Interactions Between Gut Microbiota and Acute Restraint Stress in Peripheral Structures of the Hypothalamic-Pituitary-Adrenal Axis and the Intestine of Male Mice
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31798585
PubMed Central
PMC6878942
DOI
10.3389/fimmu.2019.02655
Knihovny.cz E-zdroje
- Klíčová slova
- HPA axis, acute restraint stress, extra-adrenal glucocorticoid synthesis, germ-free, gut microbiota, intestine, mice,
- MeSH
- enzym štěpící postranní řetězce cholesterolu genetika MeSH
- fosfoproteiny genetika MeSH
- fyzické omezení * MeSH
- hypofýza metabolismus MeSH
- ileum metabolismus mikrobiologie MeSH
- kolon metabolismus mikrobiologie MeSH
- kortikosteron krev MeSH
- myši inbrední BALB C MeSH
- nadledviny metabolismus MeSH
- pro-opiomelanokortin genetika MeSH
- psychický stres krev mikrobiologie MeSH
- receptor CRF typu 1 MeSH
- receptory hormonu uvolňujícího kortikotropin genetika MeSH
- regulace genové exprese MeSH
- steroidní akutní regulační protein MeSH
- steroidogenní faktor 1 genetika MeSH
- střevní mikroflóra * MeSH
- systém hypofýza - nadledviny * MeSH
- systém hypotalamus-hypofýza * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- enzym štěpící postranní řetězce cholesterolu MeSH
- fosfoproteiny MeSH
- kortikosteron MeSH
- pro-opiomelanokortin MeSH
- receptor CRF typu 1 MeSH
- receptory hormonu uvolňujícího kortikotropin MeSH
- steroidní akutní regulační protein MeSH
- steroidogenní faktor 1 MeSH
The gut microbiota play an important role in shaping brain functions and behavior, including the activity of the hypothalamus-pituitary-adrenocortical (HPA) axis. However, little is known about the effect of the microbiota on the distinct structures (hypothalamus, pituitary, and adrenals) of the HPA axis. In the present study, we analyzed the influence of the microbiota on acute restraint stress (ARS) response in the pituitary, adrenal gland, and intestine, an organ of extra-adrenal glucocorticoid synthesis. Using specific pathogen-free (SPF) and germ-free (GF) male BALB/c mice, we showed that the plasma corticosterone response to ARS was higher in GF than in SPF mice. In the pituitary, stress downregulated the expression of the gene encoding CRH receptor type 1 (Crhr1), upregulated the expression of the Fkbp5 gene regulating glucocorticoid receptor sensitivity and did not affect the expression of the proopiomelanocortin (Pomc) and glucocorticoid receptor (Gr) genes. In contrast, the microbiota downregulated the expression of pituitary Pomc and Crhr1 but had no effect on Fkbp5 and Gr. In the adrenals, the steroidogenic pathway was strongly stimulated by ARS at the level of the steroidogenic transcriptional regulator Sf-1, cholesterol transporter Star and Cyp11a1, the first enzyme of steroidogenic pathway. In contrast, the effect of the microbiota was significantly detected at the level of genes encoding steroidogenic enzymes but not at the level of Sf-1 and Star. Unlike adrenal Sf-1, the expression of the gene Lrh-1, which encodes the crucial transcriptional regulator of intestinal steroidogenesis, was modulated by the microbiota and ARS and this effect differed between the ileum and colon. The findings demonstrate that gut microbiota have an impact on the response of the pituitary, adrenals and intestine to ARS and that the interaction between stress and the microbiota during activation of glucocorticoid steroidogenesis differs between organs. The results suggest that downregulated expression of pituitary Pomc and Crhr1 in SPF animals might be an important factor in the exaggerated HPA response of GF mice to stress.
Department of Physiology Faculty of Science Charles University Prague Czechia
Institute of Microbiology of the Czech Academy of Sciences Nový Hrádek Czechia
Institute of Physiology of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. . Regulation of the hypothalamic–pituitary–adrenocortical stress response. Compr Physiol. (2016) 6:603–21. 10.1002/cphy.c150015 PubMed DOI PMC
Webster Marketon JI, Glaser R. Stress hormones and immune function. Cell Immunol. (2008) 252:16–26. 10.1016/j.cellimm.2007.09.006 PubMed DOI
Hueston CM, Deak T. The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic–pituitary–adrenal axis. Physiol Behav. (2014) 124:77–91. 10.1016/j.physbeh.2013.10.035 PubMed DOI
Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress. (2017) 7:124–36. 10.1016/j.ynstr.2017.03.001 PubMed DOI PMC
Mackos AR, Maltz R, Bailey MT. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation. Horm Behav. (2017) 88:70–8. 10.1016/j.yhbeh.2016.10.006 PubMed DOI PMC
Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. . Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol. (2004) 558:263–75. 10.1113/jphysiol.2004.063388 PubMed DOI PMC
Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. . The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. (2013) 18:666–73. 10.1038/mp.2012.77 PubMed DOI
Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, et al. . Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. (2014) 42:207–17. 10.1016/j.psyneuen.2014.01.014 PubMed DOI
Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, et al. . Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry. (2017) 82:472–87. 10.1016/j.biopsych.2016.12.031 PubMed DOI
Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. . Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. (2011) 108:16050–5. 10.1073/pnas.1102999108 PubMed DOI PMC
Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, et al. . Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. (2012) 37:1885–95. 10.1016/j.psyneuen.2012.03.024 PubMed DOI
Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil. (2014) 26:1615–27. 10.1111/nmo.12427 PubMed DOI
Cima I, Corazza N, Dick B, Fuhrer A, Herren S, Jakob S, et al. . Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J Exp Med. (2004) 200:1635–46. 10.1084/jem.20031958 PubMed DOI PMC
Vagnerová K, Kverka M, Klusonová P, Ergang P, Mikšík I, Tlaskalová-Hogenová H, et al. . Intestinal inflammation modulates expression of 11β-hydroxysteroid dehydrogenase in murine gut. J Endocrinol. (2006) 191:497–503. 10.1677/joe.1.06732 PubMed DOI
Bornstein SR, Engeland WC, Ehrhart-Bornstein M, Herman JP. Dissociation of ACTH and glucocorticoids. Trends Endocrinol Metab. (2008) 19:175–80. 10.1016/j.tem.2008.01.009 PubMed DOI
Chrousos GP. The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. N Engl J Med. (1995) 332:1351–62. 10.1056/NEJM199505183322008 PubMed DOI
Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun. (2007) 21:736–45. 10.1016/j.bbi.2007.03.008 PubMed DOI PMC
Lavelle EC, Murphy C, O'Neill LA, Creagh EM. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol. (2010) 3:17–28. 10.1038/mi.2009.124 PubMed DOI PMC
Bornstein SR, Zacharowski P, Schumann RR, Barthel A, Tran N, Papewalis C, et al. . Impaired adrenal stress response in Toll-like receptor 2-deficient mice. Proc Natl Acad Sci USA. (2004) 101:16695–700. 10.1073/pnas.0407550101 PubMed DOI PMC
Ergang P, Vytáčková K, Švec J, Bryndová J, Mikšík I, Pácha J. Upregulation of 11β-hydroxysteroid dehydrogenase 1 in lymphoid organs during inflammation in the rat. J Steroid Biochem Mol Biol. (2011) 126:19–25. 10.1016/j.jsbmb.2011.04.002 PubMed DOI
Turnbull AV, Rivier CL. Regulation of the hypothalamic–pituitary–adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev. (1999) 79:1–71. 10.1152/physrev.1999.79.1.1 PubMed DOI
Kanczkowski W, Chatzigeorgiou A, Samus M, Tran N, Zacharowski K, Chavakis T, et al. . Characterization of the LPS-induced inflammation of the adrenal gland in mice. Mol Cell Endocrinol. (2013) 371:228–35. 10.1016/j.mce.2012.12.020 PubMed DOI
Noti M, Corazza N, Tuffin G, Schoonjans K, Brunner T. Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNFα-dependent manner. FASEB J. (2010) 24:1340–6. 10.1096/fj.09-140913 PubMed DOI
Kanczkowski W, Tymoszuk P, Chavakis T, Janitzky V, Weirich T, Zacharowski K, et al. . Upregulation of TLR2 and TLR4 in the human adrenocortical cells differentially modulates adrenal steroidogenesis. Mol Cell Endocrinol. (2011) 336:41–6. 10.1016/j.mce.2010.12.013 PubMed DOI
Noti M, Corazza N, Mueller C, Berger B, Brunner T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med. (2010) 207:1057–66. 10.1084/jem.20090849 PubMed DOI PMC
Zimprich A, Garrett L, Deussing JM, Wotjak CT, Fuchs H, Gailus-Durner V, et al. . A robust and reliable non-invasive test for stress responsivity in mice. Front Behav Neurosci. (2014) 8:125. 10.3389/fnbeh.2014.00125 PubMed DOI PMC
Wu XY, Hu YT, Guo L, Lu J, Zhu QB, Yu E, et al. . Effect of pentobarbital and isoflurane on acute stress response in rat. Physiol Behav. (2015) 145:118–21. 10.1016/j.physbeh.2015.04.003 PubMed DOI
Bekhbat M, Rowson SA, Neigh GN. Checks and balances: The glucocorticoid receptor and NFkB in good times and bad. Front Neuroendocrinol. (2017) 46:15–31. 10.1016/j.yfrne.2017.05.001 PubMed DOI PMC
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. (2011) 32:81–151. 10.1210/er.2010-0013 PubMed DOI PMC
Mueller M, Atanasov A, Cima I, Corazza N, Schoonjans K, Brunner T. Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines. Endocrinology. (2007) 148:1445–53. 10.1210/en.2006-0591 PubMed DOI
Desbonnet L, Clarke G, Traplin A, O'Sullivan O, Crispie F, Moloney RD, et al. . Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun. (2015) 48:165–73. 10.1016/j.bbi.2015.04.004 PubMed DOI
Vodička M, Ergang P, Hrnčír T, Mikulecká A, Kvapilová P, Vagnerová K, et al. . Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain Behav Immun. (2018) 73:615–24. 10.1016/j.bbi.2018.07.007 PubMed DOI
Aguilera G. Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol. (1994) 15:321–50. 10.1006/frne.1994.1013 PubMed DOI
Løtvedt P, Fallahshahroudi A, Bektic L, Altimiras J, Jensen P. Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals. Neurobiol Stress. (2017) 7:113–21. 10.1016/j.ynstr.2017.08.002 PubMed DOI PMC
Ginsberg AB, Frank MG, Francis AB, Rubin BA, O'Connor KA, Spencer RL. Specific and time-dependent effects of glucocorticoid receptor agonist RU28362 on stress-induced pro-opiomelanocortin hnRNA, c-fos mRNA and zif268 mRNA in the pituitary. J Neuroendocrinol. (2006) 18:129–38. 10.1111/j.1365-2826.2005.01396.x PubMed DOI
Nemoto T, Mano A, Shibasaki T. miR-449a contributes to glucocorticoid-induced CRF-R1 downregulation in the pituitary during stress. Mol Endocrinol. (2013) 27:1593–602. 10.1210/me.2012-1357 PubMed DOI PMC
Rabadan-Diehl C, Kiss A, Camacho C, Aguilera G. Regulation of messenger ribonucleic acid for corticotropin releasing hormone receptor in the pituitary during stress. Endocrinology. (1996) 137:3808–14. 10.1210/endo.137.9.8756551 PubMed DOI
Klenerova V, Kvetnansky R, Hynie S. The effect of acute and repeated stress on CRH-R1 and CRH-R2 mRNA expression in pituitaries of wild type and CRH knock-out mice. Cell Mol Neurobiol. (2018) 38:163–9. 10.1007/s10571-017-0556-3 PubMed DOI PMC
Gagner JP, Drouin J. Opposite regulation of pro-opiomelanocortin gene transcription by glucocorticoids and CRH. Mol Cell Endocrinol. (1985) 40:25–32. 10.1016/0303-7207(85)90154-6 PubMed DOI
Fallahsharoudi A, de Kock N, Johnsson M, Ubhayasekera SJ, Bergquist J, Wright D, et al. . Domestication effects on stress induced steroid secretion and adrenal gene expression in chickens. Sci Rep. (2015) 5:15345. 10.1038/srep15345 PubMed DOI PMC
Larauche M, Kiank C, Tache Y. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. J Physiol Pharmacol. (2009) 60(Suppl. 7):33–46. PubMed PMC
Mueller M, Cima I, Noti M, Fuhrer A, Jakob S, Dubuquoy L, et al. . The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. J Exp Med. (2006) 203:2057–62. 10.1084/jem.20060357 PubMed DOI PMC
Watari H, Arakane F, Moog-Lutz C, Kallen CB, Tomasetto C, Gerton GL, et al. . MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc Natl Acad Sci USA. (1997) 94:8462–7. 10.1073/pnas.94.16.8462 PubMed DOI PMC
Oyola MG, Handa RJ. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity. Stress. (2017) 20:476–94. 10.1080/10253890.2017.1369523 PubMed DOI PMC
Atkinson HC, Waddell BJ. Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology. (1997) 138:3842–48. 10.1210/en.138.9.3842 PubMed DOI
Figueiredo HF, Ulrich-Lai YM, Choi DC, Herman JP. Estrogen potentiates adrenocortical responses to stress in female rats. Am J Physiol Endocrinol Metab. (2007) 292:E1173–82. 10.1152/ajpendo.00102.2006 PubMed DOI
Osborn JA, Yu C, Stelzl GE, Weinberg J. Effects of fetal ethanol exposure on pituitary-adrenal sensitivity to secretagogues. Alcohol Clin Exp Res. (2000) 24:1110–9. 10.1111/j.1530-0277.2000.tb04657.x PubMed DOI
Bastida CM, Cremades A, Castells MT, López-Contreras AJ, López-García C, Sánchez-Mas J, et al. . Sexual dimorphism of ornithine decarboxylase in the mouse adrenal: influence of polyamine deprivation on catecholamine and corticoid levels. Am J Physiol Endocrinol Metab. (2007) 292:E1010–7. 10.1152/ajpendo.00316.2006 PubMed DOI
Engeland WC, Massman L, Miller L, Leng S, Pignatti E, Pantano L, et al. . Sex differences in adrenal Bmal1 deletion-induced augmentation of glucocorticoid responses to stress and ACTH in mice. Endocrinology. (2019) 160:2215–29. 10.1210/en.2019-00357 PubMed DOI PMC
Lo MJ, Chang LL, Wang PS. Effects of estradiol on corticosterone secretion in ovariectomized rats. J Cell Biochem. (2000) 77:560–8. 10.1002/(SICI)1097-4644(20000615)77:4<560::AID-JCB4>3.0.CO;2-D PubMed DOI
Nowak KW, Neri G, Nussdorfer GG, Malendowicz LK. Effects of sex hormones on the steroidogenic activity of dispersed adrenocortical cells of the rat adrenal cortex. Life Sci. (1995) 57:833–7. 10.1016/0024-3205(95)02015-B PubMed DOI
Weger BD, Gobet C, Yeung J, Martin E, Jimenez S, Betrisey B, et al. . The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. (2019) 29:362–82. 10.1016/j.cmet.2018.09.023 PubMed DOI PMC
Microbiota-Gut-Brain Axis in Age-Related Neurodegenerative Diseases
Microbiota modulates the steroid response to acute immune stress in male mice
The Gut Microbiota Affects Corticosterone Production in the Murine Small Intestine