Biostimulants as an Alternative to Improve the Wine Quality from Vitis vinifera (cv. Tempranillo) in La Rioja

. 2022 Jun 16 ; 11 (12) : . [epub] 20220616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35736745

Grantová podpora
No. CZ.02.1.01/0.0/0.0/16_019/0000827) ERDF project "Plants as a tool for sustainable global devel-593 opment"
No. IT925-16 Basque Government

The application of biostimulants appears to be an environmentally friendly, innovative, and sustainable agronomical tool to mitigate the negative effects induced by adverse climatology in traditional grape-growing regions such as La Rioja (Spain). However, their mechanism of action in grapevines is still unclear. We evaluated how commercial substances (two from Ascophyllum nodosum extraction and one amino acids-based biostimulant) and the non-proteinogenic amino acid β-aminobutyric acid (BABA) affect the quality and quantity of musts and grapes in Vitis vinifera L. cv. Tempranillo from a semi-arid region of La Rioja during two seasons. We hypothesized an enhancement in organic metabolites in berries and leaves in response to these treatments, changing the organoleptic characteristics of the final products. The treatments altered the primary metabolites such as carbohydrates, organic acids (AcOrg), and free amino acids, first in the leaves as the effect of the foliar application and second in grapes and musts. As the main result, the biostimulant efficiency depended on the climatology and vineyard location to improve the final yield. Whereas biostimulant application enhanced the yield in 2018 (less dry year), it did not help production in 2019 (dry year). BABA was the most efficient biostimulant, enhancing plant production. Regarding yield quality, the biostimulant application improved the musts mainly by enhancing the fumaric acid content and by reducing carbohydrates, except in BABA-treated plants, where they were accumulated. These results corroborate biostimulants as an exciting approach in wine production, especially for improving wine quality.

Zobrazit více v PubMed

OIV Actualidad de La Coyuntura Del Sector Vinícola Mundial En 2019. 2020. [(accessed on 24 April 2022)]. Available online: http://www.oiv.int/public/medias/7304/es-actualidad-de-la-coyuntura-del-sector-vitivin-cola-mundia.pdf.

Consejo Regulador de la Denominación de Origen Calificada Rioja Estadísticas Rioja 2019. [(accessed on 25 November 2020)]. Available online: https://www.riojawine.com/wp-content/uploads/2020/05/ESTADISTICAS_RIOJA2019.pdf.

Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012;1:94–110. doi: 10.1002/fes3.14. DOI

Wang W., Vinocur B., Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta. 2003;218:16. doi: 10.1007/s00425-003-1105-5. PubMed DOI

Palliotti A., Tombesi S., Silvestroni O., Lanari V., Gatti M., Poni S. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A Review. Sci. Hortic. 2014;178:43–54. doi: 10.1016/j.scienta.2014.07.039. DOI

Kliewer W.M., Soleimani A. Effect of chilling on budbreak in ‘Thompson Seedless’ and ‘Carignane’ grapevines. Am. J. Enol. Vitic. 1972;23:31–34.

Greer D.H., Weedon M.M. The impact of high temperatures on Vitis vinifera Cv. Semillon grapevine performance and berry ripening. Front. Plant Sci. 2013;4:491. doi: 10.3389/fpls.2013.00491. PubMed DOI PMC

Jones G.V., White M.A., Cooper O.R., Storchmann K. Climate Change and Global Wine Quality. Clim. Chang. 2005;73:319–343. doi: 10.1007/s10584-005-4704-2. DOI

Bonada M., Jeffery D.W., Petrie P.R., Moran M.A., Sadrás V.O. Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Aust. J. Grape Wine Res. 2015;21:240–253. doi: 10.1111/ajgw.12142. DOI

Ramos M.C., Martínez de Toda F. Variability in the potential effects of climate change on phenology and on grape composition of tempranillo in three zones of the Rioja DOCa (Spain) Eur. J. Agron. 2020;115:126014. doi: 10.1016/j.eja.2020.126014. DOI

Intrigliolo D.S., Pérez D., Risco D., Yeves A., Castel J.R. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrig. Sci. 2012;30:339–349. doi: 10.1007/s00271-012-0354-0. DOI

Torres N., Hilbert G., Luquin J., Goicoechea N., Antolín M.C. Flavonoid and amino acid profiling on Vitis vinifera L. Cv Tempranillo subjected to deficit irrigation under elevated temperatures. J. Food Compos. Anal. 2017;62:51–62. doi: 10.1016/j.jfca.2017.05.001. DOI

Cooley N.M., Clingeleffer P.R., Walker R.R. Effect of water deficits and season on berry development and composition of Cabernet Sauvignon (Vitis vinifera L.) grown in a hot climate. Aust. J. Grape Wine Res. 2017;23:260–272. doi: 10.1111/ajgw.12274. DOI

Ojeda H., Andary C., Kraeva E., Carbonneau A., Deloire A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera Cv. Shiraz. Am. J. Enol. Vitic. 2002;53:261–267.

Roby G., Harbertson J.F., Adams D.A., Matthews M.A. Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Aust. J. Grape Wine Res. 2004;10:100–107. doi: 10.1111/j.1755-0238.2004.tb00012.x. DOI

Castellarin S.D., Matthews M.A., Di Gaspero G., Gambetta G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta. 2007;227:101–112. doi: 10.1007/s00425-007-0598-8. PubMed DOI

Williams L.E. Effects of applied water amounts at various fractions of evapotranspiration (ETc) on leaf gas exchange of Thompson Seedless grapevines. Aust. J. Grape Wine Res. 2012;10:100–108. doi: 10.1111/j.1755-0238.2011.00176.x. DOI

Scholasch T., Rienth M. Review of water deficit mediated changes in vine and berry physiology; Consequences for the optimization of irrigation strategies. OENO One. 2019;53:423–444. doi: 10.20870/oeno-one.2019.53.3.2407. DOI

Ma X., Sanguinet K.A., Jacoby P.W. Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth. Agric. Water Manag. 2020;231:105993. doi: 10.1016/j.agwat.2019.105993. DOI

Ramos M.C., Martínez-Casasnovas J.A. Soil water balance in rainfed vineyards of the Penedès Region (Northeastern Spain) affected by rainfall characteristics and land levelling: Influence on grape yield. Plant Soil. 2010;333:375–389. doi: 10.1007/s11104-010-0353-y. DOI

Medrano H., Tomás M., Martorell S., Escalona J.M., Pou A., Fuentes S., Flexas J., Bota J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015;35:499–517. doi: 10.1007/s13593-014-0280-z. DOI

Pelsy F. Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity. 2010;104:331–340. doi: 10.1038/hdy.2009.161. PubMed DOI

White M.A., Diffenbaugh N.S., Jones G.V., Pal J.S., Giorgi F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA. 2006;103:11217–11222. doi: 10.1073/pnas.0603230103. PubMed DOI PMC

Hannah L., Roehrdanz P.R., Ikegami M., Shepard A.V., Shaw M.R., Tabor G., Zhi L., Marquet P.A., Hijmans R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA. 2013;110:6907–6912. doi: 10.1073/pnas.1210127110. PubMed DOI PMC

Moriondo M., Jones G.V., Bois B., Dibari C., Ferrise R., Trombi G., Bindi M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013;119:825–839. doi: 10.1007/s10584-013-0739-y. DOI

Helay A.A. Strategies for improvement of horticultural crops against abiotic stresses. J. Hortic. 2017;4:e107. doi: 10.4172/2376-0354.1000e107. DOI

Balestrini R., Magurno F., Walker C., Lumini E., Bianciotto V. Cohorts of arbuscular mycorrhizal fungi (A.M.F.) in Vitis vinifera, a typical Mediterranean fruit crop. Environ. Microbiol. Rep. 2010;2:594–604. doi: 10.1111/j.1758-2229.2010.00160.x. PubMed DOI

Du Jardin P. Plant Biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015;196:3–14. doi: 10.1016/j.scienta.2015.09.021. DOI

Calvo P., Nelson L., Kloepper J.W. Agricultural uses of plant biostimulants. Plant Soil. 2014;383:3–41. doi: 10.1007/s11104-014-2131-8. DOI

Yakhin O.I., Lubyanov A.A., Yakhin I.A., Brown P.H. Biostimulants in plant science: A Global Perspective. Front. Plant Sci. 2017;7:2049. doi: 10.3389/fpls.2016.02049. PubMed DOI PMC

Boller T., Felix G. A Renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009;60:379–406. doi: 10.1146/annurev.arplant.57.032905.105346. PubMed DOI

Arioli T., Mattner S.W., Winberg P.C. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015;27:2007–2015. doi: 10.1007/s10811-015-0574-9. PubMed DOI PMC

Kapoore R.V., Wood E.E., Llewellyn C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021;49:107754. doi: 10.1016/j.biotechadv.2021.107754. PubMed DOI

Sharma H.S.S., Fleming C., Selby C., Rao J.R., Martin T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014;26:465–490. doi: 10.1007/s10811-013-0101-9. DOI

Battacharyya D., Babgohari M.Z., Rathor P., Prithiviraj B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015;196:39–48. doi: 10.1016/j.scienta.2015.09.012. DOI

Mancuso S., Azzarello E., Mugnai S., Briand X. Marine bioactive substances (I.P.A. Extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv. Hortic. Sci. 2006;20:156–161. doi: 10.1400/53262. DOI

Mugnai S., Azzarello E., Pandolfi C., Salamagne S., Briand X., Mancuso S. Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. J. Appl. Phycol. 2008;20:177–182. doi: 10.1007/s10811-007-9203-6. DOI

Khan A.S., Ahmad B., Jaskani M.J., Ahmad R., Malik A.U. Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physicochemical properties of grapes. Int. J. Agric. Biol. 2012;14:383–388.

Salvi L., Brunetti C., Cataldo E., Niccolai A., Centritto M., Ferrini F., Mattii G.B. Effects of Ascophyllum nodosum extract on Vitis vinifera: Consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol. Biochem. 2019;139:21–32. doi: 10.1016/j.plaphy.2019.03.002. PubMed DOI

Salvi L., Brunetti C., Cataldo E., Storchi P., Mattii G.B. Eco-physiological traits and phenylpropanoid profiling on potted Vitis vinifera L. Cv Pinot Noir subjected to Ascophyllum nodosum treatments under post-veraison low water availability. Appl. Sci. 2020;10:4473. doi: 10.3390/app10134473. DOI

Batista-Silva W., Heinemann B., Rugen N., Nunes-Nesi A., Araújo W.L., Braun H.P., Hildebrandt T.M. The role of amino acid metabolism during abiotic stress release. Plant Cell Environ. 2019;42:1630–1644. doi: 10.1111/pce.13518. PubMed DOI

De Diego N., Sampedro M.C., Barrio R.J., Saiz-Fernández I., Moncaleán P., Lacuesta M. Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought. Tree Physiol. 2013;33:69–80. doi: 10.1093/treephys/tps125. PubMed DOI

Deluc L.G., Quilici D.R., Decendit A., Grimplet J., Wheatley M.D., Schlauch K.A., Mérillon J.M., Cushman J.C., Cramer G.R. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genom. 2009;10:212. doi: 10.1186/1471-2164-10-212. PubMed DOI PMC

Ovadia R., Oren-Shamir M., Kaplunov T., Zutahy Y., Lichter A., Lurie S. Effects of plant growth regulators and high temperature on colour development in “Crimson Seedless” grapes. J. Hortic. Sci. Biotechnol. 2013;88:387–392. doi: 10.1080/14620316.2013.11512980. DOI

Keller M. Managing Grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2010;16:56–69. doi: 10.1111/j.1755-0238.2009.00077.x. DOI

Mira de Orduña R. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010;43:1844–1855. doi: 10.1016/j.foodres.2010.05.001. DOI

Sadras V.O., Moran M.A. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012;18:115–122. doi: 10.1111/j.1755-0238.2012.00180.x. DOI

Drincovich M.F., Voll L.M., Maurino V.G. Editorial: On the diversity of roles of organic acids. Front. Plant Sci. 2016;7:1592. doi: 10.3389/fpls.2016.01592. PubMed DOI PMC

López-Bucio J., Nieto-Jacobo M.F., Ramírez-Rodríguez V., Herrera-Estrella L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000;160:1–13. doi: 10.1016/S0168-9452(00)00347-2. PubMed DOI

Zotou A., Loukou Z., Karava O. Method development for the determination of seven organic acids in wines by reversed-phase high performance liquid chromatography. Chromatographia. 2004;60:39–44. doi: 10.1365/s10337-004-0330-9. DOI

Pérez-Álvarez E.P., Martínez-Vidaurre J.M., García-Escudero E., Garde-Cerdán T. Amino acids content in “Tempranillo” must from three soil types over four vintages. Vitis J. Grapevine Res. 2019;58:3–12. doi: 10.5073/vitis.2019.58.special-issue.3-12. DOI

Podlešáková K., Ugena L., Spíchal L., Doležal K., De Diego N. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. N. Biotechnol. 2019;48:53–65. doi: 10.1016/j.nbt.2018.07.003. PubMed DOI

Jin X., Liu T., Xu J., Gao Z., Hu X. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biol. 2019;19:48. doi: 10.1186/s12870-019-1660-y. PubMed DOI PMC

Abd El-Gawad H.G., Mukherjee S., Farag R., Abd Elbar O.H., Hikal M., Abou El-Yazied A., Abd Elhady S.A., Helal N., ElKelish A., El Nahhas N., et al. Exogenous γ-aminobutyric acid (GABA)-induced signaling events and field performance associated with mitigation of drought stress in Phaseolus vulgaris L. Plant Signal. Behav. 2021;16:1853384. doi: 10.1080/15592324.2020.1853384. PubMed DOI PMC

Hamiduzzaman M. Ph.D. Thesis. University of Neuchâtel; Neuchâtel, Switzerland: 2005. β-Aminobutyric Acid-Induced Resistance in Grapevine Against Downy Mildew (Plasmopara Viticola)

Baccelli I., Mauch-Mani B. Beta-Aminobutyric acid priming of plant defense: The role of ABA and other hormones. Plant Mol. Biol. 2016;91:703–711. doi: 10.1007/s11103-015-0406-y. PubMed DOI

Ugena L., Hýlová A., Podlešáková K., Humplík J.F., Doležal K., De Diego N., Spíchal L. Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of arabidopsis germination and rosette growth. Front. Plant Sci. 2018;9:1327. doi: 10.3389/fpls.2018.01327. PubMed DOI PMC

Van Oosten M.J., Pepe O., De Pascale S., Silletti S., Maggio A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017;4:5. doi: 10.1186/s40538-017-0089-5. DOI

Monteiro E., Gonçalves B., Cortez I., Castro I. The role of biostimulants as alleviators of biotic and abiotic stresses in grapevine: A review. Plants. 2022;11:396. doi: 10.3390/plants11030396. PubMed DOI PMC

Samuels L.J., Setati M.E., Blancquaert E.H. Towards a better understanding of the potential benefits of seaweed based biostimulants in Vitis vinifera L. cultivars. Plants. 2022;11:348. doi: 10.3390/plants11030348. PubMed DOI PMC

Frioni T., Tombesi S., Quaglia M., Calderini O., Moretti C., Poni S., Gatti M., Moncalvo A., Sabbatini P., Berrìos J.G., et al. Metabolic and transcriptional changes associated with the use of Ascophyllum nodosum extracts as tools to improve the quality of wine grapes (Vitis vinifera Cv. Sangiovese) and their tolerance to biotic stress. J. Sci. Food Agric. 2019;99:6350–6363. doi: 10.1002/jsfa.9913. PubMed DOI

Taskos D., Stamatiadis S., Yvin J.C., Jamois F. Effects of an Ascophyllum nodosum (L.) Le Jol. extract on grapevine yield and berry composition of a merlot vineyard. Sci. Hortic. 2019;250:27–32. doi: 10.1016/j.scienta.2019.02.030. DOI

Gutiérrez-Gamboa G., Garde-Cerdán T., Costa B.S.-D., Moreno-Simunovic Y. Strategies for the improvement of fruit set in Vitis vinifera L. cv. “carménère” through different foliar biostimulants in two different locations. Cienc. Tec. Vitivinic. 2018;33:177–183. doi: 10.1051/ctv/20183302177. DOI

Hunter J.J., Volschenk C.G., Zorer R. Vineyard row orientation of Vitis vinifera L. cv. Shiraz/101-14 Mgt: Climatic profiles and vine physiological status. Agric. For. Meteorol. 2016;228–229:104–119. doi: 10.1016/j.agrformet.2016.06.013. DOI

Da Mota R.V., Peregrino I., Silva C.P.C., Raimundo R.H.P., Fernandes F.D.P., de Souza C.R. Row orientation effects on chemical composition and aromatic profile of Syrah winter wines. Food Sci. Technol. 2021;41:412–417. doi: 10.1590/fst.38219. DOI

Gouveia J., Lopes C.M., Pedroso V., Martins S., Rodrigues P., Alves I. Effect of irrigation on soil water depletion, vegetative growth, yield and berry composition of the grapevine variety Touriga Nacional. Cienc. Tec. Vitivinic. 2013;27:115–122.

Cohen Y., Vaknin M., Mauch-Mani B. BABA-induced resistance: Milestones along a 55-year journey. Phytoparasitica. 2016;44:513–538. doi: 10.1007/s12600-016-0546-x. DOI

Li C., Cao S., Wang K., Lei C., Ji N., Xu F., Jiang Y., Qiu L., Zheng Y. Heat shock protein HSP24 is involved in the BABA-induced resistance to fungal pathogen in postharvest grapes underlying an NPR1-dependent manner. Front. Plant Sci. 2021;12:1–17. doi: 10.3389/fpls.2021.812672. PubMed DOI PMC

Kocsis M., Csikász-Krizsics A., Szata B., Kovács S., Nagy, Mátai A., Jakab G. Regulation of cluster compactness and resistance to Botrytis Cinerea with β-aminobutyric acid treatment in field-grown grapevine. Vitis J. Grapevine Res. 2018;57:35–40. doi: 10.5073/vitis.2018.57.35-40. DOI

Cramer G.R., Ergül A., Grimplet J., Tillett R.L., Tattersall E.A.R., Bohlman M.C., Vincent D., Sonderegger J., Evans J., Osborne C., et al. Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Funct. Integr. Genom. 2007;7:111–134. doi: 10.1007/s10142-006-0039-y. PubMed DOI

Rizza F., Ghashghaie J., Meyer S., Matteu L., Mastrangelo A.M., Badeck F.W. Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crops Res. 2012;125:49–60. doi: 10.1016/j.fcr.2011.09.001. DOI

Boselli M., Bahouaoui M.A., Lachhab N., Sanzani S.M., Ferrara G., Ippolito A. Protein hydrolysates effects on grapevine (Vitis vinifera L., cv. Corvina) performance and water stress tolerance. Sci. Hortic. 2019;258:108784. doi: 10.1016/j.scienta.2019.108784. DOI

Schultz H.R. Global climate change, sustainability, and some challenges for grape and wine production. J. Wine Econ. 2016;11:181–200. doi: 10.1017/jwe.2015.31. DOI

Núñez L., Serratosa M.P., Godoy A., Fariña L., Dellacassa E., Moyano L. Comparison of physicochemical properties, amino acids, mineral elements, total phenolic compounds, and antioxidant capacity of cuban fruit and rice wines. Food Sci. Nutr. 2021;9:3673–3682. doi: 10.1002/fsn3.2328. PubMed DOI PMC

Benoît Bach B., Sauvage F.X., Dequin S., Camarasa C. Role of γ-aminobutyric acid as a source of nitrogen and succinate in wine. Am. J. Enol. Vitic. 2009;60:508–516.

Bayraktar V.N. Organic acids concentration in wine stocks after Saccharomyces Cerevisiae fermentation. Biotechnol. Acta. 2013;6:97–106. doi: 10.15407/biotech6.02.097. DOI

Song C., Zhu L., Shao Y., Chen F. Enhancement of GABA Content in Hongqu wine by optimisation of fermentation conditions using response surface methodology. Czech J. Food Sci. 2021;39:297–304. doi: 10.17221/47/2021-CJFS. DOI

Hargreaves G.H., Samani Z.A. Reference crop evapotranspiration from ambient air temperature. Am. Soc. Agric. Eng. 1985;1:96–99. doi: 10.13031/2013.26773. DOI

Allen R.G., Pereira L.S., Raes D., Smith M. Crop Evapotranspiration-Guidelines For Computing Crop Water Requirements-FAO Irrigation and Drainage Paper. Volume 56 FAO; Rome, Italy: 1998.

Kelly M.T., Blaise A., Larroque M. Rapid automated high performance liquid chromatography method for simultaneous determination of amino acids and biogenic amines in wine, fruit and honey. J. Chromatogr. A. 2010;1217:7385–7392. doi: 10.1016/j.chroma.2010.09.047. PubMed DOI

Long W. Automated amino acid Analysis using an Agilent Poroshell HPH-C18 column. Appl. Note Agil. Technol. Inc. 2017;2:1–10.

Hazer O., Akkbik M., Güngör K. Simultaneous determination of the main organic acids in Anatolian Black Pine by HPLC with DAD detector. Eurasian J. Anal. Chem. 2016;11:181–195. doi: 10.12973/ejac.2016.131a. DOI

Flores P., Hellín P., Fenoll J. Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chem. 2012;132:1049–1054. doi: 10.1016/j.foodchem.2011.10.064. DOI

Zheng Y.J., Duan Y.T., Zhang Y.F., Pan Q.H., Li J.M., Huang W.D. Determination of organic acids in red wine and must on only one RP-LC-column directly after sample dilution and filtration. Chromatographia. 2009;69:1391–1395. doi: 10.1365/s10337-009-1085-0. DOI

Lunn J.E., Feil R., Hendriks J.H.M., Gibon Y., Morcuende R., Osuna D., Scheible W.R., Carillo P., Hajirezaei M.R., Stitt M. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem. J. 2006;397:139–148. doi: 10.1042/BJ20060083. PubMed DOI PMC

Luo X.T., Cai B.D., Jiang H.P., Xiao H.M., Yuan B.F., Feng Y.Q. Sensitive analysis of trehalose-6-phosphate and related sugar phosphates in plant tissues by chemical derivatization combined with hydrophilic interaction liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2019;1592:82–90. doi: 10.1016/j.chroma.2019.01.040. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace