Measurement of Mitochondrial Respiration in Platelets
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- High-resolution respirometry, Human platelets, Mitochondria, Neuropsychiatric disease,
- MeSH
- buněčné dýchání MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- polarografie přístrojové vybavení metody MeSH
- trombocyty metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Platelet mitochondria can be used in the study of mitochondrial dysfunction in various complex diseases and can help in finding biological markers for diagnosing the disease, monitoring its course and the effects of treatment. The aim of this chapter was to describe in detail the method of measuring mitochondrial respiration in platelets using high-resolution respirometry. The described method was successfully used for the study of mitochondrial dysfunction in neuropsychiatric diseases.
Zobrazit více v PubMed
Orth M, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106(1):27–36. https://doi.org/10.1002/ajmg.1425 PubMed DOI
Swerdlow RH (2014) Bioenergetic medicine. Br J Pharmacol 171(8):1854–1869. https://doi.org/10.1111/bph.12394 PubMed DOI PMC
Swerdlow RH (2016) Bioenergetics and metabolism: a bench to bedside perspective. J Neurochem 139(Suppl 2):126–135. https://doi.org/10.1111/jnc.13509 PubMed DOI PMC
Weissig V (2020) Drug development for the therapy of mitochondrial diseases. Trends Mol Med 26(1):40–57. https://doi.org/10.1016/j.molmed.2019.09.002 PubMed DOI
Fišar Z, Hroudová J, Hansíková H, Spáčilová J, Lelková P, Wenchich L, Jirák R, Zvěřová M, Zeman J, Martásek P, Raboch J (2016) Mitochondrial respiration in the platelets of patients with Alzheimer’s disease. Curr Alzheimer Res 13(8):930–941
Fišar Z, Hansíková H, Křízová J, Jirák R, Kitzlerová E, Zvěřová M, Hroudová J, Wenchich L, Zeman J, Raboch J (2019) Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion 48:67–77. https://doi.org/10.1016/j.mito.2019.07.013 PubMed DOI
Pláteník J, Fišar Z, Buchal R, Jirák R, Kitzlerová E, Zvěřová M, Raboch J (2014) GSK3b, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog Neuro-Psychopharmacol Biol Psychiatry 50:83–93. https://doi.org/10.1016/j.pnpbp.2013.12.001 DOI
Melchinger H, Jain K, Tyagi T, Hwa J (2019) Role of platelet mitochondria: life in a nucleus-free zone. Front Cardiovasc Med 6:153. https://doi.org/10.3389/fcvm.2019.00153 PubMed DOI PMC
Sjövall F, Morota S, Hansson MJ, Friberg H, Gnaiger E, Elmer E (2010) Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis. Crit Care 14(6):R214. https://doi.org/10.1186/cc9337
Herst PM, Grasso C, Berridge MV (2018) Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer Metastasis Rev 37(4):643–653. https://doi.org/10.1007/s10555-018-9769-2 PubMed DOI
Deus CM, Pereira SP, Cunha-Oliveira T, Pereira FB, Raimundo N, Oliveira PJ (2019) Mitochondrial remodeling in human skin fibroblasts from sporadic male Parkinson’s disease patients uncovers metabolic and mitochondrial bioenergetic defects. Biochim Biophys Acta Mol Basis Dis 1866:165615. https://doi.org/10.1016/j.bbadis.2019.165615 PubMed DOI
Hamilton J, Brustovetsky T, Brustovetsky N (2019) Mutant huntingtin fails to directly impair brain mitochondria. J Neurochem 151(6):716–731. https://doi.org/10.1111/jnc.14852 PubMed DOI PMC
Hroudová J, Fišar Z, Hansíková H, Kališová L, Kitzlerová E, Zvěřová M, Lambertová A, Raboch J (2019) Mitochondrial dysfunction in blood platelets of patients with manic episode of bipolar disorder. CNS Neurol Disord Drug Targets 18(3):222–231. https://doi.org/10.2174/1871527318666181224130011 PubMed DOI
Zvěřová M, Hroudová J, Fišar Z, Hansíková H, Kališová L, Kitzlerová E, Lambertová A, Raboch J (2019) Disturbances of mitochondrial parameters to distinguish patients with depressive episode of bipolar disorder and major depressive disorder. Neuropsychiatr Dis Treat 15:233–240. https://doi.org/10.2147/NDT.S188964 PubMed DOI PMC
Monaco CMF, Hughes MC, Ramos SV, Varah NE, Lamberz C, Rahman FA, McGlory C, Tarnopolsky MA, Krause MP, Laham R, Hawke TJ, Perry CGR (2018) Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia 61(6):1411–1423. https://doi.org/10.1007/s00125-018-4602-6 PubMed DOI
Gvozdjakova A, Sumbalova Z, Kucharska J, Chladekova A, Rausova Z, Vancova O, Komlosi M, Ulicna O, Mojto V (2019) Platelet mitochondrial bioenergetic analysis in patients with nephropathies and non-communicable diseases: a new method. Bratisl Lek Listy 120(9):630–635. https://doi.org/10.4149/BLL_2019_104 PubMed DOI
Ferguson MA, Sutton RM, Karlsson M, Sjovall F, Becker LB, Berg RA, Margulies SS, Kilbaugh TJ (2016) Increased platelet mitochondrial respiration after cardiac arrest and resuscitation as a potential peripheral biosignature of cerebral bioenergetic dysfunction. J Bioenerg Biomembr 48(3):269–279. https://doi.org/10.1007/s10863-016-9657-9 PubMed DOI
Sjövall F, Ehinger JK, Marelsson SE, Morota S, Frostner EA, Uchino H, Lundgren J, Arnbjörnsson E, Hansson MJ, Fellman V, Elmér E (2013) Mitochondrial respiration in human viable platelets--methodology and influence of gender, age and storage. Mitochondrion 13(1):7–14. https://doi.org/10.1016/j.mito.2012.11.001
Krebs HAH, Henseleit K (1932) Studies on urea formation in the animal organism. Hoppe Seylers Z Physiol Chem 210:33–66 DOI
Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58. https://doi.org/10.1007/978-1-61779-382-0_3 PubMed DOI
CoQ10 and Mitochondrial Dysfunction in Alzheimer's Disease
Age-Dependent Alterations in Platelet Mitochondrial Respiration