Effects of Novel Tacrine Derivatives on Mitochondrial Energy Metabolism and Monoamine Oxidase Activity-In Vitro Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
17-07585Y
Grantová Agentura České Republiky
PubMed
33089424
DOI
10.1007/s12035-020-02172-1
PII: 10.1007/s12035-020-02172-1
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Cholinesterase inhibitors, Electron transport chain complexes, Mitochondrial respiration, Monoamine oxidase, Multitarget-directed ligands,
- MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- buněčné dýchání účinky léků MeSH
- energetický metabolismus * účinky léků MeSH
- inhibitory MAO farmakologie MeSH
- mitochondrie účinky léků enzymologie metabolismus MeSH
- monoaminoxidasa metabolismus MeSH
- prasata MeSH
- respirační komplex II metabolismus MeSH
- takrin chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory MAO MeSH
- monoaminoxidasa MeSH
- respirační komplex II MeSH
- takrin MeSH
The trends of novel AD therapeutics are focused on multitarget-directed ligands (MTDLs), which combine cholinesterase inhibition with additional biological properties such as antioxidant properties to positively affect neuronal energy metabolism as well as mitochondrial function. We examined the in vitro effects of 10 novel MTDLs on the activities of mitochondrial enzymes (electron transport chain complexes and citrate synthase), mitochondrial respiration, and monoamine oxidase isoform (MAO-A and MAO-B) activity. The drug-induced effects of 7-MEOTA-adamantylamine heterodimers (K1011, K1013, K1018, K1020, and K1022) and tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers (K1046, K1053, K1056, K1060, and K1065) were measured in pig brain mitochondria. Most of the substances inhibited complex I- and complex II-linked respiration at high concentrations; K1046, K1053, K1056, and K1060 resulted in the least inhibition of mitochondrial respiration. Citrate synthase activity was not significantly inhibited by the tested substances; the least inhibition of complex I was observed for compounds K1060 and K1053, while both complex II/III and complex IV activity were markedly inhibited by K1011 and K1018. MAO-A was fully inhibited by K1018 and K1065, and MAO-B was fully inhibited by K1053 and K1065; the other tested drugs were partial inhibitors of both MAO-A and MAO-B. The tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers K1046, K1053, and K1060 seem to be the most suitable molecules for subsequent in vivo studies. These compounds had balanced inhibitory effects on mitochondrial respiration, with low complex I and complex II/III inhibition and full or partial inhibition of MAO-B activity.
Zobrazit více v PubMed
Orth M, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106(1):27–36 PubMed
Anandatheerthavarada HK, Devi L (2007) Amyloid precursor protein and mitochondrial dysfunction in Alzheimer’s disease. Neuroscientist 13(6):626–638. https://doi.org/10.1177/1073858407303536
Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26(35):9057–9068 PubMed PMC
Rhein V, Baysang G, Rao S, Meier F, Bonert A, Muller-Spahn F et al (2009) Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 29(6–7):1063–1071 PubMed
Filosto M, Scarpelli M, Cotelli MS, Vielmi V, Todeschini A, Gregorelli V, Tonin P, Tomelleri G et al (2011) The role of mitochondria in neurodegenerative diseases. J Neurol 258(10):1763–1774 PubMed
Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10(2):187–198 PubMed
Leuner K, Schulz K, Schutt T, Pantel J, Prvulovic D, Rhein V et al (2012) Peripheral mitochondrial dysfunction in Alzheimer’s disease: focus on lymphocytes. Mol Neurobiol 46(1):194–204 PubMed
Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110(4):1129–1134 PubMed
Ye CY, Lei Y, Tang XC, Zhang HY (2015) Donepezil attenuates Aβ-associated mitochondrial dysfunction and reduces mitochondrial Aβ accumulation in vivo and in vitro. Neuropharmacology 95:29–36. https://doi.org/10.1016/j.neuropharm.2015.02.020
Lane RM, Potkin SG, Enz A (2006) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9(1):101–124. https://doi.org/10.1017/S1461145705005833
Summers WK, Tachiki KH, Kling A (1989) Tacrine in the treatment of Alzheimer’s disease. A clinical update and recent pharmacologic studies. Eur Neurol 29(Suppl 3):28–32 PubMed
Soukup O, Jun D, Zdarova-Karasova J, Patocka J, Musilek K, Korabecny J, Krusek J, Kaniakova M et al (2013) A resurrection of 7-MEOTA: a comparison with tacrine. Curr Alzheimer Res 10(8):893–906 PubMed
Korabecny J, Nepovimova E, Cikankova T, Spilovska K, Vaskova L, Mezeiova E et al (2018) Newly developed drugs for Alzheimer’s disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission. Neuroscience 370:191–206 PubMed
Benek O, Korabecny J, Soukup O (2020) A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol Sci 41(7):434–445. https://doi.org/10.1016/j.tips.2020.04.008
Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science (New York, NY) 256(5054):184–185
Daly T, Houot M, Barberousse A, Agid Y, Epelbaum S (2020) Amyloid-beta in Alzheimer’s disease: a study of citation practices of the amyloid cascade hypothesis between 1992 and 2019. J Alzheimers Dis 74(4):1309–1317. https://doi.org/10.3233/JAD-191321
Goure WF, Krafft GA, Jerecic J, Hefti F (2014) Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res Ther 6(4):42 PubMed PMC
Swerdlow RH, Khan SM (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 63(1):8–20 PubMed
Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231 PubMed
Parker WD Jr, Parks J, Filley CM, Kleinschmidt-DeMasters BK (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology. 44(6):1090–1096 PubMed
Chandrasekaran K, Hatanpaa K, Brady DR, Rapoport SI (1996) Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer’s disease. Exp Neurol 142(1):80–88 PubMed
Parker WD Jr, Filley CM, Parks JK (1990) Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology. 40(8):1302–1303 PubMed
Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi EA et al (2002) Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol Aging 23(3):371–376 PubMed
Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm (Vienna, Austria : 1996) 105(8–9):855–870
Cardoso SM, Proenca MT, Santos S, Santana I, Oliveira CR (2004) Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiol Aging 25(1):105–110 PubMed
Karbowski M, Neutzner A (2012) Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol 123(2):157–171 PubMed
Chaturvedi RK, Flint BM (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29 PubMed
Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A 106(47):20057–20062 PubMed PMC
Canevari L, Clark JB, Bates TE (1999) Beta-amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 457(1):131–134 PubMed
Sturm S, Forsberg A, Nave S, Stenkrona P, Seneca N, Varrone A, Comley RA, Fazio P et al (2017) Positron emission tomography measurement of brain MAO-B inhibition in patients with Alzheimer’s disease and elderly controls after oral administration of sembragiline. Eur J Nucl Med Mol Imaging 44(3):382–391 PubMed
Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226(1):73–82 PubMed
Brieger K, Schiavone S, Miller FJ Jr, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659 PubMed
Schonfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45(3):231–241 PubMed
Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312 PubMed PMC
Wallace KB (2015) Multiple targets for drug-induced mitochondrial toxicity. Curr Med Chem 22(20):2488–2492 PubMed
Spilovska K, Korabecny J, Kral J, Horova A, Musilek K, Soukup O et al (2013) 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment--synthesis, biological evaluation and molecular modeling studies. Molecules (Basel, Switzerland) 18(2):2397–2418
Spilovska K, Korabecny J, Horova A, Musilek K, Nepovimova E, Drtinova L et al (2015) Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: a novel cholinesterase inhibitors for the treatment of Alzheimer’s disease. Med Chem Res 24(6):2645–2655
Gazova Z, Soukup O, Sepsova V, Siposova K, Drtinova L, Jost P, Spilovska K, Korabecny J et al (2017) Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer’s disease treatment. Biochim Biophys Acta Mol Basis Dis 1863(2):607–619 PubMed
Nepovimova E, Korabecny J, Dolezal R, Babkova K, Ondrejicek A, Jun D, Sepsova V, Horova A et al (2015) Tacrine-trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 58(22):8985–9003 PubMed
Misik J, Nepovimova E, Pejchal J, Kassa J, Korabecny J, Soukup O (2018) Cholinesterase inhibitor 6-chlorotacrine - in vivo toxicological profile and behavioural effects. Curr Alzheimer Res 15(6):552–560 PubMed
Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol (Clifton, NJ) 810:25–58
Pinna G, Broedel O, Eravci M, Stoltenburg-Didinger G, Plueckhan H, Fuxius S, Meinhold H, Baumgartner A (2003) Thyroid hormones in the rat amygdala as common targets for antidepressant drugs, mood stabilizers, and sleep deprivation. Biol Psychiatry 54(10):1049–1059 PubMed
Fisar Z, Hroudova J, Raboch J (2010) Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers. Neuro Endocrinol Lett 31(5):645–656 PubMed
Fišar Z, Hroudová J (2016) Pig brain mitochondria as a biological model for study of mitochondrial respiration. Folia Biol (Praha) 62(1):15–25
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275 PubMed
Folbergrova J, Jesina P, Haugvicova R, Lisy V, Houstek J (2010) Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem Int 56(3):394–403 PubMed
Hroudova J, Fisar Z (2010) Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinol Lett 31(3):336–342 PubMed
Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509 PubMed
Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228(1):35–51. https://doi.org/10.1016/0009-8981(94)90055-8
Srere (1969) Citrate synthase: [EC 4.1.3.7 Citrate oxaloacetate-lyase (CoA acetylating)]. Methods Enzymol 13:3–11
Hroudova J, Fisar Z (2012) In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol Lett 213(3):345–352 PubMed
Fisar Z, Singh N, Hroudova J (2014) Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol Lett 231(1):62–71 PubMed
Fisar Z, Hroudova J, Singh N, Koprivova A, Maceckova D (2016) Effect of simvastatin, coenzyme Q10, resveratrol, acetylcysteine and acetylcarnitine on mitochondrial respiration. Folia Biol 62(2):53–66
Singh N, Hroudová J, Fišar Z (2017) In vitro effects of cognitives and nootropics on mitochondrial respiration and monoamine oxidase activity. Mol Neurobiol 54(8):5894–5904 PubMed
Fisar Z (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedeberg's Arch Pharmacol 381(6):563–572
Pathak RU, Davey GP (2008) Complex I and energy thresholds in the brain. Biochim Biophys Acta 1777(7–8):777–782 PubMed
Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25(10):502–508 PubMed
Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G (2009) Differential effects of mitochondrial complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta 1787(5):384–392 PubMed
Singh N, Hroudová J, Fišar Z (2016) In vitro effects of cognitives and nootropics on mitochondrial respiration and monoamine oxidase activity. Mol Neurobiol 2016:1–11
Fisar Z, Hansikova H, Krizova J, Jirak R, Kitzlerova E, Zverova M et al (2019) Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion. 48:67–77 PubMed