr A.A., Le D.A., Tamamis P. Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. J. Chem. Inf. Model. 2020;60:289–305. doi: 10.1021/acs.jcim.9b00561. PubMed DOI PMC
Arndt J.W., Qian F., Smith B.A., Quan C., Kilambi K.P., Bush M.W., Walz T., Pepinsky R.B., Bussiere T., Hamann S., et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci. Rep. 2018;8:6412. doi: 10.1038/s41598-018-24501-0. PubMed DOI PMC
Soderberg L., Johannesson M., Nygren P., Laudon H., Eriksson F., Osswald G., Moller C., Lannfelt L. Lecanemab, Aducanumab, and Gantenerumab—Binding Profiles to Different Forms of Amyloid-β Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics. 2022:1–12. doi: 10.1007/s13311-022-01308-6. PubMed DOI PMC
Bouter Y., Liekefeld H., Pichlo S., Westhoff A.C., Fenn L., Bakrania P., Bayer T.A. Donanemab detects a minor fraction of amyloid-β plaques in post-mortem brain tissue of patients with Alzheimer’s disease and Down syndrome. Acta Neuropathol. 2022;143:601–603. doi: 10.1007/s00401-022-02418-3. PubMed DOI PMC
Doody R.S., Thomas R.G., Farlow M., Iwatsubo T., Vellas B., Joffe S., Kieburtz K., Raman R., Sun X., Aisen P.S., et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 2014;370:311–321. doi: 10.1056/NEJMoa1312889. PubMed DOI
YM M.Y., Waldvogel H.J., Faull R.L.M., Kwakowsky A. Neuroprotective Effect of Caffeine in Alzheimer’s Disease. Molecules. 2022;27:3737. doi: 10.3390/molecules27123737. PubMed DOI PMC
Vaughan R.A., Garcia-Smith R., Bisoffi M., Trujillo K.A., Conn C.A. Effects of caffeine on metabolism and mitochondria biogenesis in rhabdomyosarcoma cells compared with 2,4-dinitrophenol. Nutr. Metab. Insights. 2012;5:59–70. doi: 10.4137/NMI.S10233. PubMed DOI PMC
Hoang K., Watt H., Golemme M., Perry R.J., Ritchie C., Wilson D., Pickett J., Fox C., Howard R., Malhotra P.A. Noradrenergic Add-on Therapy with Extended-Release Guanfacine in Alzheimer’s Disease (NorAD): Study protocol for a randomised clinical trial and COVID-19 amendments. Trials. 2022;23:623. doi: 10.1186/s13063-022-06190-3. PubMed DOI PMC
Xiao S., Wang T., Ma X., Qin Y., Li X., Zhao Z., Liu X., Wang X., Xie H., Jiang Q., et al. Efficacy and safety of a novel acetylcholinesterase inhibitor octohydroaminoacridine in mild-to-moderate Alzheimer’s disease: A Phase II multicenter randomised controlled trial. Age Ageing. 2017;46:767–773. doi: 10.1093/ageing/afx045. PubMed DOI
Rangani R.J., Upadhya M.A., Nakhate K.T., Kokare D.M., Subhedar N.K. Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer’s disease. Peptides. 2012;33:317–328. doi: 10.1016/j.peptides.2012.01.004. PubMed DOI
Mihailescu S., Drucker-Colin R. Nicotine, brain nicotinic receptors, and neuropsychiatric disorders. Arch. Med. Res. 2000;31:131–144. doi: 10.1016/S0188-4409(99)00087-9. PubMed DOI
Li L., Xu S., Liu L., Feng R., Gong Y., Zhao X., Li J., Cai J., Feng N., Wang L., et al. Multifunctional Compound AD-35 Improves Cognitive Impairment and Attenuates the Production of TNF-α and IL-1β in an Aβ25-35-induced Rat Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2017;56:1403–1417. doi: 10.3233/JAD-160587. PubMed DOI
Miziak B., Blaszczyk B., Czuczwar S.J. Some Candidate Drugs for Pharmacotherapy of Alzheimer’s Disease. Pharmaceuticals. 2021;14:458. doi: 10.3390/ph14050458. PubMed DOI PMC
Grossberg G.T., Kohegyi E., Mergel V., Josiassen M.K., Meulien D., Hobart M., Slomkowski M., Baker R.A., McQuade R.D., Cummings J.L. Efficacy and Safety of Brexpiprazole for the Treatment of Agitation in Alzheimer’s Dementia: Two 12-Week, Randomized, Double-Blind, Placebo-Controlled Trials. Am. J. Geriatr. Psychiatry. 2020;28:383–400. doi: 10.1016/j.jagp.2019.09.009. PubMed DOI
Ward K., Citrome L. AXS-05: An investigational treatment for Alzheimer’s disease-associated agitation. Expert Opin. Investig. Drugs. 2022;31:773–780. doi: 10.1080/13543784.2022.2096006. PubMed DOI
Ahmed M., Malik M., Teselink J., Lanctot K.L., Herrmann N. Current Agents in Development for Treating Behavioral and Psychological Symptoms Associated with Dementia. Drugs Aging. 2019;36:589–605. doi: 10.1007/s40266-019-00668-7. PubMed DOI
Bosnjak Kuharic D., Markovic D., Brkovic T., Jeric Kegalj M., Rubic Z., Vuica Vukasovic A., Jeroncic A., Puljak L. Cannabinoids for the treatment of dementia. Cochrane Database Syst. Rev. 2021;9:CD012820. doi: 10.1002/14651858.CD012820.pub2. PubMed DOI PMC
Ozarowski M., Karpinski T.M., Zielinska A., Souto E.B., Wielgus K. Cannabidiol in Neurological and Neoplastic Diseases: Latest Developments on the Molecular Mechanism of Action. Int. J. Mol. Sci. 2021;22:4294. doi: 10.3390/ijms22094294. PubMed DOI PMC
Wang J.H., Wu Y.J., Tee B.L., Lo R.Y. Medical Comorbidity in Alzheimer’s Disease: A Nested Case-Control Study. J. Alzheimer’s Dis. 2018;63:773–781. doi: 10.3233/JAD-170786. PubMed DOI
Eshetie T.C., Nguyen T.A., Gillam M.H., Kalisch Ellett L.M. Medication Use for Comorbidities in People with Alzheimer’s Disease: An Australian Population-Based Study. Pharmacotherapy. 2019;39:1146–1156. doi: 10.1002/phar.2341. PubMed DOI
Majidazar R., Rezazadeh-Gavgani E., Sadigh-Eteghad S., Naseri A. Pharmacotherapy of Alzheimer’s disease: An overview of systematic reviews. Eur. J. Clin. Pharmacol. 2022;78:1567–1587. doi: 10.1007/s00228-022-03363-6. PubMed DOI
Butler M., Nelson V.A., Davila H., Ratner E., Fink H.A., Hemmy L.S., McCarten J.R., Barclay T.R., Brasure M., Kane R.L. Over-the-Counter Supplement Interventions to Prevent Cognitive Decline, Mild Cognitive Impairment, and Clinical Alzheimer-Type Dementia: A Systematic Review. Ann. Intern. Med. 2018;168:52–62. doi: 10.7326/M17-1530. PubMed DOI
Choi H., Park H.H., Koh S.H., Choi N.Y., Yu H.J., Park J., Lee Y.J., Lee K.Y. Coenzyme Q10 protects against amyloid β-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway. Neurotoxicology. 2012;33:85–90. doi: 10.1016/j.neuro.2011.12.005. PubMed DOI
Paradies G., Paradies V., Ruggiero F.M., Petrosillo G. Mitochondrial bioenergetics decay in aging: Beneficial effect of melatonin. Cell. Mol. Life Sci. 2017;74:3897–3911. doi: 10.1007/s00018-017-2619-5. PubMed DOI PMC
De Castro A.A., Soares F.V., Pereira A.F., Polisel D.A., Caetano M.S., Leal D.H.S., da Cunha E.F.F., Nepovimova E., Kuca K., Ramalho T.C. Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev. Neurother. 2019;19:375–395. doi: 10.1080/14737175.2019.1608823. PubMed DOI
Lu P.R., Wong S.Y., Wu L., Lin D.B. Carotenoid metabolism in mitochondrial function. Food Qual. Saf. 2020;4:115–122. doi: 10.1093/fqsafe/fyaa023. DOI
Shin S.J., Jeon S.G., Kim J.I., Jeong Y.O., Kim S., Park Y.H., Lee S.K., Park H.H., Hong S.B., Oh S., et al. Red Ginseng Attenuates Aβ-Induced Mitochondrial Dysfunction and Aβ-mediated Pathology in an Animal Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2019;20:3030. doi: 10.3390/ijms20123030. PubMed DOI PMC
Swerdlow R.H. Bioenergetics and metabolism: A bench to bedside perspective. J. Neurochem. 2016;139((Suppl. S2)):126–135. doi: 10.1111/jnc.13509. PubMed DOI PMC
Gauthier S., Feldman H.H., Schneider L.S., Wilcock G.K., Frisoni G.B., Hardlund J.H., Moebius H.J., Bentham P., Kook K.A., Wischik D.J., et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: A randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet. 2016;388:2873–2884. doi: 10.1016/S0140-6736(16)31275-2. PubMed DOI PMC
Shin S.J., Park Y.H., Jeon S.G., Kim S., Nam Y., Oh S.M., Lee Y.Y., Moon M. Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro. Oxid. Med. Cell. Longev. 2020;2020:7829842. doi: 10.1155/2020/7829842. PubMed DOI PMC
Chalatsa I., Arvanitis D.A., Koulakiotis N.S., Giagini A., Skaltsounis A.L., Papadopoulou-Daifoti Z., Tsarbopoulos A., Sanoudou D. The Crocus sativus Compounds trans-Crocin 4 and trans-Crocetin Modulate the Amyloidogenic Pathway and Tau Misprocessing in Alzheimer Disease Neuronal Cell Culture Models. Front. Neurosci. 2019;13:249. doi: 10.3389/fnins.2019.00249. PubMed DOI PMC
George R.C., Lew J., Graves D.J. Interaction of cinnamaldehyde and epicatechin with tau: Implications of beneficial effects in modulating Alzheimer’s disease pathogenesis. J. Alzheimer’s Dis. 2013;36:21–40. doi: 10.3233/JAD-122113. PubMed DOI
Viswanathan G.K., Shwartz D., Losev Y., Arad E., Shemesh C., Pichinuk E., Engel H., Raveh A., Jelinek R., Cooper I., et al. Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer’s disease-like symptoms in animal model. Cell. Mol. Life Sci. 2020;77:2795–2813. doi: 10.1007/s00018-019-03312-0. PubMed DOI PMC
Ghasemzadeh S., Riazi G.H. Inhibition of Tau amyloid fibril formation by folic acid: In-vitro and theoretical studies. Int. J. Biol. Macromol. 2020;154:1505–1516. doi: 10.1016/j.ijbiomac.2019.11.032. PubMed DOI
Jia Y., Wang N., Liu X. Resveratrol and Amyloid-β: Mechanistic Insights. Nutrients. 2017;9:1122. doi: 10.3390/nu9101122. PubMed DOI PMC
Yang G., Wang Y., Tian J., Liu J.P. Huperzine A for Alzheimer’s disease: A systematic review and meta-analysis of randomized clinical trials. PLoS ONE. 2013;8:e74916. doi: 10.1371/journal.pone.0074916. PubMed DOI PMC
Xiao X.Q., Wang R., Tang X.C. Huperzine A and tacrine attenuate β-amyloid peptide-induced oxidative injury. J. Neurosci. Res. 2000;61:564–569. doi: 10.1002/1097-4547(20000901)61:5<564::AID-JNR11>3.0.CO;2-X. PubMed DOI
Azizi Z., Majlessi N., Choopani S., Naghdi N. Neuroprotective effects of carvacrol against Alzheimer’s disease and other neurodegenerative diseases: A review. Avicenna J. Phytomed. 2022;12:371–387. doi: 10.22038/AJP.2022.19491. PubMed DOI PMC
Celik Topkara K., Kilinc E., Cetinkaya A., Saylan A., Demir S. Therapeutic effects of carvacrol on β-amyloid-induced impairments in in vitro and in vivo models of Alzheimer’s disease. Eur. J. Neurosci. 2021:1–13. doi: 10.1111/ejn.15565. PubMed DOI
Li Q., Rubin L., Silva M., Li S., Yang C., Lazarovici P., Zheng W. Current Progress on Neuroprotection Induced by Artemisia, Ginseng, Astragalus, and Ginkgo Traditional Chinese Medicines for the Therapy of Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2022;2022:3777021. doi: 10.1155/2022/3777021. PubMed DOI PMC
Shin J.Y., Kang E.S., Park J.H., Cho B.O., Jang S.I. Anti-inflammatory effect of red ginseng marc, Artemisia scoparia, Paeonia japonica and Angelica gigas extract mixture in LPS-stimulated RAW 264.7 cells. Biomed. Rep. 2022;17:63. doi: 10.3892/br.2022.1546. PubMed DOI PMC
Chakraborty B., Mukerjee N., Maitra S., Zehravi M., Mukherjee D., Ghosh A., Massoud E.E.S., Rahman M.H. Therapeutic Potential of Different Natural Products for the Treatment of Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2022;2022:6873874. doi: 10.1155/2022/6873874. PubMed DOI PMC
Aillaud I., Funke S.A. Tau Aggregation Inhibiting Peptides as Potential Therapeutics for Alzheimer Disease. Cell. Mol. Neurobiol. 2022:1–11. doi: 10.1007/s10571-022-01230-7. PubMed DOI PMC
CoQ10 and Mitochondrial Dysfunction in Alzheimer's Disease
Age-Dependent Alterations in Platelet Mitochondrial Respiration