Effects of Novel Tacrine Derivatives on Mitochondrial Energy Metabolism and Monoamine Oxidase Activity-In Vitro Study

. 2021 Mar ; 58 (3) : 1102-1113. [epub] 20201022

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33089424

Grantová podpora
17-07585Y Grantová Agentura České Republiky

Odkazy

PubMed 33089424
DOI 10.1007/s12035-020-02172-1
PII: 10.1007/s12035-020-02172-1
Knihovny.cz E-zdroje

The trends of novel AD therapeutics are focused on multitarget-directed ligands (MTDLs), which combine cholinesterase inhibition with additional biological properties such as antioxidant properties to positively affect neuronal energy metabolism as well as mitochondrial function. We examined the in vitro effects of 10 novel MTDLs on the activities of mitochondrial enzymes (electron transport chain complexes and citrate synthase), mitochondrial respiration, and monoamine oxidase isoform (MAO-A and MAO-B) activity. The drug-induced effects of 7-MEOTA-adamantylamine heterodimers (K1011, K1013, K1018, K1020, and K1022) and tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers (K1046, K1053, K1056, K1060, and K1065) were measured in pig brain mitochondria. Most of the substances inhibited complex I- and complex II-linked respiration at high concentrations; K1046, K1053, K1056, and K1060 resulted in the least inhibition of mitochondrial respiration. Citrate synthase activity was not significantly inhibited by the tested substances; the least inhibition of complex I was observed for compounds K1060 and K1053, while both complex II/III and complex IV activity were markedly inhibited by K1011 and K1018. MAO-A was fully inhibited by K1018 and K1065, and MAO-B was fully inhibited by K1053 and K1065; the other tested drugs were partial inhibitors of both MAO-A and MAO-B. The tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers K1046, K1053, and K1060 seem to be the most suitable molecules for subsequent in vivo studies. These compounds had balanced inhibitory effects on mitochondrial respiration, with low complex I and complex II/III inhibition and full or partial inhibition of MAO-B activity.

Zobrazit více v PubMed

Orth M, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106(1):27–36 PubMed

Anandatheerthavarada HK, Devi L (2007) Amyloid precursor protein and mitochondrial dysfunction in Alzheimer’s disease. Neuroscientist 13(6):626–638. https://doi.org/10.1177/1073858407303536

Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26(35):9057–9068 PubMed PMC

Rhein V, Baysang G, Rao S, Meier F, Bonert A, Muller-Spahn F et al (2009) Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 29(6–7):1063–1071 PubMed

Filosto M, Scarpelli M, Cotelli MS, Vielmi V, Todeschini A, Gregorelli V, Tonin P, Tomelleri G et al (2011) The role of mitochondria in neurodegenerative diseases. J Neurol 258(10):1763–1774 PubMed

Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10(2):187–198 PubMed

Leuner K, Schulz K, Schutt T, Pantel J, Prvulovic D, Rhein V et al (2012) Peripheral mitochondrial dysfunction in Alzheimer’s disease: focus on lymphocytes. Mol Neurobiol 46(1):194–204 PubMed

Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110(4):1129–1134 PubMed

Ye CY, Lei Y, Tang XC, Zhang HY (2015) Donepezil attenuates Aβ-associated mitochondrial dysfunction and reduces mitochondrial Aβ accumulation in vivo and in vitro. Neuropharmacology 95:29–36. https://doi.org/10.1016/j.neuropharm.2015.02.020

Lane RM, Potkin SG, Enz A (2006) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9(1):101–124. https://doi.org/10.1017/S1461145705005833

Summers WK, Tachiki KH, Kling A (1989) Tacrine in the treatment of Alzheimer’s disease. A clinical update and recent pharmacologic studies. Eur Neurol 29(Suppl 3):28–32 PubMed

Soukup O, Jun D, Zdarova-Karasova J, Patocka J, Musilek K, Korabecny J, Krusek J, Kaniakova M et al (2013) A resurrection of 7-MEOTA: a comparison with tacrine. Curr Alzheimer Res 10(8):893–906 PubMed

Korabecny J, Nepovimova E, Cikankova T, Spilovska K, Vaskova L, Mezeiova E et al (2018) Newly developed drugs for Alzheimer’s disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission. Neuroscience 370:191–206 PubMed

Benek O, Korabecny J, Soukup O (2020) A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol Sci 41(7):434–445. https://doi.org/10.1016/j.tips.2020.04.008

Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science (New York, NY) 256(5054):184–185

Daly T, Houot M, Barberousse A, Agid Y, Epelbaum S (2020) Amyloid-beta in Alzheimer’s disease: a study of citation practices of the amyloid cascade hypothesis between 1992 and 2019. J Alzheimers Dis 74(4):1309–1317. https://doi.org/10.3233/JAD-191321

Goure WF, Krafft GA, Jerecic J, Hefti F (2014) Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res Ther 6(4):42 PubMed PMC

Swerdlow RH, Khan SM (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 63(1):8–20 PubMed

Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231 PubMed

Parker WD Jr, Parks J, Filley CM, Kleinschmidt-DeMasters BK (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology. 44(6):1090–1096 PubMed

Chandrasekaran K, Hatanpaa K, Brady DR, Rapoport SI (1996) Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer’s disease. Exp Neurol 142(1):80–88 PubMed

Parker WD Jr, Filley CM, Parks JK (1990) Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology. 40(8):1302–1303 PubMed

Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi EA et al (2002) Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol Aging 23(3):371–376 PubMed

Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm (Vienna, Austria : 1996) 105(8–9):855–870

Cardoso SM, Proenca MT, Santos S, Santana I, Oliveira CR (2004) Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiol Aging 25(1):105–110 PubMed

Karbowski M, Neutzner A (2012) Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol 123(2):157–171 PubMed

Chaturvedi RK, Flint BM (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29 PubMed

Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A 106(47):20057–20062 PubMed PMC

Canevari L, Clark JB, Bates TE (1999) Beta-amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 457(1):131–134 PubMed

Sturm S, Forsberg A, Nave S, Stenkrona P, Seneca N, Varrone A, Comley RA, Fazio P et al (2017) Positron emission tomography measurement of brain MAO-B inhibition in patients with Alzheimer’s disease and elderly controls after oral administration of sembragiline. Eur J Nucl Med Mol Imaging 44(3):382–391 PubMed

Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226(1):73–82 PubMed

Brieger K, Schiavone S, Miller FJ Jr, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659 PubMed

Schonfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45(3):231–241 PubMed

Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312 PubMed PMC

Wallace KB (2015) Multiple targets for drug-induced mitochondrial toxicity. Curr Med Chem 22(20):2488–2492 PubMed

Spilovska K, Korabecny J, Kral J, Horova A, Musilek K, Soukup O et al (2013) 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment--synthesis, biological evaluation and molecular modeling studies. Molecules (Basel, Switzerland) 18(2):2397–2418

Spilovska K, Korabecny J, Horova A, Musilek K, Nepovimova E, Drtinova L et al (2015) Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: a novel cholinesterase inhibitors for the treatment of Alzheimer’s disease. Med Chem Res 24(6):2645–2655

Gazova Z, Soukup O, Sepsova V, Siposova K, Drtinova L, Jost P, Spilovska K, Korabecny J et al (2017) Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer’s disease treatment. Biochim Biophys Acta Mol Basis Dis 1863(2):607–619 PubMed

Nepovimova E, Korabecny J, Dolezal R, Babkova K, Ondrejicek A, Jun D, Sepsova V, Horova A et al (2015) Tacrine-trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 58(22):8985–9003 PubMed

Misik J, Nepovimova E, Pejchal J, Kassa J, Korabecny J, Soukup O (2018) Cholinesterase inhibitor 6-chlorotacrine - in vivo toxicological profile and behavioural effects. Curr Alzheimer Res 15(6):552–560 PubMed

Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol (Clifton, NJ) 810:25–58

Pinna G, Broedel O, Eravci M, Stoltenburg-Didinger G, Plueckhan H, Fuxius S, Meinhold H, Baumgartner A (2003) Thyroid hormones in the rat amygdala as common targets for antidepressant drugs, mood stabilizers, and sleep deprivation. Biol Psychiatry 54(10):1049–1059 PubMed

Fisar Z, Hroudova J, Raboch J (2010) Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers. Neuro Endocrinol Lett 31(5):645–656 PubMed

Fišar Z, Hroudová J (2016) Pig brain mitochondria as a biological model for study of mitochondrial respiration. Folia Biol (Praha) 62(1):15–25

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275 PubMed

Folbergrova J, Jesina P, Haugvicova R, Lisy V, Houstek J (2010) Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem Int 56(3):394–403 PubMed

Hroudova J, Fisar Z (2010) Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinol Lett 31(3):336–342 PubMed

Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509 PubMed

Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228(1):35–51. https://doi.org/10.1016/0009-8981(94)90055-8

Srere (1969) Citrate synthase: [EC 4.1.3.7 Citrate oxaloacetate-lyase (CoA acetylating)]. Methods Enzymol 13:3–11

Hroudova J, Fisar Z (2012) In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol Lett 213(3):345–352 PubMed

Fisar Z, Singh N, Hroudova J (2014) Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol Lett 231(1):62–71 PubMed

Fisar Z, Hroudova J, Singh N, Koprivova A, Maceckova D (2016) Effect of simvastatin, coenzyme Q10, resveratrol, acetylcysteine and acetylcarnitine on mitochondrial respiration. Folia Biol 62(2):53–66

Singh N, Hroudová J, Fišar Z (2017) In vitro effects of cognitives and nootropics on mitochondrial respiration and monoamine oxidase activity. Mol Neurobiol 54(8):5894–5904 PubMed

Fisar Z (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedeberg's Arch Pharmacol 381(6):563–572

Pathak RU, Davey GP (2008) Complex I and energy thresholds in the brain. Biochim Biophys Acta 1777(7–8):777–782 PubMed

Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25(10):502–508 PubMed

Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G (2009) Differential effects of mitochondrial complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta 1787(5):384–392 PubMed

Singh N, Hroudová J, Fišar Z (2016) In vitro effects of cognitives and nootropics on mitochondrial respiration and monoamine oxidase activity. Mol Neurobiol 2016:1–11

Fisar Z, Hansikova H, Krizova J, Jirak R, Kitzlerova E, Zverova M et al (2019) Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion. 48:67–77 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...