Microbiota-Gut-Brain Axis in Age-Related Neurodegenerative Diseases

. 2025 ; 23 (5) : 524-546.

Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39501955

Grantová podpora
32373073 National Natural Science Foundation of China
2023KF02 Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs
UHHK, 00179906 MH CZ - DRO
22FWWB003 National Social Science Foundation
2216/2023-2024 Excellence project PrF UHK, Czech Republic

BACKGROUND: Age-related neurodegenerative diseases (NDs) pose a formidable challenge to healthcare systems worldwide due to their complex pathogenesis, significant morbidity, and mortality. Scope and Approach: This comprehensive review aims to elucidate the central role of the microbiotagut- brain axis (MGBA) in ND pathogenesis. Specifically, it delves into the perturbations within the gut microbiota and its metabolomic landscape, as well as the structural and functional transformations of the gastrointestinal and blood-brain barrier interfaces in ND patients. Additionally, it provides a comprehensive overview of the recent advancements in medicinal and dietary interventions tailored to modulate the MGBA for ND therapy. CONCLUSION: Accumulating evidence underscores the pivotal role of the gut microbiota in ND pathogenesis through the MGBA. Dysbiosis of the gut microbiota and associated metabolites instigate structural modifications and augmented permeability of both the gastrointestinal barrier and the blood-brain barrier (BBB). These alterations facilitate the transit of microbial molecules from the gut to the brain via neural, endocrine, and immune pathways, potentially contributing to the etiology of NDs. Numerous investigational strategies, encompassing prebiotic and probiotic interventions, pharmaceutical trials, and dietary adaptations, are actively explored to harness the microbiota for ND treatment. This work endeavors to enhance our comprehension of the intricate mechanisms underpinning ND pathogenesis, offering valuable insights for the development of innovative therapeutic modalities targeting these debilitating disorders.

Zobrazit více v PubMed

Cottler L.B., Zunt J., Weiss B., Kamal A.K., Vaddiparti K. Building global capacity for brain and nervous system disorders research. Nature. 2015;527(7578):S207–S213. doi: 10.1038/nature16037. PubMed DOI PMC

Zhang H., Chen Y., Wang Z., Xie G., Liu M., Yuan B., Chai H., Wang W., Cheng P. Implications of gut microbiota in neurodegenerative diseases. Front. Immunol. 2022;13:785644. doi: 10.3389/fimmu.2022.785644. PubMed DOI PMC

Chen W.W., Zhang X., Huang W.J. Role of neuroinflammation in neurodegenerative diseases (Review). Mol. Med. Rep. 2016;13(4):3391–3396. doi: 10.3892/mmr.2016.4948. PubMed DOI PMC

Przedborski S., Vila M., Jackson-Lewis V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest. 2003;111(1):3–10. doi: 10.1172/JCI200317522. PubMed DOI PMC

Ross C.A., Poirier M.A. Protein aggregation and neurodegenerative disease. Nat. Med. 2004;10(Suppl.):S10–S17. doi: 10.1038/nm1066. PubMed DOI

Chang C.W., Shao E., Mucke L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science. 2021;371(6532):eabb8255. doi: 10.1126/science.abb8255. PubMed DOI PMC

Cline E.N., Bicca M.A., Viola K.L., Klein W.L. The amyloid-β oligomer hypothesis: Beginning of the third decade. J. Alzheimers Dis. 2018;64(s1):S567–S610. doi: 10.3233/JAD-179941. PubMed DOI PMC

Elfawy H.A., Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci. 2019;218:165–184. doi: 10.1016/j.lfs.2018.12.029. PubMed DOI

Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 2003;4(1):49–60. doi: 10.1038/nrn1007. PubMed DOI

Soto C., Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 2018;21(10):1332–1340. doi: 10.1038/s41593-018-0235-9. PubMed DOI PMC

Brown G.C. The endotoxin hypothesis of neurodegeneration. J. Neuroinflammation. 2019;16(1):180. doi: 10.1186/s12974-019-1564-7. PubMed DOI PMC

Mulder D., Aarts E., Arias Vasquez A., Bloemendaal M. A systematic review exploring the association between the human gut microbiota and brain connectivity in health and disease. Mol. Psychiatry. 2023;28(12):5037–5061. doi: 10.1038/s41380-023-02146-4. PubMed DOI PMC

Tan A.H., Lim S.Y., Lang A.E. The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic. Nat. Rev. Neurol. 2022;18(8):476–495. doi: 10.1038/s41582-022-00681-2. PubMed DOI

Chen Z., Maqbool J., Sajid F., Hussain G., Sun T. Human gut microbiota and its association with pathogenesis and treatments of neurodegenerative diseases. Microb. Pathog. 2021;150:104675. doi: 10.1016/j.micpath.2020.104675. PubMed DOI

Goyal D., Ali S.A., Singh R.K. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021;106:110112. doi: 10.1016/j.pnpbp.2020.110112. PubMed DOI

Megur A., Baltriukienė D., Bukelskienė V., Burokas A. The microbiota–gut–brain axis and alzheimer’s disease: Neuroinflammation is to blame? Nutrients. 2020;13(1):37. doi: 10.3390/nu13010037. PubMed DOI PMC

Chidambaram S.B., Essa M.M., Rathipriya A.G., Bishir M., Ray B., Mahalakshmi A.M., Tousif A.H., Sakharkar M.K., Kashyap R.S., Friedland R.P., Monaghan T.M. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol. Ther. 2022;231:107988. doi: 10.1016/j.pharmthera.2021.107988. PubMed DOI

Zhu G., Zhao J., Zhang H., Wang G., Chen W. Gut microbiota and its metabolites: Bridge of dietary nutrients and Alzheimer’s disease. Adv. Nutr. 2023;14(4):819–839. doi: 10.1016/j.advnut.2023.04.005. PubMed DOI PMC

Intili G., Paladino L., Rappa F., Alberti G., Plicato A., Calabrò F., Fucarino A., Cappello F., Bucchieri F., Tomasello G., Carini F., Pitruzzella A. From dysbiosis to neurodegenerative diseases through different communication pathways: An overview. Biology. 2023;12(2):195. doi: 10.3390/biology12020195. PubMed DOI PMC

Sorboni S.G., Moghaddam H.S., Jafarzadeh-Esfehani R., Soleimanpour S. A comprehensive review on the role of the gut microbiome in human neurological disorders. Clin. Microbiol. Rev. 2022;35(1):e00338–e20. doi: 10.1128/CMR.00338-20. PubMed DOI PMC

Postler T.S., Ghosh S. Understanding the holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metab. 2017;26(1):110–130. doi: 10.1016/j.cmet.2017.05.008. PubMed DOI PMC

Needham B.D., Kaddurah-Daouk R., Mazmanian S.K. Gut microbial molecules in behavioural and neurodegenerative conditions. Nat. Rev. Neurosci. 2020;21(12):717–731. doi: 10.1038/s41583-020-00381-0. PubMed DOI

Liu J., Tan Y., Cheng H., Zhang D., Feng W., Peng C. Functions of gut microbiota metabolites, current status and future perspectives. Aging Dis. 2022;13(4):1106–1126. doi: 10.14336/AD.2022.0104. PubMed DOI PMC

Ning J., Huang S.Y., Chen S.D., Zhang Y.R., Huang Y.Y., Yu J.T. Investigating casual associations among gut microbiota, metabolites, and neurodegenerative diseases: A mendelian randomization study. J. Alzheimers Dis. 2022;87(1):211–222. doi: 10.3233/JAD-215411. PubMed DOI

Guo B., Zhang J., Zhang W., Chen F., Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut–brain axis targeting age-related neurodegenerative disorders: A narrative review. Crit. Rev. Food Sci. Nutr. 2023:1–22. doi: 10.1080/10408398.2023.2272769. PubMed DOI

Gao C., Li B., He Y., Huang P., Du J., He G., Zhang P., Tang H., Chen S. Early changes of fecal short‐chain fatty acid levels in patients with mild cognitive impairments. CNS Neurosci. Ther. 2023;29(11):3657–3666. doi: 10.1111/cns.14252. PubMed DOI PMC

Yan Y., Ren S., Duan Y., Lu C., Niu Y., Wang Z., Inglis B., Ji W., Zheng Y., Si W. Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson’s disease. NPJ Biofilms Microbiomes. 2021;7(1):69. doi: 10.1038/s41522-021-00242-3. PubMed DOI PMC

Huang T., Shi H., Xu Y., Ji L. The gut microbiota metabolite propionate ameliorates intestinal epithelial barrier dysfunction-mediated Parkinson’s disease via the AKT signaling pathway. Neuroreport. 2021;32(3):244–251. doi: 10.1097/WNR.0000000000001585. PubMed DOI

Kong G., Cao K.A.L., Judd L.M., Li S., Renoir T., Hannan A.J. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol. Dis. 2020;135:104268. doi: 10.1016/j.nbd.2018.09.001. PubMed DOI

Zeng Q., Shen J., Chen K., Zhou J., Liao Q., Lu K., Yuan J., Bi F. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci. Rep. 2020;10(1):12998. doi: 10.1038/s41598-020-69845-8. PubMed DOI PMC

Wang H., Yang F., Zhang S., Xin R., Sun Y. Genetic and environmental factors in Alzheimer’s and Parkinson’s diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis. 2021;7(1):70. doi: 10.1038/s41531-021-00213-7. PubMed DOI PMC

Kim N., Jeon S.H., Ju I.G., Gee M.S., Do J., Oh M.S., Lee J.K. Transplantation of gut microbiota derived from Alzheimer’s disease mouse model impairs memory function and neurogenesis in C57BL/6 mice. Brain Behav. Immun. 2021;98:357–365. doi: 10.1016/j.bbi.2021.09.002. PubMed DOI

Parker A., Romano S., Ansorge R., Aboelnour A., Le Gall G., Savva G.M., Pontifex M.G., Telatin A., Baker D., Jones E., Vauzour D., Rudder S., Blackshaw L.A., Jeffery G., Carding S.R. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome. 2022;10(1):68. doi: 10.1186/s40168-022-01243-w. PubMed DOI PMC

Matheson J.A.T., Holsinger R.M.D. The role of fecal microbiota transplantation in the treatment of neurodegenerative diseases: A review. Int. J. Mol. Sci. 2023;24(2):1001. doi: 10.3390/ijms24021001. PubMed DOI PMC

Gubert C., Choo J.M., Love C.J., Kodikara S., Masson B.A., Liew J.J.M., Wang Y., Kong G., Narayana V.K., Renoir T., Lê Cao K.A., Rogers G.B., Hannan A.J. Faecal microbiota transplant ameliorates gut dysbiosis and cognitive deficits in Huntington’s disease mice. Brain Commun. 2022;4(4):fcac205. doi: 10.1093/braincomms/fcac205. PubMed DOI PMC

Huang H., Xu H., Luo Q., He J., Li M., Chen H., Tang W., Nie Y., Zhou Y. Fecal microbiota transplantation to treat Parkinson’s disease with constipation. Medicine . 2019;98(26):e16163. doi: 10.1097/MD.0000000000016163. PubMed DOI PMC

Yang X., Qian Y., Xu S., Song Y., Xiao Q. Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of parkinson’s disease. Front. Aging Neurosci. 2018;9:441. doi: 10.3389/fnagi.2017.00441. PubMed DOI PMC

Qian X., Liu X., Chen G., Chen S., Tang H. Injection of amyloid-β to lateral ventricle induces gut microbiota dysbiosis in association with inhibition of cholinergic anti-inflammatory pathways in Alzheimer’s disease. J. Neuroinflammation. 2022;19(1):236. doi: 10.1186/s12974-022-02599-4. PubMed DOI PMC

Zhu Z., Ma X., Wu J., Xiao Z., Wu W., Ding S., Zheng L., Liang X., Luo J., Ding D., Zhao Q. Altered gut microbiota and its clinical relevance in mild cognitive impairment and alzheimer’s disease: Shanghai aging study and shanghai memory study. Nutrients. 2022;14(19):3959. doi: 10.3390/nu14193959. PubMed DOI PMC

Régnier M., Van Hul M., Knauf C., Cani P.D. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J. Endocrinol. 2021;248(2):R67–R82. doi: 10.1530/JOE-20-0473. PubMed DOI

Honarpisheh P., Reynolds C.R., Blasco Conesa M.P., Moruno M.J.F., Putluri N., Bhattacharjee M.B., Urayama A., McCullough L.D., Ganesh B.P. Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-β in Tg2576 mice. Int. J. Mol. Sci. 2020;21(5):1711. doi: 10.3390/ijms21051711. PubMed DOI PMC

Wang K., Zhang C., Zhang B., Li G., Shi G., Cai Q., Huang M. Gut dysfunction may be the source of pathological aggregation of alpha-synuclein in the central nervous system through Paraquat exposure in mice. Ecotoxicol. Environ. Saf. 2022;246:114152. doi: 10.1016/j.ecoenv.2022.114152. PubMed DOI

Zuo L., Kuo W.T., Turner J.R. Tight junctions as targets and effectors of mucosal immune homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2020;10(2):327–340. doi: 10.1016/j.jcmgh.2020.04.001. PubMed DOI PMC

Jackson A., Engen P.A., Forsyth C.B., Shaikh M., Naqib A., Wilber S., Frausto D.M., Raeisi S., Green S.J., Bradaric B.D., Persons A.L., Voigt R.M., Keshavarzian A. Intestinal barrier dysfunction in the absence of systemic inflammation fails to exacerbate motor dysfunction and brain pathology in a mouse model of parkinson’s disease. Front. Neurol. 2022;13:882628. doi: 10.3389/fneur.2022.882628. PubMed DOI PMC

Roy Sarkar S., Banerjee S. Gut microbiota in neurodegenerative disorders. J. Neuroimmunol. 2019;328:98–104. doi: 10.1016/j.jneuroim.2019.01.004. PubMed DOI

Lee J.Y., Wang Z.J., Moscatello A., Kingsbury C., Cozene B., Farooq J., Saft M., Sadanandan N., Gonzales-Portillo B., Zhang H., Salazar F.E., Toledo A.R.L., Monroy G.R., Berlet R., Sanberg C.D., Sanberg P.R., Borlongan C.V. Inflammatory gut as a pathologic and therapeutic target in Parkinson’s disease. Cell Death Discov. 2022;8(1):396. doi: 10.1038/s41420-022-01175-2. PubMed DOI PMC

Parker A., James S.A., Purse C., Brion A., Goldson A., Telatin A., Baker D., Carding S.R. Absence of bacteria permits fungal gut-to-brain translocation and invasion in germfree mice but ageing alone does not drive pathobiont expansion in conventionally raised mice. Front. Aging Neurosci. 2022;14:828429. doi: 10.3389/fnagi.2022.828429. PubMed DOI PMC

Stan T.L., Soylu-Kucharz R., Burleigh S., Prykhodko O., Cao L., Franke N., Sjögren M., Haikal C., Hållenius F., Björkqvist M. Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington’s disease. Sci. Rep. 2020;10(1):18270. doi: 10.1038/s41598-020-75229-9. PubMed DOI PMC

Frausto D.M., Engen P.A., Naqib A., Jackson A., Tran L., Green S.J., Shaikh M., Forsyth C.B., Keshavarzian A., Voigt R.M. Impact of alcohol-induced intestinal microbiota dysbiosis in a rodent model of Alzheimer’s disease. Front. Aging. 2022;3:916336. doi: 10.3389/fragi.2022.916336. PubMed DOI PMC

Parker A., Fonseca S., Carding S.R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes. 2020;11(2):135–157. doi: 10.1080/19490976.2019.1638722. PubMed DOI PMC

Boschetti E., Neri I., Follo M.Y., De Giorgio R., Cocco L.I., Manzoli L., Ratti S. Microbiota-gut-brain axis in neurological disorders: From leaky barriers microanatomical changes to biochemical processes. Mini Rev. Med. Chem. 2023;23(3):307–319. doi: 10.2174/1389557522666220622111501. PubMed DOI

Mugisho O.O., Robilliard L.D., Nicholson L.F.B., Graham E.S., O’Carroll S.J. Bradykinin receptor‐1 activation induces inflammation and increases the permeability of human brain microvascular endothelial cells. Cell Biol. Int. 2020;44(1):343–351. doi: 10.1002/cbin.11232. PubMed DOI

Xu G., Li Y., Ma C., Wang C., Sun Z., Shen Y., Liu L., Li S., Zhang X., Cong B. Restraint stress induced hyperpermeability and damage of the blood-brain barrier in the amygdala of adult rats. Front. Mol. Neurosci. 2019;12:32. doi: 10.3389/fnmol.2019.00032. PubMed DOI PMC

Kalyan M., Tousif A.H., Sonali S., Vichitra C., Sunanda T., Praveenraj S.S., Ray B., Gorantla V.R., Rungratanawanich W., Mahalakshmi A.M., Qoronfleh M.W., Monaghan T.M., Song B.J., Essa M.M., Chidambaram S.B. Role of endogenous lipopolysaccharides in neurological disorders. Cells. 2022;11(24):4038. doi: 10.3390/cells11244038. PubMed DOI PMC

Wei C., Jiang W., Wang R., Zhong H., He H., Gao X., Zhong S., Yu F., Guo Q., Zhang L., Schiffelers L.D.J., Zhou B., Trepel M., Schmidt F.I., Luo M., Shao F. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature. 2024;629(8013):893–900. doi: 10.1038/s41586-024-07314-2. PubMed DOI

Wenzel T.J., Gates E.J., Ranger A.L., Klegeris A. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol. Cell. Neurosci. 2020;105:103493. doi: 10.1016/j.mcn.2020.103493. PubMed DOI

Knox E.G., Aburto M.R., Tessier C., Nagpal J., Clarke G., O’Driscoll C.M., Cryan J.F. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function. iScience. 2022;25(12):105648. doi: 10.1016/j.isci.2022.105648. PubMed DOI PMC

Hoyles L., Snelling T., Umlai U.K., Nicholson J.K., Carding S.R., Glen R.C., McArthur S. Microbiome–host systems interactions: Protective effects of propionate upon the blood–brain barrier. Microbiome. 2018;6(1):55. doi: 10.1186/s40168-018-0439-y. PubMed DOI PMC

Corral-Jara K.F., Nuthikattu S., Rutledge J., Villablanca A., Fong R., Heiss C., Ottaviani J.I., Milenkovic D. Structurally related (−)-epicatechin metabolites and gut microbiota derived metabolites exert genomic modifications via VEGF signaling pathways in brain microvascular endothelial cells under lipotoxic conditions: Integrated multi-omic study. J. Proteomics. 2022;263:104603. doi: 10.1016/j.jprot.2022.104603. PubMed DOI

Johnson S.L., Kirk R.D., DaSilva N.A., Ma H., Seeram N.P., Bertin M.J. Polyphenol microbial metabolites exhibit gut and blood–brain barrier permeability and protect murine microglia against LPS-induced inflammation. Metabolites. 2019;9(4):78. doi: 10.3390/metabo9040078. PubMed DOI PMC

Xiaoying L., Li T., Yu S., Jiusheng J., Jilin Z., Jiayi W., Dongxin L., Wengang F., Xinyue Z., Hao Y., Yuhua C., Deshu S. Resistin-inhibited neural stem cell-derived astrocyte differentiation contributes to permeability destruction of the blood–brain barrier. Neurochem. Res. 2019;44(4):905–916. doi: 10.1007/s11064-019-02726-3. PubMed DOI

Gray K.M., Katz D.B., Brown E.G., Stroka K.M. Quantitative phenotyping of cell–cell junctions to evaluate ZO-1 presentation in brain endothelial cells. Ann. Biomed. Eng. 2019;47(7):1675–1687. doi: 10.1007/s10439-019-02266-5. PubMed DOI

Wang H., Lv J.J., Zhao Y., Wei H.L., Zhang T.J., Yang H.J., Chen Z.N., Jiang J.L. Endothelial genetic deletion of CD147 induces changes in the dual function of the blood‐brain barrier and is implicated in Alzheimer’s disease. CNS Neurosci. Ther. 2021;27(9):1048–1063. doi: 10.1111/cns.13659. PubMed DOI PMC

M Leite D.; Seifi, M.; Ruiz-Perez, L.; Nguemo, F.; Plomann, M.; Swinny, J.D.; Battaglia, G. Syndapin-2 mediated transcytosis of amyloid-β across the blood-brain barrier. Brain Commun. 2022;4(1):fcac039. doi: 10.1093/braincomms/fcac039. PubMed DOI PMC

Linville R.M., Nerenberg R.F., Grifno G., Arevalo D., Guo Z., Searson P.C. Brain microvascular endothelial cell dysfunction in an isogenic juvenile iPSC model of Huntington’s disease. Fluids Barriers CNS. 2022;19(1):54. doi: 10.1186/s12987-022-00347-7. PubMed DOI PMC

Zamudio F., Loon A.R., Smeltzer S., Benyamine K., Navalpur S.N.K., Stewart N.J.F., Lee D.C., Nash K., Selenica M.L.B. TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote neurodegeneration in a low-grade systemic inflammation mouse model. J. Neuroinflammation. 2020;17(1):283. doi: 10.1186/s12974-020-01952-9. PubMed DOI PMC

Paraiso H.C., Wang X., Kuo P.C., Furnas D., Scofield B.A., Chang F.L., Yen J.H., Yu I.C. Isolation of mouse cerebral microvasculature for molecular and single-cell analysis. Front. Cell. Neurosci. 2020;14:84. doi: 10.3389/fncel.2020.00084. PubMed DOI PMC

Knox E.G., Aburto M.R., Clarke G., Cryan J.F., O’Driscoll C.M. The blood-brain barrier in aging and neurodegeneration. Mol. Psychiatry. 2022;27(6):2659–2673. doi: 10.1038/s41380-022-01511-z. PubMed DOI PMC

Zlokovic B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 2011;12(12):723–738. doi: 10.1038/nrn3114. PubMed DOI PMC

Ding R., Hase Y., Ameen-Ali K.E., Ndungu M., Stevenson W., Barsby J., Gourlay R., Akinyemi T., Akinyemi R., Uemura M.T., Polvikoski T., Mukaetova-Ladinska E., Ihara M., Kalaria R.N. Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease. Brain Pathol. 2020;30(6):1087–1101. doi: 10.1111/bpa.12888. PubMed DOI PMC

Nortley R., Korte N., Izquierdo P., Hirunpattarasilp C., Mishra A., Jaunmuktane Z., Kyrargyri V., Pfeiffer T., Khennouf L., Madry C., Gong H., Richard-Loendt A., Huang W., Saito T., Saido T.C., Brandner S., Sethi H., Attwell D. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science. 2019;365(6450):eaav9518. doi: 10.1126/science.aav9518. PubMed DOI PMC

Nikolakopoulou A.M., Montagne A., Kisler K., Dai Z., Wang Y., Huuskonen M.T., Sagare A.P., Lazic D., Sweeney M.D., Kong P., Wang M., Owens N.C., Lawson E.J., Xie X., Zhao Z., Zlokovic B.V. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat. Neurosci. 2019;22(7):1089–1098. doi: 10.1038/s41593-019-0434-z. PubMed DOI PMC

Pan J., Ma N., Zhong J., Yu B., Wan J., Zhang W. Age-associated changes in microglia and astrocytes ameliorate blood-brain barrier dysfunction. Mol. Ther. Nucleic Acids. 2021;26:970–986. doi: 10.1016/j.omtn.2021.08.030. PubMed DOI PMC

Lee R.L., Funk K.E. Imaging blood–brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front. Aging Neurosci. 2023;15:1144036. doi: 10.3389/fnagi.2023.1144036. PubMed DOI PMC

Song K., Han H.J., Kim S., Kwon J. Thymosin beta 4 attenuates PrP(106-126)-induced human brain endothelial cells dysfunction. Eur. J. Pharmacol. 2020;869:172891. doi: 10.1016/j.ejphar.2019.172891. PubMed DOI

Choudhury S.P., Bano S., Sen S., Suchal K., Kumar S., Nikolajeff F., Dey S.K., Sharma V. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson’s disease. NPJ Parkinsons Dis. 2022;8(1):66. doi: 10.1038/s41531-022-00324-9. PubMed DOI PMC

Lai P.H., Wang T.H., Zhang N.Y., Wu K.C., Yao C.C.J., Lin C.J. Changes of blood-brain-barrier function and transfer of amyloid beta in rats with collagen-induced arthritis. J. Neuroinflammation. 2021;18(1):35. doi: 10.1186/s12974-021-02086-2. PubMed DOI PMC

Gorina Y.V., Komleva Y.K., Osipova E.D., Morgun A.V., Malinovskaya N.A., Lopatina O.L., Salmina A.B. Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease. Bulletin of Siberian Medicine. 2021;19(4):46–52. doi: 10.20538/1682-0363-2020-4-46-52. DOI

Nishimura Y., Fukuda Y., Okonogi T., Yoshikawa S., Karasuyama H., Osakabe N., Ikegaya Y., Sasaki T., Adachi T. Dual real-time in vivo monitoring system of the brain-gut axis. Biochem. Biophys. Res. Commun. 2020;524(2):340–345. doi: 10.1016/j.bbrc.2020.01.090. PubMed DOI

Stopińska K., Radziwoń-Zaleska M., Domitrz I. The microbiota-gut-brain axis as a key to neuropsychiatric disorders: A mini review. J. Clin. Med. 2021;10(20):4640. doi: 10.3390/jcm10204640. PubMed DOI PMC

Naveed M., Zhou Q.G., Xu C., Taleb A., Meng F., Ahmed B., Zhang Y., Fukunaga K., Han F. Gut-brain axis: A matter of concern in neuropsychiatric disorders…! Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021;104:110051. doi: 10.1016/j.pnpbp.2020.110051. PubMed DOI

Margolis K.G., Cryan J.F., Mayer E.A. The microbiota-gut-brain axis: From motility to mood. Gastroenterology. 2021;160(5):1486–1501. doi: 10.1053/j.gastro.2020.10.066. PubMed DOI PMC

Huang T.T., Lai J.B., Du Y.L., Xu Y., Ruan L.M., Hu S.H. Current understanding of gut microbiota in mood disorders: An update of human studies. Front. Genet. 2019;10:98. doi: 10.3389/fgene.2019.00098. PubMed DOI PMC

Bailey M.T., Dowd S.E., Galley J.D., Hufnagle A.R., Allen R.G., Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 2011;25(3):397–407. doi: 10.1016/j.bbi.2010.10.023. PubMed DOI PMC

Sun Y., Ho C.T., Liu Y., Zhan S., Wu Z., Zheng X., Zhang X. The modulatory effect of cyclocarya paliurus flavonoids on intestinal microbiota and hypothalamus clock genes in a circadian rhythm disorder mouse model. Nutrients. 2022;14(11):2308. doi: 10.3390/nu14112308. PubMed DOI PMC

Chiu L.S., Anderton R.S. The role of the microbiota–gut–brain axis in long‐term neurodegenerative processes following traumatic brain injury. Eur. J. Neurosci. 2023;57(2):400–418. doi: 10.1111/ejn.15892. PubMed DOI PMC

Frej-Mądrzak M., Kołodziej P., Sarowska J., Jama-Kmiecik A. The influence of intestinal microbiota on the occurrence of mental disorders and neurodegenerative diseases. Postepy Hig. Med. Dosw. 2021;75(1):620–633. doi: 10.2478/ahem-2021-0021. DOI

Isaiah S., Loots D.T., Solomons R., van der Kuip M., Tutu V.F.A.M., Mason S. Overview of brain-to-gut axis exposed to chronic cns bacterial infection(s) and a predictive urinary metabolic profile of a brain infected by Mycobacterium tuberculosis. Front. Neurosci. 2020;14:296. doi: 10.3389/fnins.2020.00296. PubMed DOI PMC

Kaelberer M.M., Buchanan K.L., Klein M.E., Barth B.B., Montoya M.M., Shen X., Bohórquez D.V. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361(6408):eaat5236. doi: 10.1126/science.aat5236. PubMed DOI PMC

Liu J.Y.H., Sun M.Y.Y., Sommerville N., Ngan M.P., Ponomarev E.D., Lin G., Rudd J.A. Soy flavonoids prevent cognitive deficits induced by intra-gastrointestinal administration of beta-amyloid. Food Chem. Toxicol. 2020;141:111396. doi: 10.1016/j.fct.2020.111396. PubMed DOI

Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128–133. doi: 10.1016/j.brainres.2018.03.015. PubMed DOI PMC

Chen Y., Xu J., Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients. 2021;13(6):2099. doi: 10.3390/nu13062099. PubMed DOI PMC

Han Y., Wang B., Gao H., He C., Hua R., Liang C., Zhang S., Wang Y., Xin S., Xu J. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J. Inflamm. Res. 2022;15:6213–6230. doi: 10.2147/JIR.S384949. PubMed DOI PMC

Singh A., de la Serre C., de Lartigue G. Gut microbiota sPARk vagus nerve excitation. J. Physiol. 2020;598(11):2043–2044. doi: 10.1113/JP279763. PubMed DOI PMC

Peterson C.T. Dysfunction of the microbiota-gut-brain axis in neurodegenerative disease: The promise of therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics. J. Evid. Based Integr. Med. 2020;25:2515690X20957225. PubMed PMC

Khaspekov L.G. Current views on the role of stress in the pathogenesis of chronic neurodegenerative diseases. Biochemistry. 2021;86(6):737–745. doi: 10.1134/S0006297921060110. PubMed DOI

Soares N.M., Pereira G.M., Altmann V., de Almeida R.M.M., Rieder C.R.M. Cortisol levels, motor, cognitive and behavioral symptoms in Parkinson’s disease: A systematic review. J. Neural Transm. 2019;126(3):219–232. doi: 10.1007/s00702-018-1947-4. PubMed DOI

Keskitalo A., Aatsinki A.K., Kortesluoma S., Pelto J., Korhonen L., Lahti L., Lukkarinen M., Munukka E., Karlsson H., Karlsson L. Gut microbiota diversity but not composition is related to saliva cortisol stress response at the age of 2.5 months. Stress. 2021;24(5):551–560. doi: 10.1080/10253890.2021.1895110. PubMed DOI

de Souza-Talarico J.N., Alves A.R., Brucki S.M.D., Nitrini R., Lupien S.J., Suchecki D. Cortisol reactivity to a psychosocial stressor significantly increases the risk of developing Cognitive Impairment no Dementia five years later. Psychoneuroendocrinology. 2020;115:104601. doi: 10.1016/j.psyneuen.2020.104601. PubMed DOI

Vagnerová K., Vodička M., Hermanová P., Ergang P., Šrůtková D., Klusoňová P., Balounová K., Hudcovic T., Pácha J. Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic–pituitary–adrenal axis and the intestine of male mice. Front. Immunol. 2019;10:2655. doi: 10.3389/fimmu.2019.02655. PubMed DOI PMC

Niccolai E., Di Pilato V., Nannini G., Baldi S., Russo E., Zucchi E., Martinelli I., Menicatti M., Bartolucci G., Mandrioli J., Amedei A. The gut microbiota-immunity axis in ALS: A role in deciphering disease heterogeneity? Biomedicines. 2021;9(7):753. doi: 10.3390/biomedicines9070753. PubMed DOI PMC

Campos-Acuña J., Elgueta D., Pacheco R. T-cell-driven inflammation as a mediator of the gut-brain axis involved in parkinson’s disease. Front. Immunol. 2019;10:239. doi: 10.3389/fimmu.2019.00239. PubMed DOI PMC

Keogh C.E., Rude K.M., Gareau M.G. Role of pattern recognition receptors and the microbiota in neurological disorders. J. Physiol. 2021;599(5):1379–1389. doi: 10.1113/JP279771. PubMed DOI PMC

Shukla P.K., Delotterie D.F., Xiao J., Pierre J.F., Rao R., McDonald M.P., Khan M.M. Alterations in the gut-microbial-inflammasome-brain axis in a mouse model of alzheimer’s disease. Cells. 2021;10(4):779. doi: 10.3390/cells10040779. PubMed DOI PMC

Perez-Pardo P., Dodiya H.B., Engen P.A., Forsyth C.B., Huschens A.M., Shaikh M., Voigt R.M., Naqib A., Green S.J., Kordower J.H., Shannon K.M., Garssen J., Kraneveld A.D., Keshavarzian A. Role of TLR4 in the gut-brain axis in Parkinson’s disease: A translational study from men to mice. Gut. 2019;68(5):829–843. doi: 10.1136/gutjnl-2018-316844. PubMed DOI

Zhao Z., Ning J., Bao X., Shang M., Ma J., Li G., Zhang D. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome. 2021;9(1):226. doi: 10.1186/s40168-021-01107-9. PubMed DOI PMC

Bicknell B., Liebert A., Borody T., Herkes G., McLachlan C., Kiat H. Neurodegenerative and neurodevelopmental diseases and the gut-brain axis: The potential of therapeutic targeting of the microbiome. Int. J. Mol. Sci. 2023;24(11):9577. doi: 10.3390/ijms24119577. PubMed DOI PMC

Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., Calder P.C., Sanders M.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11(8):506–514. doi: 10.1038/nrgastro.2014.66. PubMed DOI

Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., Verbeke K., Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017;14(8):491–502. doi: 10.1038/nrgastro.2017.75. PubMed DOI

Swanson K.S., Gibson G.R., Hutkins R., Reimer R.A., Reid G., Verbeke K., Scott K.P., Holscher H.D., Azad M.B., Delzenne N.M., Sanders M.E. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020;17(11):687–701. doi: 10.1038/s41575-020-0344-2. PubMed DOI PMC

Salminen S., Collado M.C., Endo A., Hill C., Lebeer S., Quigley E.M.M., Sanders M.E., Shamir R., Swann J.R., Szajewska H., Vinderola G. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021;18(9):649–667. doi: 10.1038/s41575-021-00440-6. PubMed DOI PMC

Bashir B., Alam S., Khandale N., Birla D., Vishwas S., Pandey N.K., Gupta G., Paudel K.R., Dureja H., Kumar P., Singh T.G., Kuppusamy G., Zacconi F.C., Pinto T.J.A., Dhanasekaran M., Gulati M., Dua K., Singh S.K. Opening avenues for treatment of neurodegenerative disease using post-biotics: Breakthroughs and bottlenecks in clinical translation. Ageing Res. Rev. 2024;95:102236. doi: 10.1016/j.arr.2024.102236. PubMed DOI

Xu M., Mo X., Huang H., Chen X., Liu H., Peng Z., Chen L., Rong S., Yang W., Xu S., Liu L. Yeast β-glucan alleviates cognitive deficit by regulating gut microbiota and metabolites in Aβ1-42-induced AD-like mice. Int. J. Biol. Macromol. 2020;161:258–270. doi: 10.1016/j.ijbiomac.2020.05.180. PubMed DOI

Liu Q., Xi Y., Wang Q., Liu J., Li P., Meng X., Liu K., Chen W., Liu X., Liu Z. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer’s disease mouse model via regulating the gut microbiota-brain axis. Brain Behav. Immun. 2021;95:330–343. doi: 10.1016/j.bbi.2021.04.005. PubMed DOI

Li T., Yang S., Liu X., Li Y., Gu Z., Jiang Z. Dietary neoagarotetraose extends lifespan and impedes brain aging in mice via regulation of microbiota-gut-brain axis. J. Adv. Res. 2023;52:119–134. doi: 10.1016/j.jare.2023.04.014. PubMed DOI PMC

Ni Y., Yang X., Zheng L., Wang Z., Wu L., Jiang J., Yang T., Ma L., Fu Z. Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol. Nutr. Food Res. 2019;63(22):1900603. doi: 10.1002/mnfr.201900603. PubMed DOI

Mohammadi G., Dargahi L., Naserpour T., Mirzanejad Y., Alizadeh S.A., Peymani A., Nassiri-Asl M. Probiotic mixture of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 attenuates hippocampal apoptosis induced by lipopolysaccharide in rats. Int. Microbiol. 2019;22(3):317–323. doi: 10.1007/s10123-018-00051-3. PubMed DOI

Louzada E.R., Ribeiro S.M.L. Synbiotic supplementation, systemic inflammation, and symptoms of brain disorders in elders: A secondary study from a randomized clinical trial. Nutr. Neurosci. 2020;23(2):93–100. doi: 10.1080/1028415X.2018.1477349. PubMed DOI

Lalitsuradej E., Sirilun S., Sittiprapaporn P., Sivamaruthi B.S., Pintha K., Tantipaiboonwong P., Khongtan S., Fukngoen P., Peerajan S., Chaiyasut C. The effects of synbiotics administration on stress-related parameters in thai subjects—A preliminary study. Foods. 2022;11(5):759. doi: 10.3390/foods11050759. PubMed DOI PMC

Bulacios G.A., Cataldo P.G., Naja J.R., de Chaves E.P., Taranto M.P., Minahk C.J., Hebert E.M., Saavedra M.L. Improvement of key molecular events linked to alzheimer’s disease pathology using postbiotics. ACS Omega. 2023;8(50):48042–48049. doi: 10.1021/acsomega.3c06805. PubMed DOI PMC

Chakraborty P., Gamage H.K.A.H., Laird A.S. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem. Int. 2024;176:105745. doi: 10.1016/j.neuint.2024.105745. PubMed DOI

Ge X., Zheng M., Hu M., Fang X., Geng D., Liu S., Wang L., Zhang J., Guan L., Zheng P., Xie Y., Pan W., Zhou M., Zhou L., Tang R., Zheng K., Yu Y., Huang X.F. Butyrate ameliorates quinolinic acid–induced cognitive decline in obesity models. J. Clin. Invest. 2023;133(4):e154612. doi: 10.1172/JCI154612. PubMed DOI PMC

Su H., Zhang C., Zou X., Lu F., Zeng Y., Guan H., Ren Y., Yuan F., Xu L., Zhang M., Dong H. Jiao-tai-wan inhibits inflammation of the gut-brain-axis and attenuates cognitive impairment in insomnic rats. J. Ethnopharmacol. 2020;250:112478. doi: 10.1016/j.jep.2019.112478. PubMed DOI

Li D., You H., Hu G., Yao R., Xie A., Li X. Mechanisms of the Ping-wei-san plus herbal decoction against Parkinson’s disease: Multiomics analyses. Front. Nutr. 2023;9:945356. doi: 10.3389/fnut.2022.945356. PubMed DOI PMC

Xie Z., Lu H., Yang S., Zeng Y., Li W., Wang L., Luo G., Fang F., Zeng T., Cheng W. Salidroside attenuates cognitive dysfunction in senescence-accelerated mouse prone 8 (SAMP8) mice and modulates inflammation of the gut-brain axis. Front. Pharmacol. 2020;11:568423. doi: 10.3389/fphar.2020.568423. PubMed DOI PMC

Meng D., Yang M., Hu L., Liu T., Zhang H., Sun X., Wang X., Chen Y., Jin Y., Liu R. Rifaximin protects against circadian rhythm disruption–induced cognitive impairment through preventing gut barrier damage and neuroinflammation. J. Neurochem. 2022;163(5):406–418. doi: 10.1111/jnc.15701. PubMed DOI

Kim H.Y., Bae C.H., Kim J., Lee Y., Jeon H., Kim H., Kim S. Rumex japonicus Houtt. Protects dopaminergic neurons by regulating mitochondrial function and gut–brain axis in in vitro and in vivo models of parkinson’s disease. Antioxidants. 2022;11(1):141. doi: 10.3390/antiox11010141. PubMed DOI PMC

Ishola I.O., Awogbindin I.O., Olubodun-Obadun T.G., Oluwafemi O.A., Onuelu J.E., Adeyemi O.O. Morin ameliorates rotenone-induced Parkinson disease in mice through antioxidation and anti-neuroinflammation: gut-brain axis involvement. Brain Res. 2022;1789:147958. doi: 10.1016/j.brainres.2022.147958. PubMed DOI

Zhao Z., Li F., Ning J., Peng R., Shang J., Liu H., Shang M., Bao X.Q., Zhang D. Novel compound FLZ alleviates rotenone-induced PD mouse model by suppressing TLR4/MyD88/NF-κB pathway through microbiota–gut–brain axis. Acta Pharm. Sin. B. 2021;11(9):2859–2879. doi: 10.1016/j.apsb.2021.03.020. PubMed DOI PMC

Wang X., Sun G., Feng T., Zhang J., Huang X., Wang T., Xie Z., Chu X., Yang J., Wang H., Chang S., Gong Y., Ruan L., Zhang G., Yan S., Lian W., Du C., Yang D., Zhang Q., Lin F., Liu J., Zhang H., Ge C., Xiao S., Ding J., Geng M. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29(10):787–803. doi: 10.1038/s41422-019-0216-x. PubMed DOI PMC

Xiao S., Chan P., Wang T., Hong Z., Wang S., Kuang W., He J., Pan X., Zhou Y., Ji Y., Wang L., Cheng Y., Peng Y., Ye Q., Wang X., Wu Y., Qu Q., Chen S., Li S., Chen W., Xu J., Peng D., Zhao Z., Li Y., Zhang J., Du Y., Chen W., Fan D., Yan Y., Liu X., Zhang W., Luo B., Wu W., Shen L., Liu C., Mao P., Wang Q., Zhao Q., Guo Q., Zhou Y., Li Y., Jiang L., Ren W., Ouyang Y., Wang Y., Liu S., Jia J., Zhang N., Liu Z., He R., Feng T., Lu W., Tang H., Gao P., Zhang Y., Chen L., Wang L., Yin Y., Xu Q., Xiao J., Cong L., Cheng X., Zhang H., Gao D., Xia M., Lian T., Peng G., Zhang X., Jiao B., Hu H., Chen X., Guan Y., Cui R., Huang Q., Xin X., Chen H., Ding Y., Zhang J., Feng T., Cantillon M., Chen K., Cummings J.L., Ding J., Geng M., Zhang Z. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res. Ther. 2021;13(1):62. doi: 10.1186/s13195-021-00795-7. PubMed DOI PMC

Zhang M., Zhao D., Zhou G., Li C. Dietary pattern, gut microbiota, and alzheimer’s disease. J. Agric. Food Chem. 2020;68(46):12800–12809. doi: 10.1021/acs.jafc.9b08309. PubMed DOI

Shi H., Ge X., Ma X., Zheng M., Cui X., Pan W., Zheng P., Yang X., Zhang P., Hu M., Hu T., Tang R., Zheng K., Huang X.F., Yu Y. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome. 2021;9(1):223. doi: 10.1186/s40168-021-01172-0. PubMed DOI PMC

Zhang M., Song S., Zhao D., Shi J., Xu X., Zhou G., Li C. High intake of chicken and pork proteins aggravates high-fat-diet-induced inflammation and disorder of hippocampal glutamatergic system. J. Nutr. Biochem. 2020;85:108487. doi: 10.1016/j.jnutbio.2020.108487. PubMed DOI

Zhang H., Tao Y., Leng S.X. Ketogenic diet: An effective treatment approach for neurodegenerative diseases. Curr. Neuropharmacol. 2022;20(12):2303–2319. doi: 10.2174/1570159X20666220830102628. PubMed DOI PMC

Zhu H., Bi D., Zhang Y., Kong C., Du J., Wu X., Wei Q., Qin H. Ketogenic diet for human diseases: The underlying mechanisms and potential for clinical implementations. Signal Transduct. Target. Ther. 2022;7(1):11. doi: 10.1038/s41392-021-00831-w. PubMed DOI PMC

Bisaglia M. Mediterranean diet and parkinson’s disease. Int. J. Mol. Sci. 2022;24(1):42. doi: 10.3390/ijms24010042. PubMed DOI PMC

Shi H., Wang Q., Zheng M., Hao S., Lum J.S., Chen X., Huang X.F., Yu Y., Zheng K. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J. Neuroinflammation. 2020;17(1):77. doi: 10.1186/s12974-020-01760-1. PubMed DOI PMC

Shi H., Yu Y., Lin D., Zheng P., Zhang P., Hu M., Wang Q., Pan W., Yang X., Hu T., Li Q., Tang R., Zhou F., Zheng K., Huang X.F. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome. 2020;8(1):143. doi: 10.1186/s40168-020-00920-y. PubMed DOI PMC

Lan Y., Ma Z., Chang L., Peng J., Zhang M., Sun Q., Qiao R., Hou X., Ding X., Zhang Q., Peng Q., Dong J., Liu X. Sea buckthorn polysaccharide ameliorates high-fat diet induced mice neuroinflammation and synaptic dysfunction via regulating gut dysbiosis. Int. J. Biol. Macromol. 2023;236:123797. doi: 10.1016/j.ijbiomac.2023.123797. PubMed DOI

Liu Q., Xie T., Xi Y., Li L., Mo F., Liu X., Liu Z., Gao J.M., Yuan T. Sesamol attenuates amyloid peptide accumulation and cognitive deficits in APP/PS1 mice: The mediating role of the gut–brain axis. J. Agric. Food Chem. 2021;69(43):12717–12729. doi: 10.1021/acs.jafc.1c04687. PubMed DOI

Wang N., Feng B.N., Hu B., Cheng Y.L., Guo Y.H., Qian H. Neuroprotection of chicoric acid in a mouse model of Parkinson’s disease involves gut microbiota and TLR4 signaling pathway. Food Funct. 2022;13(4):2019–2032. doi: 10.1039/D1FO02216D. PubMed DOI

Sultana O.F., Hia R.A., Reddy P.H. A combinational therapy for preventing and delaying the onset of alzheimer’s disease: A focus on probiotic and vitamin co-supplementation. Antioxidants. 2024;13(2):202. doi: 10.3390/antiox13020202. PubMed DOI PMC

You M., Wang K., Pan Y., Tao L., Ma Q., Zhang G., Hu F. Combined royal jelly 10-hydroxydecanoic acid and aspirin has a synergistic effect against memory deficit and neuroinflammation. Food Funct. 2022;13(4):2336–2353. doi: 10.1039/D1FO02397G. PubMed DOI

Wen H., Tian H., Liu C., Zhang X., Peng Y., Yang X., Chen F., Li J. Metformin and cyanidin 3-O-galactoside from Aronia melanocarpa synergistically alleviate cognitive impairment in SAMP8 mice. Food Funct. 2021;12(21):10994–11008. doi: 10.1039/D1FO02122B. PubMed DOI

Mastropasqua L., Agnifili L., Ferrante C., Sacchi M., Figus M., Rossi G.C.M., Brescia L., Aloia R., Orlando G. Citicoline/Coenzyme Q10/Vitamin B3 fixed combination exerts synergistic protective effects on neuronal cells exposed to oxidative stress. Nutrients. 2022;14(14):2963. doi: 10.3390/nu14142963. PubMed DOI PMC

Jayatunga D.P.W., Hone E., Fernando W.M.A.D.B., Garg M.L., Verdile G., Martins R.N. A synergistic combination of DHA, luteolin, and urolithin A against alzheimer’s disease. Front. Aging Neurosci. 2022;14:780602. doi: 10.3389/fnagi.2022.780602. PubMed DOI PMC

Jayatunga D.P.W., Hone E., Fernando W.M.A.D.B., Garg M.L., Verdile G., Martins R.N. Mitoprotective effects of a synergistic nutraceutical combination: Basis for a prevention strategy against alzheimer’s disease. Front. Aging Neurosci. 2022;13:781468. doi: 10.3389/fnagi.2021.781468. PubMed DOI PMC

Ooijevaar R.E., Terveer E.M., Verspaget H.W., Kuijper E.J., Keller J.J. Clinical application and potential of fecal microbiota transplantation. Annu. Rev. Med. 2019;70(1):335–351. doi: 10.1146/annurev-med-111717-122956. PubMed DOI

Pluta R., Ułamek-Kozioł M., Januszewski S., Czuczwar S.J. Gut microbiota and pro/prebiotics in Alzheimer’s disease. Aging. 2020;12(6):5539–5550. doi: 10.18632/aging.102930. PubMed DOI PMC

Obrenovich M., Jaworski H., Tadimalla T., Mistry A., Sykes L., Perry G., Bonomo R. The role of the microbiota–gut–brain axis and antibiotics in ALS and neurodegenerative diseases. Microorganisms. 2020;8(5):784. doi: 10.3390/microorganisms8050784. PubMed DOI PMC

Arora K., Green M., Prakash S. The microbiome and alzheimer’s disease: Potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front. Bioeng. Biotechnol. 2020;8:537847. doi: 10.3389/fbioe.2020.537847. PubMed DOI PMC

Tan L.Y., Yeo X.Y., Bae H.G., Lee D.P.S., Ho R.C., Kim J.E., Jo D.G., Jung S. Association of gut microbiome dysbiosis with neurodegeneration: Can gut microbe-modifying diet prevent or alleviate the symptoms of neurodegenerative diseases? Life. 2021;11(7):698. doi: 10.3390/life11070698. PubMed DOI PMC

Koblinsky N.D., Power K.A., Middleton L., Ferland G., Anderson N.D. The role of the gut microbiome in diet and exercise effects on cognition: A review of the intervention literature. J. Gerontol. A Biol. Sci. Med. Sci. 2023;78(2):195–205. doi: 10.1093/gerona/glac166. PubMed DOI PMC

Liu L., Huh J.R., Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:103908. doi: 10.1016/j.ebiom.2022.103908. PubMed DOI PMC

Leclair-Visonneau L., Neunlist M., Derkinderen P., Lebouvier T. The gut in Parkinson’s disease: Bottom‐up, top‐down, or neither? Neurogastroenterol. Motil. 2020;32(1):e13777. doi: 10.1111/nmo.13777. PubMed DOI

Avagliano C., Coretti L., Lama A., Pirozzi C., De Caro C., De Biase D., Turco L., Mollica M.P., Paciello O., Calignano A., Meli R., Lembo F., Mattace R.G. Dual-hit model of parkinson’s disease: Impact of dysbiosis on 6-hydroxydopamine-insulted mice-neuroprotective and anti-inflammatory effects of butyrate. Int. J. Mol. Sci. 2022;23(12):6367. doi: 10.3390/ijms23126367. PubMed DOI PMC

Raimondi I., Izzo L., Tunesi M., Comar M., Albani D., Giordano C. Organ-on-a-chip in vitro models of the brain and the blood-brain barrier and their value to study the microbiota-gut-brain axis in neurodegeneration. Front. Bioeng. Biotechnol. 2020;7:435. doi: 10.3389/fbioe.2019.00435. PubMed DOI PMC

Zhao Y., Kuca K., Wu W., Wang X., Nepovimova E., Musilek K., Wu Q. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement. 2022;18(1):152–158. doi: 10.1002/alz.12370. PubMed DOI

Cryan J.F., O’Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., Codagnone M.G., Cussotto S., Fulling C., Golubeva A.V., Guzzetta K.E., Jaggar M., Long-Smith C.M., Lyte J.M., Martin J.A., Molinero-Perez A., Moloney G., Morelli E., Morillas E., O’Connor R., Cruz-Pereira J.S., Peterson V.L., Rea K., Ritz N.L., Sherwin E., Spichak S., Teichman E.M., van de Wouw M., Ventura-Silva A.P., Wallace-Fitzsimons S.E., Hyland N., Clarke G., Dinan T.G. The microbiota-gut-brain axis. Physiol. Rev. 2019;99(4):1877–2013. doi: 10.1152/physrev.00018.2018. PubMed DOI

Ceppa F.A., Izzo L., Sardelli L., Raimondi I., Tunesi M., Albani D., Giordano C. Human gut-microbiota interaction in neurodegenerative disorders and current engineered tools for its modeling. Front. Cell. Infect. Microbiol. 2020;10:297. doi: 10.3389/fcimb.2020.00297. PubMed DOI PMC

Khodabakhsh P., Bazrgar M., Dargahi L., Mohagheghi F., Asgari Taei A., Parvardeh S., Ahmadiani A. Does Alzheimer’s disease stem in the gastrointestinal system? Life Sci. 2021;287:120088. doi: 10.1016/j.lfs.2021.120088. PubMed DOI

Makdissi S., Parsons B.D., Di Cara F. Towards early detection of neurodegenerative diseases: A gut feeling. Front. Cell Dev. Biol. 2023;11:1087091. doi: 10.3389/fcell.2023.1087091. PubMed DOI PMC

Tilocca B., Pieroni L., Soggiu A., Britti D., Bonizzi L., Roncada P., Greco V. Gut–brain axis and neurodegeneration: State-of-the-art of meta-omics sciences for microbiota characterization. Int. J. Mol. Sci. 2020;21(11):4045. doi: 10.3390/ijms21114045. PubMed DOI PMC

Javed I., Cui X., Wang X., Mortimer M., Andrikopoulos N., Li Y., Davis T.P., Zhao Y., Ke P.C., Chen C. Implications of the human gut–brain and gut–cancer axes for future nanomedicine. ACS Nano. 2020;14(11):14391–14416. doi: 10.1021/acsnano.0c07258. PubMed DOI

Nguyen V.T.T., König S., Eggert S., Endres K., Kins S. The role of mycotoxins in neurodegenerative diseases: Current state of the art and future perspectives of research. Biol. Chem. 2022;403(1):3–26. doi: 10.1515/hsz-2021-0214. PubMed DOI

Ferreiro A.L., Choi J., Ryou J., Newcomer E.P., Thompson R., Bollinger R.M., Hall-Moore C., Ndao I.M., Sax L., Benzinger T.L.S., Stark S.L., Holtzman D.M., Fagan A.M., Schindler S.E., Cruchaga C., Butt O.H., Morris J.C., Tarr P.I., Ances B.M., Dantas G. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med. 2023;15(700):eabo2984. doi: 10.1126/scitranslmed.abo2984. PubMed DOI PMC

Borsom E.M., Conn K., Keefe C.R., Herman C., Orsini G.M., Hirsch A.H., Palma A.M., Testo G., Jaramillo S.A., Bolyen E., Lee K., Caporaso J.G., Cope E.K. Predicting neurodegenerative disease using prepathology gut microbiota composition: A longitudinal study in mice modeling Alzheimer’s disease pathologies. Microbiol. Spectr. 2023;11(2):e03458–e22. doi: 10.1128/spectrum.03458-22. PubMed DOI PMC

Zhu J., Liu S., Zhang H., Zhao W., Ding J., Dai R., Xu K., He C., Liu J., Yang L., Meng H. Dynamic distribution of gut microbiota during Alzheimer’s disease progression in a mice model. Acta Pathol. Microbiol. Scand. Suppl. 2023;131(9):480–490. doi: 10.1111/apm.13339. PubMed DOI

Favero F., Barberis E., Gagliardi M., Espinoza S., Contu L., Gustincich S., Boccafoschi F., Borsotti C., Lim D., Rubino V., Mignone F., Pasolli E., Manfredi M., Zucchelli S., Corà D., Corazzari M. A Metabologenomic approach reveals alterations in the gut microbiota of a mouse model of Alzheimer’s disease. PLoS One. 2022;17(8):e0273036. doi: 10.1371/journal.pone.0273036. PubMed DOI PMC

Chen Y., Fang L., Chen S., Zhou H., Fan Y., Lin L., Li J., Xu J., Chen Y., Ma Y., Chen Y. Gut microbiome alterations precede cerebral amyloidosis and microglial pathology in a mouse model of alzheimer’s disease. BioMed Res. Int. 2020;2020:1–15. doi: 10.1155/2020/8456596. PubMed DOI PMC

Vascellari S., Palmas V., Melis M., Pisanu S., Cusano R., Uva P., Perra D., Madau V., Sarchioto M., Oppo V., Simola N., Morelli M., Santoru M.L., Atzori L., Melis M., Cossu G., Manzin A. Gut microbiota and metabolome alterations associated with parkinson’s disease. mSystems. 2020;5(5):e00561–e20. doi: 10.1128/mSystems.00561-20. PubMed DOI PMC

Yan J., Feng X., Zhou X., Zhao M., Xiao H., Li R., Shen H. Identification of gut metabolites associated with Parkinson’s disease using bioinformatic analyses. Front. Aging Neurosci. 2022;14:927625. doi: 10.3389/fnagi.2022.927625. PubMed DOI PMC

Murros K.E., Huynh V.A., Takala T.M., Saris P.E.J. Desulfovibrio bacteria are associated with parkinson’s disease. Front. Cell. Infect. Microbiol. 2021;11:652617. doi: 10.3389/fcimb.2021.652617. PubMed DOI PMC

Chongtham A., Yoo J.H., Chin T.M., Akingbesote N.D., Huda A., Marsh J.L., Khoshnan A. Gut bacteria regulate the pathogenesis of huntington’s disease in Drosophila model. Front. Neurosci. 2022;16:902205. doi: 10.3389/fnins.2022.902205. PubMed DOI PMC

Nicholson K., Bjornevik K., Abu-Ali G., Chan J., Cortese M., Dedi B., Jeon M., Xavier R., Huttenhower C., Ascherio A., Berry J.D. The human gut microbiota in people with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 2021;22(3-4):186–194. doi: 10.1080/21678421.2020.1828475. PubMed DOI

Schepici G., Silvestro S., Bramanti P., Mazzon E. The gut microbiota in multiple sclerosis: An overview of clinical trials. Cell Transplant. 2019;28(12):1507–1527. doi: 10.1177/0963689719873890. PubMed DOI PMC

Moles L., Egimendia A., Osorio-Querejeta I., Iparraguirre L., Alberro A., Suárez J., Sepúlveda L., Castillo-Triviño T., Muñoz-Culla M., Ramos-Cabrer P., Otaegui D. Gut microbiota changes in experimental autoimmune encephalomyelitis and cuprizone mice models. ACS Chem. Neurosci. 2021;12(5):893–905. doi: 10.1021/acschemneuro.0c00695. PubMed DOI

Tan F.H.P., Liu G., Lau S.Y.A., Jaafar M.H., Park Y.H., Azzam G., Li Y., Liong M.T. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye. Benef. Microbes. 2020;11(1):79–90. doi: 10.3920/BM2019.0086. PubMed DOI

Patel C., Pande S., Acharya S. Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2020;393(10):1955–1962. doi: 10.1007/s00210-020-01904-3. PubMed DOI

Song X., Zhao Z., Zhao Y., Jin Q., Li S. Protective effects of Bacillus coagulans JA845 against D-Galactose/AlCl3-induced cognitive decline, oxidative stress and neuroinflammation. J. Microbiol. Biotechnol. 2022;32(2):212–219. doi: 10.4014/jmb.2111.11031. PubMed DOI PMC

Beltagy D.M., Nawar N.F., Mohamed T.M., Tousson E., El-Keey M.M. Beneficial consequences of probiotic on mitochondrial hippocampus in Alzheimer’s disease. J. Complement. Integr. Med. 2021;18(4):761–767. doi: 10.1515/jcim-2020-0156. PubMed DOI

Fang X., Zhou X., Miao Y., Han Y., Wei J., Chen T. Therapeutic effect of GLP-1 engineered strain on mice model of Alzheimer’s disease and Parkinson’s disease. AMB Express. 2020;10(1):80. doi: 10.1186/s13568-020-01014-6. PubMed DOI PMC

Alipour Nosrani E., Tamtaji O.R., Alibolandi Z., Sarkar P., Ghazanfari M., Azami Tameh A., Taghizadeh M., Banikazemi Z., Hadavi R., Naderi Taheri M. Neuroprotective effects of probiotics bacteria on animal model of Parkinson’s disease induced by 6-hydroxydopamine: A behavioral, biochemical, and histological study. J. Immunoassay Immunochem. 2021;42(2):106–120. doi: 10.1080/15321819.2020.1833917. PubMed DOI

Castelli V., d’Angelo M., Lombardi F., Alfonsetti M., Antonosante A., Catanesi M., Benedetti E., Palumbo P., Cifone M.G., Giordano A., Desideri G., Cimini A. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson’s disease models. Aging. 2020;12(5):4641–4659. doi: 10.18632/aging.102927. PubMed DOI PMC

Srivastav S., Neupane S., Bhurtel S., Katila N., Maharjan S., Choi H., Hong J.T., Choi D.Y. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J. Nutr. Biochem. 2019;69:73–86. doi: 10.1016/j.jnutbio.2019.03.021. PubMed DOI

Yue M., Wei J., Chen W., Hong D., Chen T., Fang X. Neurotrophic role of the next-generation probiotic strain L. lactis MG1363-pMG36e-GLP-1 on parkinson’s disease via inhibiting ferroptosis. Nutrients. 2022;14(22):4886. doi: 10.3390/nu14224886. PubMed DOI PMC

Zhou L., Han D., Wang X., Chen Z. Probiotic formulation VSL#3 interacts with mesenchymal stromal cells to protect dopaminergic neurons via centrally and peripherally suppressing NOD-like receptor protein 3 inflammasome-mediated inflammation in Parkinson’s disease mice. Microbiol. Spectr. 2023;11(2):e03208–e03222. doi: 10.1128/spectrum.03208-22. PubMed DOI PMC

Liao J.F., Cheng Y.F., You S.T., Kuo W.C., Huang C.W., Chiou J.J., Hsu C.C., Hsieh-Li H.M., Wang S., Tsai Y.C. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease. Brain Behav. Immun. 2020;90:26–46. doi: 10.1016/j.bbi.2020.07.036. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...