Biostimulants as an Alternative to Improve the Wine Quality from Vitis vinifera (cv. Tempranillo) in La Rioja
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. CZ.02.1.01/0.0/0.0/16_019/0000827)
ERDF project "Plants as a tool for sustainable global devel-593 opment"
No. IT925-16
Basque Government
PubMed
35736745
PubMed Central
PMC9229063
DOI
10.3390/plants11121594
PII: plants11121594
Knihovny.cz E-zdroje
- Klíčová slova
- Vitis vinifera L., biostimulants, grapevine, growth stages, phenology, primary metabolism, water deficit,
- Publikační typ
- časopisecké články MeSH
The application of biostimulants appears to be an environmentally friendly, innovative, and sustainable agronomical tool to mitigate the negative effects induced by adverse climatology in traditional grape-growing regions such as La Rioja (Spain). However, their mechanism of action in grapevines is still unclear. We evaluated how commercial substances (two from Ascophyllum nodosum extraction and one amino acids-based biostimulant) and the non-proteinogenic amino acid β-aminobutyric acid (BABA) affect the quality and quantity of musts and grapes in Vitis vinifera L. cv. Tempranillo from a semi-arid region of La Rioja during two seasons. We hypothesized an enhancement in organic metabolites in berries and leaves in response to these treatments, changing the organoleptic characteristics of the final products. The treatments altered the primary metabolites such as carbohydrates, organic acids (AcOrg), and free amino acids, first in the leaves as the effect of the foliar application and second in grapes and musts. As the main result, the biostimulant efficiency depended on the climatology and vineyard location to improve the final yield. Whereas biostimulant application enhanced the yield in 2018 (less dry year), it did not help production in 2019 (dry year). BABA was the most efficient biostimulant, enhancing plant production. Regarding yield quality, the biostimulant application improved the musts mainly by enhancing the fumaric acid content and by reducing carbohydrates, except in BABA-treated plants, where they were accumulated. These results corroborate biostimulants as an exciting approach in wine production, especially for improving wine quality.
Zobrazit více v PubMed
OIV Actualidad de La Coyuntura Del Sector Vinícola Mundial En 2019. 2020. [(accessed on 24 April 2022)]. Available online: http://www.oiv.int/public/medias/7304/es-actualidad-de-la-coyuntura-del-sector-vitivin-cola-mundia.pdf.
Consejo Regulador de la Denominación de Origen Calificada Rioja Estadísticas Rioja 2019. [(accessed on 25 November 2020)]. Available online: https://www.riojawine.com/wp-content/uploads/2020/05/ESTADISTICAS_RIOJA2019.pdf.
Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012;1:94–110. doi: 10.1002/fes3.14. DOI
Wang W., Vinocur B., Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta. 2003;218:16. doi: 10.1007/s00425-003-1105-5. PubMed DOI
Palliotti A., Tombesi S., Silvestroni O., Lanari V., Gatti M., Poni S. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A Review. Sci. Hortic. 2014;178:43–54. doi: 10.1016/j.scienta.2014.07.039. DOI
Kliewer W.M., Soleimani A. Effect of chilling on budbreak in ‘Thompson Seedless’ and ‘Carignane’ grapevines. Am. J. Enol. Vitic. 1972;23:31–34.
Greer D.H., Weedon M.M. The impact of high temperatures on Vitis vinifera Cv. Semillon grapevine performance and berry ripening. Front. Plant Sci. 2013;4:491. doi: 10.3389/fpls.2013.00491. PubMed DOI PMC
Jones G.V., White M.A., Cooper O.R., Storchmann K. Climate Change and Global Wine Quality. Clim. Chang. 2005;73:319–343. doi: 10.1007/s10584-005-4704-2. DOI
Bonada M., Jeffery D.W., Petrie P.R., Moran M.A., Sadrás V.O. Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Aust. J. Grape Wine Res. 2015;21:240–253. doi: 10.1111/ajgw.12142. DOI
Ramos M.C., Martínez de Toda F. Variability in the potential effects of climate change on phenology and on grape composition of tempranillo in three zones of the Rioja DOCa (Spain) Eur. J. Agron. 2020;115:126014. doi: 10.1016/j.eja.2020.126014. DOI
Intrigliolo D.S., Pérez D., Risco D., Yeves A., Castel J.R. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrig. Sci. 2012;30:339–349. doi: 10.1007/s00271-012-0354-0. DOI
Torres N., Hilbert G., Luquin J., Goicoechea N., Antolín M.C. Flavonoid and amino acid profiling on Vitis vinifera L. Cv Tempranillo subjected to deficit irrigation under elevated temperatures. J. Food Compos. Anal. 2017;62:51–62. doi: 10.1016/j.jfca.2017.05.001. DOI
Cooley N.M., Clingeleffer P.R., Walker R.R. Effect of water deficits and season on berry development and composition of Cabernet Sauvignon (Vitis vinifera L.) grown in a hot climate. Aust. J. Grape Wine Res. 2017;23:260–272. doi: 10.1111/ajgw.12274. DOI
Ojeda H., Andary C., Kraeva E., Carbonneau A., Deloire A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera Cv. Shiraz. Am. J. Enol. Vitic. 2002;53:261–267.
Roby G., Harbertson J.F., Adams D.A., Matthews M.A. Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Aust. J. Grape Wine Res. 2004;10:100–107. doi: 10.1111/j.1755-0238.2004.tb00012.x. DOI
Castellarin S.D., Matthews M.A., Di Gaspero G., Gambetta G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta. 2007;227:101–112. doi: 10.1007/s00425-007-0598-8. PubMed DOI
Williams L.E. Effects of applied water amounts at various fractions of evapotranspiration (ETc) on leaf gas exchange of Thompson Seedless grapevines. Aust. J. Grape Wine Res. 2012;10:100–108. doi: 10.1111/j.1755-0238.2011.00176.x. DOI
Scholasch T., Rienth M. Review of water deficit mediated changes in vine and berry physiology; Consequences for the optimization of irrigation strategies. OENO One. 2019;53:423–444. doi: 10.20870/oeno-one.2019.53.3.2407. DOI
Ma X., Sanguinet K.A., Jacoby P.W. Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth. Agric. Water Manag. 2020;231:105993. doi: 10.1016/j.agwat.2019.105993. DOI
Ramos M.C., Martínez-Casasnovas J.A. Soil water balance in rainfed vineyards of the Penedès Region (Northeastern Spain) affected by rainfall characteristics and land levelling: Influence on grape yield. Plant Soil. 2010;333:375–389. doi: 10.1007/s11104-010-0353-y. DOI
Medrano H., Tomás M., Martorell S., Escalona J.M., Pou A., Fuentes S., Flexas J., Bota J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015;35:499–517. doi: 10.1007/s13593-014-0280-z. DOI
Pelsy F. Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity. 2010;104:331–340. doi: 10.1038/hdy.2009.161. PubMed DOI
White M.A., Diffenbaugh N.S., Jones G.V., Pal J.S., Giorgi F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA. 2006;103:11217–11222. doi: 10.1073/pnas.0603230103. PubMed DOI PMC
Hannah L., Roehrdanz P.R., Ikegami M., Shepard A.V., Shaw M.R., Tabor G., Zhi L., Marquet P.A., Hijmans R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA. 2013;110:6907–6912. doi: 10.1073/pnas.1210127110. PubMed DOI PMC
Moriondo M., Jones G.V., Bois B., Dibari C., Ferrise R., Trombi G., Bindi M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013;119:825–839. doi: 10.1007/s10584-013-0739-y. DOI
Helay A.A. Strategies for improvement of horticultural crops against abiotic stresses. J. Hortic. 2017;4:e107. doi: 10.4172/2376-0354.1000e107. DOI
Balestrini R., Magurno F., Walker C., Lumini E., Bianciotto V. Cohorts of arbuscular mycorrhizal fungi (A.M.F.) in Vitis vinifera, a typical Mediterranean fruit crop. Environ. Microbiol. Rep. 2010;2:594–604. doi: 10.1111/j.1758-2229.2010.00160.x. PubMed DOI
Du Jardin P. Plant Biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015;196:3–14. doi: 10.1016/j.scienta.2015.09.021. DOI
Calvo P., Nelson L., Kloepper J.W. Agricultural uses of plant biostimulants. Plant Soil. 2014;383:3–41. doi: 10.1007/s11104-014-2131-8. DOI
Yakhin O.I., Lubyanov A.A., Yakhin I.A., Brown P.H. Biostimulants in plant science: A Global Perspective. Front. Plant Sci. 2017;7:2049. doi: 10.3389/fpls.2016.02049. PubMed DOI PMC
Boller T., Felix G. A Renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009;60:379–406. doi: 10.1146/annurev.arplant.57.032905.105346. PubMed DOI
Arioli T., Mattner S.W., Winberg P.C. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015;27:2007–2015. doi: 10.1007/s10811-015-0574-9. PubMed DOI PMC
Kapoore R.V., Wood E.E., Llewellyn C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021;49:107754. doi: 10.1016/j.biotechadv.2021.107754. PubMed DOI
Sharma H.S.S., Fleming C., Selby C., Rao J.R., Martin T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014;26:465–490. doi: 10.1007/s10811-013-0101-9. DOI
Battacharyya D., Babgohari M.Z., Rathor P., Prithiviraj B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015;196:39–48. doi: 10.1016/j.scienta.2015.09.012. DOI
Mancuso S., Azzarello E., Mugnai S., Briand X. Marine bioactive substances (I.P.A. Extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv. Hortic. Sci. 2006;20:156–161. doi: 10.1400/53262. DOI
Mugnai S., Azzarello E., Pandolfi C., Salamagne S., Briand X., Mancuso S. Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. J. Appl. Phycol. 2008;20:177–182. doi: 10.1007/s10811-007-9203-6. DOI
Khan A.S., Ahmad B., Jaskani M.J., Ahmad R., Malik A.U. Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physicochemical properties of grapes. Int. J. Agric. Biol. 2012;14:383–388.
Salvi L., Brunetti C., Cataldo E., Niccolai A., Centritto M., Ferrini F., Mattii G.B. Effects of Ascophyllum nodosum extract on Vitis vinifera: Consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol. Biochem. 2019;139:21–32. doi: 10.1016/j.plaphy.2019.03.002. PubMed DOI
Salvi L., Brunetti C., Cataldo E., Storchi P., Mattii G.B. Eco-physiological traits and phenylpropanoid profiling on potted Vitis vinifera L. Cv Pinot Noir subjected to Ascophyllum nodosum treatments under post-veraison low water availability. Appl. Sci. 2020;10:4473. doi: 10.3390/app10134473. DOI
Batista-Silva W., Heinemann B., Rugen N., Nunes-Nesi A., Araújo W.L., Braun H.P., Hildebrandt T.M. The role of amino acid metabolism during abiotic stress release. Plant Cell Environ. 2019;42:1630–1644. doi: 10.1111/pce.13518. PubMed DOI
De Diego N., Sampedro M.C., Barrio R.J., Saiz-Fernández I., Moncaleán P., Lacuesta M. Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought. Tree Physiol. 2013;33:69–80. doi: 10.1093/treephys/tps125. PubMed DOI
Deluc L.G., Quilici D.R., Decendit A., Grimplet J., Wheatley M.D., Schlauch K.A., Mérillon J.M., Cushman J.C., Cramer G.R. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genom. 2009;10:212. doi: 10.1186/1471-2164-10-212. PubMed DOI PMC
Ovadia R., Oren-Shamir M., Kaplunov T., Zutahy Y., Lichter A., Lurie S. Effects of plant growth regulators and high temperature on colour development in “Crimson Seedless” grapes. J. Hortic. Sci. Biotechnol. 2013;88:387–392. doi: 10.1080/14620316.2013.11512980. DOI
Keller M. Managing Grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2010;16:56–69. doi: 10.1111/j.1755-0238.2009.00077.x. DOI
Mira de Orduña R. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010;43:1844–1855. doi: 10.1016/j.foodres.2010.05.001. DOI
Sadras V.O., Moran M.A. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012;18:115–122. doi: 10.1111/j.1755-0238.2012.00180.x. DOI
Drincovich M.F., Voll L.M., Maurino V.G. Editorial: On the diversity of roles of organic acids. Front. Plant Sci. 2016;7:1592. doi: 10.3389/fpls.2016.01592. PubMed DOI PMC
López-Bucio J., Nieto-Jacobo M.F., Ramírez-Rodríguez V., Herrera-Estrella L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000;160:1–13. doi: 10.1016/S0168-9452(00)00347-2. PubMed DOI
Zotou A., Loukou Z., Karava O. Method development for the determination of seven organic acids in wines by reversed-phase high performance liquid chromatography. Chromatographia. 2004;60:39–44. doi: 10.1365/s10337-004-0330-9. DOI
Pérez-Álvarez E.P., Martínez-Vidaurre J.M., García-Escudero E., Garde-Cerdán T. Amino acids content in “Tempranillo” must from three soil types over four vintages. Vitis J. Grapevine Res. 2019;58:3–12. doi: 10.5073/vitis.2019.58.special-issue.3-12. DOI
Podlešáková K., Ugena L., Spíchal L., Doležal K., De Diego N. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. N. Biotechnol. 2019;48:53–65. doi: 10.1016/j.nbt.2018.07.003. PubMed DOI
Jin X., Liu T., Xu J., Gao Z., Hu X. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biol. 2019;19:48. doi: 10.1186/s12870-019-1660-y. PubMed DOI PMC
Abd El-Gawad H.G., Mukherjee S., Farag R., Abd Elbar O.H., Hikal M., Abou El-Yazied A., Abd Elhady S.A., Helal N., ElKelish A., El Nahhas N., et al. Exogenous γ-aminobutyric acid (GABA)-induced signaling events and field performance associated with mitigation of drought stress in Phaseolus vulgaris L. Plant Signal. Behav. 2021;16:1853384. doi: 10.1080/15592324.2020.1853384. PubMed DOI PMC
Hamiduzzaman M. Ph.D. Thesis. University of Neuchâtel; Neuchâtel, Switzerland: 2005. β-Aminobutyric Acid-Induced Resistance in Grapevine Against Downy Mildew (Plasmopara Viticola)
Baccelli I., Mauch-Mani B. Beta-Aminobutyric acid priming of plant defense: The role of ABA and other hormones. Plant Mol. Biol. 2016;91:703–711. doi: 10.1007/s11103-015-0406-y. PubMed DOI
Ugena L., Hýlová A., Podlešáková K., Humplík J.F., Doležal K., De Diego N., Spíchal L. Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of arabidopsis germination and rosette growth. Front. Plant Sci. 2018;9:1327. doi: 10.3389/fpls.2018.01327. PubMed DOI PMC
Van Oosten M.J., Pepe O., De Pascale S., Silletti S., Maggio A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017;4:5. doi: 10.1186/s40538-017-0089-5. DOI
Monteiro E., Gonçalves B., Cortez I., Castro I. The role of biostimulants as alleviators of biotic and abiotic stresses in grapevine: A review. Plants. 2022;11:396. doi: 10.3390/plants11030396. PubMed DOI PMC
Samuels L.J., Setati M.E., Blancquaert E.H. Towards a better understanding of the potential benefits of seaweed based biostimulants in Vitis vinifera L. cultivars. Plants. 2022;11:348. doi: 10.3390/plants11030348. PubMed DOI PMC
Frioni T., Tombesi S., Quaglia M., Calderini O., Moretti C., Poni S., Gatti M., Moncalvo A., Sabbatini P., Berrìos J.G., et al. Metabolic and transcriptional changes associated with the use of Ascophyllum nodosum extracts as tools to improve the quality of wine grapes (Vitis vinifera Cv. Sangiovese) and their tolerance to biotic stress. J. Sci. Food Agric. 2019;99:6350–6363. doi: 10.1002/jsfa.9913. PubMed DOI
Taskos D., Stamatiadis S., Yvin J.C., Jamois F. Effects of an Ascophyllum nodosum (L.) Le Jol. extract on grapevine yield and berry composition of a merlot vineyard. Sci. Hortic. 2019;250:27–32. doi: 10.1016/j.scienta.2019.02.030. DOI
Gutiérrez-Gamboa G., Garde-Cerdán T., Costa B.S.-D., Moreno-Simunovic Y. Strategies for the improvement of fruit set in Vitis vinifera L. cv. “carménère” through different foliar biostimulants in two different locations. Cienc. Tec. Vitivinic. 2018;33:177–183. doi: 10.1051/ctv/20183302177. DOI
Hunter J.J., Volschenk C.G., Zorer R. Vineyard row orientation of Vitis vinifera L. cv. Shiraz/101-14 Mgt: Climatic profiles and vine physiological status. Agric. For. Meteorol. 2016;228–229:104–119. doi: 10.1016/j.agrformet.2016.06.013. DOI
Da Mota R.V., Peregrino I., Silva C.P.C., Raimundo R.H.P., Fernandes F.D.P., de Souza C.R. Row orientation effects on chemical composition and aromatic profile of Syrah winter wines. Food Sci. Technol. 2021;41:412–417. doi: 10.1590/fst.38219. DOI
Gouveia J., Lopes C.M., Pedroso V., Martins S., Rodrigues P., Alves I. Effect of irrigation on soil water depletion, vegetative growth, yield and berry composition of the grapevine variety Touriga Nacional. Cienc. Tec. Vitivinic. 2013;27:115–122.
Cohen Y., Vaknin M., Mauch-Mani B. BABA-induced resistance: Milestones along a 55-year journey. Phytoparasitica. 2016;44:513–538. doi: 10.1007/s12600-016-0546-x. DOI
Li C., Cao S., Wang K., Lei C., Ji N., Xu F., Jiang Y., Qiu L., Zheng Y. Heat shock protein HSP24 is involved in the BABA-induced resistance to fungal pathogen in postharvest grapes underlying an NPR1-dependent manner. Front. Plant Sci. 2021;12:1–17. doi: 10.3389/fpls.2021.812672. PubMed DOI PMC
Kocsis M., Csikász-Krizsics A., Szata B., Kovács S., Nagy, Mátai A., Jakab G. Regulation of cluster compactness and resistance to Botrytis Cinerea with β-aminobutyric acid treatment in field-grown grapevine. Vitis J. Grapevine Res. 2018;57:35–40. doi: 10.5073/vitis.2018.57.35-40. DOI
Cramer G.R., Ergül A., Grimplet J., Tillett R.L., Tattersall E.A.R., Bohlman M.C., Vincent D., Sonderegger J., Evans J., Osborne C., et al. Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Funct. Integr. Genom. 2007;7:111–134. doi: 10.1007/s10142-006-0039-y. PubMed DOI
Rizza F., Ghashghaie J., Meyer S., Matteu L., Mastrangelo A.M., Badeck F.W. Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crops Res. 2012;125:49–60. doi: 10.1016/j.fcr.2011.09.001. DOI
Boselli M., Bahouaoui M.A., Lachhab N., Sanzani S.M., Ferrara G., Ippolito A. Protein hydrolysates effects on grapevine (Vitis vinifera L., cv. Corvina) performance and water stress tolerance. Sci. Hortic. 2019;258:108784. doi: 10.1016/j.scienta.2019.108784. DOI
Schultz H.R. Global climate change, sustainability, and some challenges for grape and wine production. J. Wine Econ. 2016;11:181–200. doi: 10.1017/jwe.2015.31. DOI
Núñez L., Serratosa M.P., Godoy A., Fariña L., Dellacassa E., Moyano L. Comparison of physicochemical properties, amino acids, mineral elements, total phenolic compounds, and antioxidant capacity of cuban fruit and rice wines. Food Sci. Nutr. 2021;9:3673–3682. doi: 10.1002/fsn3.2328. PubMed DOI PMC
Benoît Bach B., Sauvage F.X., Dequin S., Camarasa C. Role of γ-aminobutyric acid as a source of nitrogen and succinate in wine. Am. J. Enol. Vitic. 2009;60:508–516.
Bayraktar V.N. Organic acids concentration in wine stocks after Saccharomyces Cerevisiae fermentation. Biotechnol. Acta. 2013;6:97–106. doi: 10.15407/biotech6.02.097. DOI
Song C., Zhu L., Shao Y., Chen F. Enhancement of GABA Content in Hongqu wine by optimisation of fermentation conditions using response surface methodology. Czech J. Food Sci. 2021;39:297–304. doi: 10.17221/47/2021-CJFS. DOI
Hargreaves G.H., Samani Z.A. Reference crop evapotranspiration from ambient air temperature. Am. Soc. Agric. Eng. 1985;1:96–99. doi: 10.13031/2013.26773. DOI
Allen R.G., Pereira L.S., Raes D., Smith M. Crop Evapotranspiration-Guidelines For Computing Crop Water Requirements-FAO Irrigation and Drainage Paper. Volume 56 FAO; Rome, Italy: 1998.
Kelly M.T., Blaise A., Larroque M. Rapid automated high performance liquid chromatography method for simultaneous determination of amino acids and biogenic amines in wine, fruit and honey. J. Chromatogr. A. 2010;1217:7385–7392. doi: 10.1016/j.chroma.2010.09.047. PubMed DOI
Long W. Automated amino acid Analysis using an Agilent Poroshell HPH-C18 column. Appl. Note Agil. Technol. Inc. 2017;2:1–10.
Hazer O., Akkbik M., Güngör K. Simultaneous determination of the main organic acids in Anatolian Black Pine by HPLC with DAD detector. Eurasian J. Anal. Chem. 2016;11:181–195. doi: 10.12973/ejac.2016.131a. DOI
Flores P., Hellín P., Fenoll J. Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chem. 2012;132:1049–1054. doi: 10.1016/j.foodchem.2011.10.064. DOI
Zheng Y.J., Duan Y.T., Zhang Y.F., Pan Q.H., Li J.M., Huang W.D. Determination of organic acids in red wine and must on only one RP-LC-column directly after sample dilution and filtration. Chromatographia. 2009;69:1391–1395. doi: 10.1365/s10337-009-1085-0. DOI
Lunn J.E., Feil R., Hendriks J.H.M., Gibon Y., Morcuende R., Osuna D., Scheible W.R., Carillo P., Hajirezaei M.R., Stitt M. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem. J. 2006;397:139–148. doi: 10.1042/BJ20060083. PubMed DOI PMC
Luo X.T., Cai B.D., Jiang H.P., Xiao H.M., Yuan B.F., Feng Y.Q. Sensitive analysis of trehalose-6-phosphate and related sugar phosphates in plant tissues by chemical derivatization combined with hydrophilic interaction liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2019;1592:82–90. doi: 10.1016/j.chroma.2019.01.040. PubMed DOI