Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases

. 2022 Jan ; 18 (1) : 152-158. [epub] 20210525

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34032377

The exact signaling leading to neurological dysfunction in neurodegenerative diseases is currently unknown. We hypothesize that the c-Jun N-terminal kinase (JNK) signaling pathway is a potential therapeutic target for neurodegenerative diseases. This postulate rests on extensive data from cell and animal experimental studies, demonstrating that JNK signaling plays a crucial role in the pathogenesis of neurodegenerative diseases. The sustained activation of JNK leads to synaptic dysfunction and even neuronal apoptosis, ultimately resulting in memory deficits and neurodegeneration. JNK phosphorylates the amyloid precursor protein and tau, ultimately resulting in the formation of extraneuronal senile plaques and intraneuronal neurofibrillary tangles. Our hypothesis could be validated by investigating the cerebral cortex of elderly chimpanzees injected with phosphorylated JNK or transgenic pig and chimpanzee models established using gene editing technology including CRISPR. This hypothesis provides clues for further understanding the molecular mechanisms of neurodegenerative diseases and the development of potential target therapeutic drugs.

Zobrazit více v PubMed

Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med. 2016;8(6):595-608.

Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12(1):15-27.

Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol. 2007;19(2):142-149.

Antoniou X, Falconi M, Di Marino D, Borsello T. JNK3 as a therapeutic target for neurodegenerative diseases. J Alzheimers Dis. 2011;24(4):633-642.

Komulainen E, Varidaki A, Kulesskaya N, et al. Impact of JNK and Its Substrates on Dendritic Spine Morphology. Cells. 2020;9(2):440.

Musi CA, Agro G, Santarella F, Iervasi E, Borsello T. JNK3 as therapeutic target and biomarker in neurodegenerative and neurodevelopmental brain diseases. Cells. 2020;9(10):2190.

Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802(4):396-405.

Takahashi RH, Nagao T, Gouras GK. Plaque formation and the intraneuronal accumulation of beta-amyloid in Alzheimer's disease. Pathol Int. 2017;67(4):185-193.

Killick R, Ribe EM, Al-Shawi R, et al. Clusterin regulates beta-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway. Mol Psychiatry. 2014;19(1):88-98.

Bjorklund G, Aaseth J, Dadar M, Chirumbolo S. Molecular targets in Alzheimer's Disease. Mol Neurobiol. 2019;56(10):7032-7044.

Ploia C, Antoniou X, Sclip A, et al. JNK plays a key role in tau hyperphosphorylation in Alzheimer's disease models. J Alzheimers Dis. 2011;26(2):315-329.

Yoshida H, Hastie CJ, McLauchlan H, Cohen P, Goedert M. Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J Neurochem. 2004;90(2):352-358.

Mamun AA, Uddin MS, Mathew B, Ashraf GM. Toxic tau: structural origins of tau aggregation in Alzheimer's disease. Neural Regen Res. 2020;15(8):1417-1420.

Hunot S, Vila M, Teismann P, et al. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A. 2004;101(2):665-670.

Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proc Natl Acad Sci U S A. 2001;98(18):10433-10438.

Wang Y, Zhang Y, Wei Z, et al. JNK inhibitor protects dopaminergic neurons by reducing COX-2 expression in the MPTP mouse model of subacute Parkinson's disease. J Neurol Sci. 2009;285(1-2):172-177.

Sclip A, Tozzi A, Abaza A, et al. c-Jun N-terminal kinase has a key role in Alzheimer disease synaptic dysfunction in vivo. Cell Death Dis. 2014;5:e1019.

Cui J, Zhang M, Zhang YQ, Xu ZH. JNK pathway: diseases and therapeutic potential. Acta Pharmacol Sin. 2007;28(5):601-608.

Yoon SO, Park DJ, Ryu JC, et al. JNK3 perpetuates metabolic stress induced by Abeta peptides. Neuron. 2012;75(5):824-837.

Sherrin T, Blank T, Todorovic C. c-Jun N-terminal kinases in memory and synaptic plasticity. Rev Neurosci. 2011;22(4):403-410.

Resnick L, Fennell M. Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov Today. 2004;9(21):932-939.

Song YJ, Zong ZM, Liu HZ, et al. Heme oxygenase-1 regulates the JNK signaling pathway through the MLK3-MKK7-JNK3 signaling module in brain ischemia injury. Brain Res. 2012;1429:1-8.

de Lemos L, Junyent F, Camins A, et al. Neuroprotective effects of the absence of JNK1 or JNK3 isoforms on kainic acid-induced temporal lobe epilepsy-like symptoms. Mol Neurobiol. 2018;55(5):4437-4452.

Yao M, Nguyen TV, Pike CJ. Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci. 2005;25(5):1149-1158.

Colombo A, Bastone A, Ploia C, et al. JNK regulates APP cleavage and degradation in a model of Alzheimer's disease. Neurobiol Dis. 2009;33(3):518-525.

Gourmaud S, Paquet C, Dumurgier J, et al. Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline. J Psychiatry Neurosci. 2015;40(3):151-161.

Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal Kinase (JNK) signaling as a therapeutic target for Alzheimer's Disease. Front Pharmacol. 2015;6:321.

Akhter R, Sanphui P, Das H, Saha P, Biswas SC. The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in beta-amyloid-induced neuron death. J Neurochem. 2015;134(6):1091-1103.

Salminen A, Kaarniranta K, Kauppinen A, et al. Impaired autophagy and APP processing in Alzheimer's disease: the potential role of Beclin 1 interactome. Prog Neurobiol. 2013;106-107:33-54.

Sclip A, Antoniou X, Colombo A, et al. c-Jun N-terminal kinase regulates soluble Abeta oligomers and cognitive impairment in AD mouse model. J Biol Chem. 2011;286(51):43871-43880.

Sclip A, Arnaboldi A, Colombo I, et al. Soluble Abeta oligomer-induced synaptopathy: c-Jun N-terminal kinase's role. J Mol Cell Biol. 2013;5(4):277-279.

Costello DA, Herron CE. The role of c-Jun N-terminal kinase in the Abeta-mediated impairment of LTP and regulation of synaptic transmission in the hippocampus. Neuropharmacology. 2004;46(5):655-662.

Ahn JH, So SP, Kim NY, Kim HJ, Yoon SY, Kim DH. c-Jun N-terminal Kinase (JNK) induces phosphorylation of amyloid precursor protein (APP) at Thr668, in okadaic acid-induced neurodegeneration. BMB Rep. 2016;49(7):376-381.

Merelli A, Rodriguez JCG, Folch J, Regueiro MR, Camins A, Lazarowski A. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr Neuropharmacol. 2018;16(10):1484-1498.

de Lemos ML, de la Torre AV, Petrov D, et al. Evaluation of hypoxia inducible factor expression in inflammatory and neurodegenerative brain models. Int J Biochem Cell Biol. 2013;45(7):1377-1388.

Pomilio C, Gorojod RM, Riudavets M, et al. Microglial autophagy is impaired by prolonged exposure to beta-amyloid peptides: evidence from experimental models and Alzheimer's disease patients. Geroscience. 2020;42(2):613-632.

Liu Z, Li T, Li P, et al. The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer's Disease. Oxid Med Cell Longev. 2015;2015:352723.

Banerjee R, Beal MF, Thomas B. Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci. 2010;33(12):541-549.

Zhu W, Zhao L, Li T, Xu H, Ding Y, Cui G. Docosahexaenoic acid ameliorates traumatic brain injury involving JNK-mediated Tau phosphorylation signaling. Neurosci Res. 2020;157:44-50.

Zhang X, Tang S, Zhang Q, et al. Endoplasmic reticulum stress mediates JNK-dependent IRS-1 serine phosphorylation and results in Tau hyperphosphorylation in amyloid beta oligomer-treated PC12 cells and primary neurons. Gene. 2016;587(2):183-193.

Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA. Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification. Eur J Neurosci. 2013;37(12):1949-1961.

Luna-Munoz J, Chavez-Macias L, Garcia-Sierra F, Mena R. Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer's disease. J Alzheimers Dis. 2007;12(4):365-375.

Vogel J, Anand VS, Ludwig B, Nawoschik S, Dunlop J, Braithwaite SP. The JNK pathway amplifies and drives subcellular changes in tau phosphorylation. Neuropharmacology. 2009;57(5-6):539-550.

Pearson AG, Byrne UT, MacGibbon GA, Faull RL, Dragunow M. Activated c-Jun is present in neurofibrillary tangles in Alzheimer's disease brains. Neurosci Lett. 2006;398(3):246-250.

Medhi B, Chakrabarty M. Insulin resistance: an emerging link in Alzheimer's disease. Neurol Sci. 2013;34(10):1719-1725.

Akhtar A, Sah SP. Insulin signaling pathway and related molecules: role in neurodegeneration and Alzheimer's disease. Neurochem Int. 2020;135:104707.

Eaton SL, Wishart TM. Bridging the gap: large animal models in neurodegenerative research. Mamm Genome. 2017;28(7-8):324-337.

Liu W, Bai X, Zhang A, Huang J, Xu S, Zhang J. Role of exosomes in central nervous system diseases. Front Mol Neurosci. 2019;12:240.

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...