Assessment of the Effects of Drugs on Mitochondrial Respiration
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Drug development, High-resolution respirometry, Isolated mitochondria, Mitochondrial respiration, Mitochondrial toxicity, Pig brain,
- MeSH
- mitochondrie účinky léků metabolismus MeSH
- mozek cytologie MeSH
- prasata MeSH
- preklinické hodnocení léčiv přístrojové vybavení metody MeSH
- respirační komplex I metabolismus MeSH
- respirační komplex III metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- respirační komplex I MeSH
- respirační komplex III MeSH
Mitochondria are targets of newly synthesized drugs and being tested for the treatment of various diseases caused or accompanied by disruption of cellular bioenergetics. In drug development, it is necessary to test for drug-induced changes in mitochondrial enzyme activity that may be related to therapeutic or adverse drug effects. Measurement of drug effect on mitochondrial oxygen consumption kinetics and/or protective effects of drugs against calcium-induced inhibition of the mitochondrial respiration can be used for the study mitochondrial toxicity and neuroprotective effects of drugs. Supposing that the drug-induced inhibition of the mitochondrial respiratory rate and/or individual mitochondrial complexes is associated with adverse drug effects, the effects of drugs on mitochondrial respiration in isolated mitochondria allow selection of novel molecules that are relatively safe for mitochondrial toxicity.
Zobrazit více v PubMed
Dodd S, Maes M, Anderson G, Dean OM, Moylan S, Berk M (2013) Putative neuroprotective agents in neuropsychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 42:135–145. https://doi.org/10.1016/j.pnpbp.2012.11.007 DOI
Swerdlow RH (2016) Bioenergetics and metabolism: a bench to bedside perspective. J Neurochem 139(Suppl 2):126–135. https://doi.org/10.1111/jnc.13509 PubMed DOI PMC
Weissig V (2020) Drug development for the therapy of mitochondrial diseases. Trends Mol Med 26(1):40–57. https://doi.org/10.1016/j.molmed.2019.09.002 PubMed DOI
Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58. https://doi.org/10.1007/978-1-61779-382-0_3 PubMed DOI
Fišar Z, Hroudová J (2016) Pig brain mitochondria as a biological model for study of mitochondrial respiration. Folia Biol (Praha) 62(1):15–25
Fišar Z, Hroudová J, Singh N, Macečková D, Kopřivová A (2017) Protocols for high-resolution respirometry experiments to test the activity of electron transfer system of pig brain mitochondria. Indian J Biochem Biophys 54(6):258–272
Cikánková T, Fišar Z, Hroudová J (2019) In vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn Schmiedeberg’s Arch Pharmacol 393(5):797–811. https://doi.org/10.1007/s00210-019-01791-3 DOI
Singh N, Hroudová J, Fišar Z (2017) In vitro effects of cognitives and nootropics on mitochondrial respiration and monoamine oxidase activity. Mol Neurobiol 54(8):5894–5904. https://doi.org/10.1007/s12035-016-0121-y PubMed DOI
Fišar Z, Hroudová J, Singh N, Kopřivová A, Macečková D (2016) Effect of simvastatin, coenzyme Q
Fišar Z, Singh N, Hroudová J (2014) Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol Lett 231(1):62–71. https://doi.org/10.1016/j.toxlet.2014.09.002 PubMed DOI
Hroudová J, Fišar Z (2012) In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol Lett 213(3):345–352. https://doi.org/10.1016/j.toxlet.2012.07.017 PubMed DOI
Cikánková T, Fišar Z, Bakhouche Y, Ĺupták M, Hroudová J (2019) In vitro effects of antipsychotics on mitochondrial respiration. Naunyn Schmiedeberg’s Arch Pharmacol 392(10):1209–1223. https://doi.org/10.1007/s00210-019-01665-8 DOI
Gnaiger E (2014) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. In: Mitochondr Physiol Network 1912. OROBOROS MiPNet Publications, Innsbruck, p 1
Whittaker VP (1969) In: Lajtha A (ed) Handbook of neurochemistry, Structural neurochemistry, vol II. Plenum Press, New York, pp 327–364 DOI
Fišar Z (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedeberg’s Arch Pharmacol 381(6):563–572. https://doi.org/10.1007/s00210-010-0517-6 DOI
Pinna G, Broedel O, Eravci M, Stoltenburg-Didinger G, Plueckhan H, Fuxius S, Meinhold H, Baumgartner A (2003) Thyroid hormones in the rat amygdala as common targets for antidepressant drugs, mood stabilizers, and sleep deprivation. Biol Psychiatry 54(10):1049–1059 DOI
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275 DOI
Kuznetsov AVG, Gnaiger E (2015) Oxygraph assay of cytochrome c oxidase activity: chemical O
CoQ10 and Mitochondrial Dysfunction in Alzheimer's Disease