Chemical, Nutritional and Sensory Characteristics of Six Ornamental Edible Flowers Species
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2021/008
Tomas Bata University in Zlin
PubMed
34574164
PubMed Central
PMC8472405
DOI
10.3390/foods10092053
PII: foods10092053
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant, bioactive compound, edible flower, flavonoid, mineral element, phenolic, sensory evaluation,
- Publikační typ
- časopisecké články MeSH
Ornamental edible flowers can be used as novel nutraceutical sources with valuable biological properties. The purpose of this study was to establish nutritional, chemical, and sensory characteristics, antioxidant capacity (AC), and the relationship between their bioactive components and AC. The selected flowers Begonia × tuberhybrida, Tropaeolum majus, Calendula officinalis, Rosa, Hemerocallis, and Tagetes patula, can be easily collected due to their larger size. Their methanolic extracts were spectrophotometrically determined for polyphenols, flavonoids, and AC. Mineral elements were analyzed by atomic-absorption spectroscopy; crude protein was quantified by the Kjeldahl method. Eventually, 30 panelists evaluated sensory properties in 11 attributes. In addition, this study may serve to popularize selected blossoms. In flowers the contents of minerals were in this order: K > Ca > P > Mg > Na > Zn > Mn > Fe > Cu > Mo. AC ranged between 4.11 and 7.94 g of ascorbic acid equivalents/kg of fresh mass. The correlation coefficients between AC-total phenolics and AC-total flavonoids were r = 0.73* and r = 0.58*, respectively. It is also possible to observe a strong correlation between mineral elements and bioactive compounds. Hemerocallis was rated as the best and most tasteful; additionally, it exhibited the highest AC, total phenolic and flavonoid contents.
Zobrazit více v PubMed
Yang H., Shin Y. Antioxidant compounds and activities of edible roses (Rosa hybrida spp.) from different cultivars grown in Korea. Appl. Biol. Chem. 2017;60:129–136. doi: 10.1007/s13765-017-0261-4. DOI
Guiné R.P.F., Florença S.G., Ferrão A.C., Bizjak M., Vombergar B., Simoni N., Vieira V. Factors affecting eating habits and knowledge of edible flowers in different countries. Open Agric. 2021;6:67–81. doi: 10.1515/opag-2020-0208. DOI
Kelley K.M., Behe B.K., Biernbaum J.A., Poff K.L. Consumer Preference for Edible-flower Color, Container Size, and Price. HortScience. 2001;36:801–804. doi: 10.21273/HORTSCI.36.4.801. DOI
Benvenuti S., Bortolotti E., Maggini R. Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic. 2016;199:170–177. doi: 10.1016/j.scienta.2015.12.052. DOI
Lu B., Li M., Yin R. Phytochemical Content, Health Benefits, and Toxicology of Common Edible Flowers: A Review (2000–2015) Crit. Rev. Food Sci. Nutr. 2016;56:S130–S148. doi: 10.1080/10408398.2015.1078276. PubMed DOI
Benvenuti S., Mazzoncini M. The Biodiversity of Edible Flowers: Discovering New Tastes and New Health Benefits. Front. Plant Sci. 2021;11:569499. doi: 10.3389/fpls.2020.569499. PubMed DOI PMC
Tanji A., Nassif F. Edible Weeds in Morocco. Weed Technol. 1995;9:612–620. doi: 10.1017/S0890037X00023939. DOI
Koike A., Barreira J.C.M., Barros L., Santos-Buelga C., Villavicencio A.L.C.H., Ferreira I.C.F.R. Edible flowers of Viola tricolor L. as a new functional food. Food Chem. 2015;179:6–14. doi: 10.1016/j.foodchem.2015.01.123. PubMed DOI
Chensom S., Okumura H., Mishima T. Primary Screening of Antioxidant Activity, Total Polyphenol Content, Carotenoid Content, and Nutritional Composition of 13 Edible Flowers from Japan. Prev. Nutr. Food Sci. 2019;24:171–178. doi: 10.3746/pnf.2019.24.2.171. PubMed DOI PMC
Zhao L., Fan H., Zhang M., Chitrakar B., Bhandari B., Wang B. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Food Res. Int. 2019;126:14. doi: 10.1016/j.foodres.2019.108660. PubMed DOI
Gonçalves F., Gonçalves J.C., Ferrão A.C., Correia P., Guiné R.P.F. Evaluation of phenolic compounds and antioxidant activity in some edible flowers. Open Agric. 2020;5:857–870. doi: 10.1515/opag-2020-0087. DOI
Mlcek J., Rop O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011;22:561–569. doi: 10.1016/j.tifs.2011.04.006. DOI
Rivas-García L., Navarro-Hortal M.D., Romero-Márquez J.M., Forbes-Hernández T.Y., Varela-López A., Llopis J., Sánchez-González C., Quiles J.L. Edible flowers as a health promoter: An evidence-based review. Trends Food Sci. Technol. 2020 doi: 10.1016/j.tifs.2020.12.007. in press. DOI
Rop O., Mlcek J., Jurikova T., Neugebauerova J., Vabkova J. Edible Flowers—A New Promising Source of Mineral Elements in Human Nutrition. Molecules. 2012;17:6672–6683. doi: 10.3390/molecules17066672. PubMed DOI PMC
Bazylko A., Granica S., Filipek A., Piwowarski J., Stefańska J., Osińska E., Kiss A. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L. Ind. Crop. Prod. 2013;50:88–94. doi: 10.1016/j.indcrop.2013.07.003. DOI
Roberts M., Green P. Edible & Medicinal Flowers. 1st ed. The Spearhead Press; Claremont, CA, USA: 2000. p. 166.
Fu M., He Z., Zhao Y., Yang J., Mao L. Antioxidant properties and involved compounds of daylily flowers in relation to maturity. Food Chem. 2009;114:1192–1197. doi: 10.1016/j.foodchem.2008.10.072. DOI
Rigane G., Ben Younes S., Ghazghazi H., Ben Salem R. Investigation into the biological activities and chemical composition of Calendula officinalis L. growing in Tunisia. Int. Food Res. J. 2013;20:3001–3007.
Kim G., Kim J., Kim G., Choi S. Anti-adipogenic effects of Tropaeolum majus (nasturtium) ethanol extract on 3T3-L1 cells. Food Nutr. Res. 2017;61:8. doi: 10.1080/16546628.2017.1339555. PubMed DOI PMC
Fernandes L., Casal S., Pereira J.A., Saraiva J.A., Ramalhosa E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017;60:38–50. doi: 10.1016/j.jfca.2017.03.017. DOI
Jurca T., Baldea I., Filip G.A., Olteanu D., Clichici S., Pallag A., Vicas L.G., Marian E., Micle O., Muresan M. The effect of Tropaeolum majus L. on bacterial infections and in vitro efficacy on apoptosis and DNA lesions in hyperosmotic stress. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2018;69:391–401. PubMed
Pires T.C., Dias M.I., Barros L., Calhelha R.C., Alves M.J., Oliveira B., Santos-Buelga C., Ferreira I.C. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018;105:580–588. doi: 10.1016/j.foodres.2017.11.014. PubMed DOI
Verma P.K., Raina R., Agarwal S., Kour H. Phytochemical ingredients and pharmacological potential of Calendula officinalis Linn. Pharm. Biomed. Res. 2018;4:17. doi: 10.18502/pbr.v4i2.214. DOI
Choi E.-M., Hwang J.-K. Investigations of anti-inflammatory and antinociceptive activities of Piper cubeba, Physalis angulata and Rosa hybrida. J. Ethnopharmacol. 2003;89:171–175. doi: 10.1016/S0378-8741(03)00280-0. PubMed DOI
Kumari P., Ujala, Bhargava B. Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Foods. 2021;78:18. doi: 10.1016/j.jff.2021.104375. DOI
Arru L., Mussi F., Forti L., Buschini A. Biological Effect of Different Spinach Extracts in Comparison with the Individual Components of the Phytocomplex. Foods. 2021;10:382. doi: 10.3390/foods10020382. PubMed DOI PMC
Chen G.-L., Chen S.-G., Xie Y.-Q., Chen F., Zhao Y.-Y., Luo C.-X., Gao Y.-Q. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods. 2015;17:243–259. doi: 10.1016/j.jff.2015.05.028. DOI
Friedman H., Rot I., Agami O., Vinokur Y., Rodov V., Reznick N., Umiel N., Dori I., Ganot L., Shmuel D., et al. Edible Flowers: New Crops with Potential Health Benefits. Acta Hortic. 2007;755:283–290. doi: 10.17660/ActaHortic.2007.755.36. DOI
Garzón G., Wrolstad R. Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus) Food Chem. 2009;114:44–49. doi: 10.1016/j.foodchem.2008.09.013. DOI
Barros R.G.C., Andrade J.K.S., Pereira U.C., de Oliveira C.S., Rafaella Ribeiro Santos Rezende Y., Oliveira Matos Silva T., Pedreira Nogueira J., Carvalho Gualberto N., Caroline Santos Araujo H., Narain N. Phytochemicals screening, antioxidant capacity and chemometric characterization of four edible flowers from Brazil. Food Res. Int. 2020;130:10. doi: 10.1016/j.foodres.2019.108899. PubMed DOI
Ng T.B., He J.S., Niu S.M., Pi Z.F., Shao W., Liu F., Zhao L. A gallic acid derivative and polysaccharides with antioxidative activity from rose (Rosa rugosa) flowers. J. Pharm. Pharmacol. 2004;56:537–545. doi: 10.1211/0022357022944. PubMed DOI
Friedman H., Agami O., Vinokur Y., Droby S., Cohen L., Refaeli G., Resnick N., Umiel N. Characterization of yield, sensitivity to Botrytis cinerea and antioxidant content of several rose species suitable for edible flowers. Sci. Hortic. 2010;123:395–401. doi: 10.1016/j.scienta.2009.09.019. DOI
Cho E.J., Yokozawa T., Rhyu D.Y., Kim H.Y., Shibahara N., Park J.C. The Inhibitory Effects of 12 Medicinal Plants and Their Component Compounds on Lipid Peroxidation. Am. J. Chin. Med. 2003;31:907–917. doi: 10.1142/S0192415X03001648. PubMed DOI
Chen H.-Y., Bor J.-Y., Huang W.-H., Yen G.-C. Effect of sulfite-treated daylily (Hemerocallis fulva L.) flower on the production of nitric oxide and DNA damage in macrophages. J. Food Drug Anal. 2007;15:63–70.
Que F., Mao L., Zheng X. In vitro and vivo antioxidant activities of daylily flowers and the involvement of phenolic compounds. Asia Pac. J. Clin. Nutr. 2007;16:196–203. PubMed
UKZUZ . UKZUZ Data from Central Institute for Supervising and Testing in Agriculture. UKZUZ; Brno, Czech Republic: 2019.
Hertle B., Nickig M., Kiermeier P. Gartenblumen. 1st ed. Gräfe and Unzer; München, Germany: 1993. pp. 30–200.
Kim D.-O., Jeong S.W., Lee C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003;81:321–326. doi: 10.1016/S0308-8146(02)00423-5. DOI
Barros L., Baptista P., Ferreira I.C.F. R Effect of lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem. Toxicol. 2007;45:1731–1737. doi: 10.1016/j.fct.2007.03.006. PubMed DOI
Brand-Williams W., Cuvelier M., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT. 1995;28:25–30. doi: 10.1016/S0023-6438(95)80008-5. DOI
Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006;19:669–675. doi: 10.1016/j.jfca.2006.01.003. DOI
Rupasinghe H.V., Jayasankar S., Lay W. Variation in total phenolics and antioxidant capacity among European plum genotypes. Sci. Hortic. 2006;108:243–246. doi: 10.1016/j.scienta.2006.01.020. DOI
Benzie I., Strain J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI
Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999;299:152–178.
Higson S.P.J. Analytical Chemistry. 1st ed. Oxford University Press; Oxford, UK: 2004. pp. 30–420.
Novotny F. Methodologies of Chemical Analyzes for Quality Evaluation of Species [In Czech: Metodiky Chemických Rozborů pro Hodnocení Kvality Odrůd] 1st ed. UKZUZ; Brno, Czech Republic: 2000. pp. 15–120.
Publication Office of European Union Regulation (EU) No 1168/2011 of the European Parliament and of the Council of 25 October 2011 Amending Council Regulation (EC) No 2007/2004 Establishing a European Agency for the Management of Operational Cooperation at the External Borders of the Member States of the European Union. [(accessed on 10 June 2021)];Off. J. Eur. Union. 2011 54:18–63. doi: 10.3000/19770677.L_2011.304.eng. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2011:304:FULL&from=EN. DOI
Muchová T. Master’s Thesis. Mendel University in Brno; Lednice, Czech Republic: 2017. Use of the Edible Flowers, Medicinal and Spice Plants in Gastronomy [Využití Jedlých Květů, Léčivých a Kořenových Rostlin pro Potřeby Gastronomie] (In Czech)
Grzeszczuk M., Stefaniak A., Pachlowska A. Biological value of various edible flower species. Acta Sci. Pol. Hortorum Cultus. 2016;15:109–119.
Anisha R. Ph.D. Thesis. Central University of Jharkhand; Jharkhand, India: 2018. Variations in Lycopene Content and Antioxidant Activity of Indian Marigold.
Ashraf A., Riaz M., Nasrullah M., Hanif M., Ali S., Javaid B., Ali S. Phytochemical, antioxidant and cytotoxicity studies of Calendula officinalis L. (Pot Marigold) leaves extracts. Oxid. Commun. 2016;40:120–130.
Ferreira C.S., Pereyra A., Patriarca A., Mazzobre M.F., Abram V., Buera M.P., Ulrih N.P. Phenolic Compounds in Extracts from Eucalyptus globulus Leaves and Calendula officinalis Flowers. J. Nat. Prod. Resour. 2016;2:53–57.
Navarro-González I., González-Barrio R., García-Valverde V., Bautista-Ortín A., Periago M. Nutritional composition and antioxidant capacity in edible flowers: Characterization of phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 2015;16:805–822. doi: 10.3390/ijms16010805. PubMed DOI PMC
Moyer R.A., Hummer K.E., Finn C.E., Frei B., Wrolstad R.E. Anthocyanins, Phenolics, and Antioxidant Capacity in Diverse Small Fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 2002;50:519–525. doi: 10.1021/jf011062r. PubMed DOI
You Q., Wang B., Chen F., Huang Z., Wang X., Luo P.G. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 2011;125:201–208. doi: 10.1016/j.foodchem.2010.08.063. DOI
Lin J.-Y., Tang C.-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007;101:140–147. doi: 10.1016/j.foodchem.2006.01.014. DOI
Kołton A., Wojciechowska R., Długosz-Grochowska O., Grzesiak W. The Storage Ability of Lamb’S Lettuce Cultivated in The Greenhouse under Led or Hps Lamps. J. Hortic. Res. 2014;22:159–165. doi: 10.2478/johr-2014-0033. DOI
Arasaretnam S., Kiruthika A., Mahendran T. Nutritional and mineral composition of selected green leafy vegetables. Ceylon J. Sci. 2018;47:35. doi: 10.4038/cjs.v47i1.7484. DOI
Kaisoon O., Siriamornpun S., Weerapreeyakul N., Meeso N. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods. 2011;3:88–99. doi: 10.1016/j.jff.2011.03.002. DOI
Ilahy R., Hdider C., Lenucci M.S., Tlili I., Dalessandro G. Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compos. Anal. 2011;24:588–595. doi: 10.1016/j.jfca.2010.11.003. DOI
Park H., Kim Y.-J., Shin Y. Estimation of daily intake of lycopene, antioxidant contents and activities from tomatoes, watermelons, and their processed products in Korea. Appl. Biol. Chem. 2020;63:11. doi: 10.1186/s13765-020-00534-w. DOI
Mirzaei A., Mirzaei N., Salehpour Z., Khosravani S.A., Amouei M. Phenolic, ascorbic Contents and Antioxidant activities of 21 Iranian Fruits. Life Sci. J. 2013;10:1240–1245.
Zheng J., Yu X., Maninder M., Xu B. Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. Int. J. Food Prop. 2018;21:1524–1540. doi: 10.1080/10942912.2018.1494195. DOI
Sadeer N.B., Montesano D., Albrizio S., Zengin G., Mahomoodally M.F. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants. 2020;9:709. doi: 10.3390/antiox9080709. PubMed DOI PMC
Kedare S.B., Singh R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011;48:412–422. doi: 10.1007/s13197-011-0251-1. PubMed DOI PMC
Ou B., Huang D., Hampsch-Woodill M., Flanagan J.A., Deemer E.K. Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study. J. Agric. Food Chem. 2002;50:3122–3128. doi: 10.1021/jf0116606. PubMed DOI
Mao L.-C., Pan X., Que F., Fang X.-H. Antioxidant properties of water and ethanol extracts from hot air-dried and freeze-dried daylily flowers. Eur. Food Res. Technol. 2006;222:241. doi: 10.3136/fstr.12.241. DOI
Koike A., Barreira J.C.M., Barros L., Santos-Buelga C., Villavicencio A.L.C.H., Ferreira I.C.F.R. Irradiation as a novel approach to improve quality of Tropaeolum majus L. flowers. Innov. Food Sci. Emerg. Technol. 2015;30:138–144. doi: 10.1016/j.ifset.2015.04.009. DOI
Pavithra G.M., Saba S., Abhishiktha S.N., Prashith Kekuda T.R., Vinayaka K.S. Antioxidant and antimicrobial activity of flowers of Wendlandia thyrsoidea, Olea dioica, Lagerstroemia speciosa and Bombax malabaricum. J. Appl. Pharm. Sci. 2013;3:114–120.
Clevely A., Richmondová K. The Complete Book of Herbs [Velká Kniha Bylinek] 1st ed. Svojtka & Co., s. r. o.; Prague, Czech Republic: 2007. p. 28. (In Czech)
Demasi S., Caser M., Donno D., Enri S.R., Lonati M., Scariot V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021;33:1–22.
EU Novel Food Catalogue (v.1.2) [(accessed on 10 August 2021)]. Available online: https://ec.europa.eu/food/safety/novel_food/catalogue/search/public/
Council of the European Union Regulation (EC) No 258/97 of the European Parliament and of the Council of 27 January 1997 Concerning Novel Foods and Novel Food Ingredients. [(accessed on 10 August 2021)];Off. J. Eur. Union. 1997 L43:1–6. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31997R0258&from=EN.
Kirker C.L., Newman M. Edible Flowers: A Global History. 1st ed. Reaktion Books; London, UK: 2016. p. 144.
Lucarini M., Copetta A., Durazzo A., Gabrielli P., Lombardi-Boccia G., Lupotto E., Santini A., Ruffoni B. A Snapshot on Food Allergies: A Case Study on Edible Flowers. Sustainability. 2020;12:8709. doi: 10.3390/su12208709. DOI
Egebjerg M.M., Olesen P.T., Eriksen F.D., Ravn-Haren G., Bredsdorff L., Pilegaard K. Are wild and cultivated flowers served in restaurants or sold by local producers in Denmark safe for the consumer? Food Chem. Toxicol. 2018;120:129–142. doi: 10.1016/j.fct.2018.07.007. PubMed DOI
Guiné R.P.F., Santos E., Correia P.M.R. Edible Flowers: Knowledge and Consumption Habits. Int. J. Nutr. Health Sci. 2017;1:18–22.
Mayer A. Historical changes in the mineral content of fruits and vegetables. Br. Food J. 1997;99:207–211. doi: 10.1108/00070709710181540. DOI
Kovacikova E., Vojtassakova A., Holcikova K., Simonova E. Fruit and Vegetables: Food Tables [Ovocie a Zelenina: Potravinové Tabuľky] 1st ed. VUP; Bratislava, Slovak: 1997. p. 208. (In Slovak)
Kopec K. Vegetable in Human Nutrition [Zelenina ve Výživě Člověka] 1st ed. Grada; Praha, Czech Republic: 2010. p. 168. (In Czech)
Pavithra G.M., Rakesh K.N., Dileep N., Junaid S., Kumar R.K.A., Kekuda P.T.R. Elemental analysis, antimicrobial and radical scavenging activity of Lagerstroemia speciosa (L.) flower. J. Chem. Pharm. Res. 2013;5:215–222.
Cui X.-S., Guo Y.-H. [Analysis of mineral elements in different organs of Chrysanthemum indicum L. based on ICP-AES] Guang Pu Xue Yu Guang Pu Fen Xi. 2012;32:2828–2830. PubMed
Grzeszczuk M., Meller E., Stefaniak A., Wysocka G. Mineral composition of some edible flowers. J. Elementol. 2018;23:151–162. doi: 10.5601/jelem.2017.22.2.1352. DOI
Kader A.A. Flavor quality of fruits and vegetables. J. Sci. Food Agric. 2008;88:1863–1868. doi: 10.1002/jsfa.3293. DOI
Sanchez-Castillo C., Dewey P.J.S., Aguirre A., Lara J.J., Vaca R., de la Barra P.L., Ortiz M., Escamilla I., James W.P. The Mineral Content of Mexican Fruits and Vegetables. J. Food Compos. Anal. 1998;11:340–356. doi: 10.1006/jfca.1998.0598. DOI
Smanalieva J., Iskakova J., Oskonbaeva Z., Wichern F., Darr D. Investigation of nutritional characteristics and free radical scavenging activity of wild apple, pear, rosehip, and barberry from the walnut-fruit forests of Kyrgyzstan. Eur. Food Res. Technol. 2020;246:1095–1104. doi: 10.1007/s00217-020-03476-1. DOI
Kalač P. Chemical composition and nutritional value of European species of wild growing mushrooms. Food Chem. 2009;113:9–16. doi: 10.1016/j.foodchem.2008.07.077. DOI
Mattila P., Könkö K., Eurola M., Pihlava J.-M., Astola J., Vahteristo L., Hietaniemi V., Kumpulainen J., Valtonen M., Piironen V. Contents of Vitamins, Mineral Elements, and Some Phenolic Compounds in Cultivated Mushrooms. J. Agric. Food Chem. 2001;49:2343–2348. doi: 10.1021/jf001525d. PubMed DOI
Hanć A., Komorowicz I., Iskra M., Majewski W., Barałkiewicz D. Application of spectroscopic techniques: ICP-OES, LA-ICP-MS and chemometric methods for studying the relationships between trace elements in clinical samples from patients with atherosclerosis obliterans. Anal. Bioanal. Chem. 2011;399:3221–3231. doi: 10.1007/s00216-011-4729-5. PubMed DOI PMC
Hicsonmez U., Ozdemir C., Cam S., Ozdemir A., Erees F.S. Major-minor element analysis in some plant seeds consumed as feed in Turkey. Nat. Sci. 2012;4:298–303. doi: 10.4236/ns.2012.45042. DOI
Institute of Medicine. Otten J.J., Hellwig J.P., Meyers L.D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. 1st ed. National Academies Press; Washington, DC, USA: 2006. p. 1344.
Campbell N.A., Reece J.B. Biology [Biologie] 1st ed. Computer Press; Brno, Czech Republic: 2006. p. 1332. (In Czech)
Gombart A.F., Pierre A., Maggini S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020;12:236. doi: 10.3390/nu12010236. PubMed DOI PMC
Velisek J. Food Chemistry [Chemie Potravin] 1st ed. OSSIS; Tabor, Czech Republic: 2002. pp. 252–324. (In Czech)
Jarosz M., Olbert M., Wyszogrodzka G., Mlyniec K., Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25:11–24. doi: 10.1007/s10787-017-0309-4. PubMed DOI PMC
Schreiner M., Krumbein A., Mewis I., Ulrichs C., Huyskens-Keil S. Short-term and moderate UV-B radiation effects on secondary plant metabolism in different organs of nasturtium (Tropaeolum majus L.) Innov. Food Sci. Emerg. Technol. 2009;10:93–96. doi: 10.1016/j.ifset.2008.10.001. DOI
Shafaghat A., Larijani K., Salimi F. Composition and Antibacterial Activity of the Essential Oil of Chrysanthemum parthenium Flower from Iran. J. Essent. Oil Bear. Plants. 2009;12:708–713. doi: 10.1080/0972060X.2009.10643779. DOI
Mahmood N., Piacente S., Pizza C., Burke A., Khan A.I., Hay A.J. The Anti-HIV Activity and Mechanisms of Action of Pure Compounds Isolated from Rosa damascena. Biochem. Biophys. Res. Commun. 1996;229:73–79. doi: 10.1006/bbrc.1996.1759. PubMed DOI
dos Santos A.M.P., Silva E.F.R., dos Santos W.N.L., da Silva E.G.P., dos Santos L.O., da Santos B.R., da Sauthier M.C., dos Santos W.P.C. Evaluation of minerals, toxic elements and bioactive compounds in rose petals (Rosa spp.) using chemometric tools and artificial neural networks. Microchem. J. 2018;138:98–108. doi: 10.1016/j.microc.2017.12.018. DOI
Drava G., Iobbi V., Govaerts R., Minganti V., Copetta A., Ruffoni B., Bisio A. Trace Elements in Edible Flowers from Italy: Further Insights into Health Benefits and Risks to Consumers. Molecules. 2020;25:2891. doi: 10.3390/molecules25122891. PubMed DOI PMC
Moncada A., Miceli A., Sabatino L., Iapichino G., D’Anna F., Vetrano F. Effect of Molybdenum Rate on Yield and Quality of Lettuce, Escarole, and Curly Endive Grown in a Floating System. Agronomy. 2018;8:171. doi: 10.3390/agronomy8090171. DOI
European Food Safety Authority . EFSA Tolerable Upper Intake Levels for Vitamins and Minerals. European Food Safety Authority; Parma, Italy: 2006. p. 480. PubMed PMC
Sularz O., Smoleń S., Koronowicz A., Kowalska I., Leszczyńska T. Chemical Composition of Lettuce (Lactuca sativa L.) Biofortified with Iodine by KIO3, 5-Iodo-, and 3.5-Diiodosalicylic Acid in a Hydroponic Cultivation. Agronomy. 2020;10:1022. doi: 10.3390/agronomy10071022. DOI
Montañés Millán L., Val J., Betrán J., Monge E., Moreno M.A., Montañés L. Floral analysis: Fresh and dry weight of flowers from different fruit tree species. Acta Hortic. 1997;448:233–240. doi: 10.17660/ActaHortic.1997.448.35. DOI
Villa-Ruano N., Pacheco-Hernández Y., Cruz-Durán R., Lozoya-Gloria E., Betancourt-Jiménez M.G. Seasonal variation in phytochemicals and nutraceutical potential of Begonia nelumbiifolia consumed in Puebla, México. J. Food Sci. Technol. 2017;54:1484–1490. doi: 10.1007/s13197-017-2576-x. PubMed DOI PMC
De Lima Franzen F., Rodrigues de Oliveira M.S., Lidório H.F., Farias Menegaes J., Martins Fries L.L. Chemical composition of rose, calendula flower petals for human food use. Cienc. Tecnol. Agropecu. 2019;20:159–168.
Lara-Cortés E., Osorio-Díaz P., Jiménez-Aparicio A., Bautista-Baños S. Nutritional content, functional properties and conservation of edible flowers. Review [Contenido Nutricional, Propiedades Funcionales Y Conservación De Flores Comestibles. Revisión] Arch. Latinoam. Nutr. 2013;63:197–208. (In Spanish) PubMed
Marino C.T., Hector B., Rodrigues P.H.M., Borgatti L.M.O., Meyer P.M., Alves da Silva E.J., Ørskov E.R. Characterization of vegetables and fruits potential as ruminant feed by in vitro gas production technique. Livestock Res. Rural. Dev. 2010;22:168.
Punchay K., Inta A., Tiansawat P., Balslev H., Wangpakapattanawong P. Nutrient and Mineral Compositions of Wild Leafy Vegetables of the Karen and Lawa Communities in Thailand. Foods. 2020;9:1748. doi: 10.3390/foods9121748. PubMed DOI PMC
Petek M., Herak Ćustić M., Toth N., Slunjski S., Čoga L., Pavlović I., Karažija T., Lazarević B., Cvetković S. Nitrogen and Crude Proteins in Beetroot (Beta vulgaris var. conditiva) under Different Fertilization Treatments. Not. Bot. Horti Agrobot. Cluj-Napoca. 2012;40:215–219. doi: 10.15835/nbha4027457. DOI
Cai Y., Luo Q., Sun M., Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74:2157–2184. doi: 10.1016/j.lfs.2003.09.047. PubMed DOI PMC
Rigane G., Ben Salem R., Sayadi S., Bouaziz M. Phenolic Composition, Isolation, and Structure of a New Deoxyloganic Acid Derivative from Dhokar and Gemri-Dhokar Olive Cultivars. J. Food Sci. 2011;76:965–973. doi: 10.1111/j.1750-3841.2011.02290.x. PubMed DOI
Ulewicz-Magulska B., Wesolowski M. Total Phenolic Contents and Antioxidant Potential of Herbs Used for Medical and Culinary Purposes. Plant. Foods Hum. Nutr. 2019;74:61–67. doi: 10.1007/s11130-018-0699-5. PubMed DOI PMC
Yin D.-D., Yuan R.-Y., Wu Q., Li S.-S., Shao S., Xu Y.-J., Hao X.-H., Wang L.-S. Assessment of flavonoids and volatile compounds in tea infusions of water lily flowers and their antioxidant activities. Food Chem. 2015;187:20–28. doi: 10.1016/j.foodchem.2015.04.032. PubMed DOI
Kaisoon O., Konczak I., Siriamornpun S. Potential health enhancing properties of edible flowers from Thailand. Food Res. Int. 2012;46:563–571. doi: 10.1016/j.foodres.2011.06.016. DOI
Grela E.R., Samolińska W., Kiczorowska B., Klebaniuk R., Kiczorowski P. Content of Minerals and Fatty Acids and Their Correlation with Phytochemical Compounds and Antioxidant Activity of Leguminous Seeds. Biol. Trace Element Res. 2017;180:338–348. doi: 10.1007/s12011-017-1005-3. PubMed DOI PMC
Aghdam M.S., Dokhanieh A.Y., Hassanpour H., Fard J.R. Enhancement of antioxidant capacity of cornelian cherry (Cornus mas) fruit by postharvest calcium treatment. Sci. Hortic. 2013;161:160–164. doi: 10.1016/j.scienta.2013.07.006. DOI
Chaturvedi N., Ahmed J., Dhal N.K. Effects of iron ore tailings on growth and physiological activities of Tagetes patula L. J. Soils Sediments. 2014;14:721–730. doi: 10.1007/s11368-013-0777-0. DOI
Hou W., Pan Y., Zhang Y. Changes in quality, antioxidant compounds and DPPH radical-scavenging activity of Rosa hybrida flowers during development. N. Z. J. Crop. Hortic. Sci. 2014;42:31–37. doi: 10.1080/01140671.2013.844718. DOI
Gonzalez-Barrio R., Periago M.J., Luna-Recio C., Garcia-Alonso F.J., Navarro-González I. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem. 2018;252:373–380. doi: 10.1016/j.foodchem.2018.01.102. PubMed DOI
Tai Z., Cai L., Dai L., Dong L., Wang M., Yang Y., Cao Q., Ding Z. Antioxidant activity and chemical constituents of edible flower of Sophora viciifolia. Food Chem. 2011;126:1648–1654. doi: 10.1016/j.foodchem.2010.12.048. PubMed DOI
Kelley K.M., Behe B.K., Biernbaum J.A., Poff K.L. Combinations of Colors and Species of Containerized Edible Flowers: Effect on Consumer Preferences. HortScience. 2002;37:218–221. doi: 10.21273/HORTSCI.37.1.218. DOI
Takahashi J.A., Rezende F.A.G.G., Moura M.A.F., Dominguete L.C.B., Sande D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int. 2020;129:108868. doi: 10.1016/j.foodres.2019.108868. PubMed DOI
Tunick M.H., Onwulata C.I., Thomas A.E., Phillips J.G., Mukhopadhyay S., Sheen S., Liu C.-K., Latona N., Pimentel M.R., Cooke P.H. Critical Evaluation of Crispy and Crunchy Textures: A Review. Int. J. Food Prop. 2013;16:949–963. doi: 10.1080/10942912.2011.573116. DOI
Burdock G.A., Fenaroli G. Fenaroli’s Handbook of Flavor Ingredients. 6th ed. CRC Press Taylor & Francis Group; Boca Raton, FL, USA: 2010. p. 1861.
Barbano P. Be Certain That You Are Eating True Edible Daylily Plants. [(accessed on 11 March 2021)]. Available online: https://www.capegazette.com/article/be-certain-you-are-eating-true-edible-daylily-plants/111652.
Pollard A.N., Coggins P.C., Knight P.R. Sensory Evaluation of Edible Daylilies (Hemerocallis sp.) HortScience. 2004;39:783. doi: 10.21273/HORTSCI.39.4.783C. DOI
Grosvenor G. Daylilies for the Garden. Timber Press; Portland, OR, USA: 1999. p. 176.