Contacts with environmental biodiversity affect human health: links revealed during the initial waves of the COVID-19 pandemic

. 2024 Jul 30 ; 14 (1) : 17492. [epub] 20240730

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39080374

Grantová podpora
START/SCI/113 with reg. no. CZ.02.2.69/0.0/0.0/19_073/0016935 Univerzita Karlova v Praze
260684/2023 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 39080374
PubMed Central PMC11289463
DOI 10.1038/s41598-024-67489-6
PII: 10.1038/s41598-024-67489-6
Knihovny.cz E-zdroje

The gradual decrease in the prevalence of serious infectious diseases over the last century has been followed by increase in so called "modern" diseases, including allergies, chronic inflammatory conditions, psychiatric, and metabolic disorders. Between 2019 and 2022, public awareness of the threat of infectious diseases in humans was renewed by the global pandemic of a new type of a coronavirus, the SARS-COV-2. This public interest opened improved possibilities to test hypotheses on the factors associated with inter-individual variation in susceptibility to infectious and "modern" diseases. Based on the Hygiene hypothesis and Biodiversity hypothesis, we predicted that contacts with natural environment and wildlife in childhood and/or in adulthood can improve general health and decrease the risks of severe COVID-19 progression or prevalence of the "modern" diseases, namely the allergies. Here we report the results of an online, self-evaluating questionnaire survey conducted in the Czech Republic, where we contrasted selected health issues, and linked them to the living environment, including the level of contacts with biodiversity. In a sample of 1188 respondents, we revealed a significant association of time spent in nature or contacts with biodiversity with physical and mental health, or incidence of allergies. This is unlike the COVID-19 progression, which was related to age, physical health, smoking, allergies, and interaction of age with smoking, but not to contacts with the natural environmental diversity. Our findings regarding to physical and mental health and allergies are in agreement with the Biodiversity hypothesis of allergy and, linking human and environmental health, they urge for One Health approach application.

Zobrazit více v PubMed

Bosma-den Boer, M. M., van Wetten, M.-L. & Pruimboom, L. Chronic inflammatory diseases are stimulated by current lifestyle: How diet, stress levels and medication prevent our body from recovering. Nutr. Metab.9, 32 (2012).10.1186/1743-7075-9-32 PubMed DOI PMC

Rook, G. A. W. Hygiene hypothesis and autoimmune diseases. Clin. Rev. Allergy Immunol.42, 5–15 (2012). 10.1007/s12016-011-8285-8 PubMed DOI

Rook, G. A. W., Lowry, C. A. & Raison, C. L. Microbial ‘Old Friends’, immunoregulation and stress resilience. Evol. Med. Public Health2013, 46–64 (2013). 10.1093/emph/eot004 PubMed DOI PMC

Laprise, C. It’s time to take a sustainable approach to health care in the face of the challenges of the 21st century. One Health16, 100510 (2023). 10.1016/j.onehlt.2023.100510 PubMed DOI PMC

Perkin, M. R. & Strachan, D. P. The hygiene hypothesis for allergy—Conception and evolution. Front. Allergy3, 1051368 (2022). 10.3389/falgy.2022.1051368 PubMed DOI PMC

von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity: Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep.12, 1089–1093 (2011). 10.1038/embor.2011.195 PubMed DOI PMC

Graham, A. L., Allen, J. E. & Read, A. F. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst.36, 373–397 (2005).10.1146/annurev.ecolsys.36.102003.152622 DOI

Klement, E. et al. Childhood hygiene is associated with the risk for inflammatory bowel disease: A population-based study. Am. J. Gastroenterol.103, 1775–1782 (2008). 10.1111/j.1572-0241.2008.01905.x PubMed DOI

Weinstock, J. V. The worm returns. Nature491, 183–185 (2012). 10.1038/491183a PubMed DOI PMC

von Hertzen, L. et al. Helsinki alert of biodiversity and health. Ann. Med.47, 218–225 (2015). 10.3109/07853890.2015.1010226 PubMed DOI

Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci.110, 18360–18367 (2013). 10.1073/pnas.1313731110 PubMed DOI PMC

Russell, S. L. et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep.13, 440–447 (2012). 10.1038/embor.2012.32 PubMed DOI PMC

Sobotková, K. et al. Helminth therapy—From the parasite perspective. Trends Parasitol.35, 501–515 (2019). 10.1016/j.pt.2019.04.009 PubMed DOI

von Mutius, E. & Radon, K. Living on a farm: Impact on asthma induction and clinical course. Immunol. Allergy Clin. N. Am.28, 631–647 (2008).10.1016/j.iac.2008.03.010 PubMed DOI

Tokunaga, S., Hirohata, T. & Hirohata, I. Reproducibility of dietary and other data from a self-administered questionnaire. Environ. Health Perspect.102, 5–10 (1994). 10.1289/ehp.94102s85 PubMed DOI PMC

Eisenberg, J. N. S. et al. Environmental determinants of infectious disease: A framework for tracking causal links and guiding public health research. Environ. Health Perspect.115, 1216–1223 (2007). 10.1289/ehp.9806 PubMed DOI PMC

Gao, Y. et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy76, 428–455 (2021). 10.1111/all.14657 PubMed DOI

Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci.109, 8334–8339 (2012). 10.1073/pnas.1205624109 PubMed DOI PMC

Tischer, C. et al. Interplay between natural environment, human microbiota and immune system: A scoping review of interventions and future perspectives towards allergy prevention. Sci. Total Environ.821, 153422 (2022). 10.1016/j.scitotenv.2022.153422 PubMed DOI

Aquino, Y. et al. Dissecting human population variation in single-cell responses to SARS-CoV-2. Nature10.1038/s41586-023-06422-9 (2023). 10.1038/s41586-023-06422-9 PubMed DOI PMC

Hamer, M., Kivimäki, M., Gale, C. R. & Batty, G. D. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain. Behav. Immun.87, 184–187 (2020). 10.1016/j.bbi.2020.05.059 PubMed DOI PMC

Tavakol, Z. et al. Relationship between physical activity, healthy lifestyle and COVID-19 disease severity; a cross-sectional study. J. Public Health10.1007/s10389-020-01468-9 (2021). 10.1007/s10389-020-01468-9 PubMed DOI PMC

Gushulak, B. D. & MacPherson, D. W. Population mobility and infectious diseases: The diminishing impact of classical infectious diseases and new approaches for the 21st century. Clin. Infect. Dis.31, 776–780 (2000). 10.1086/313998 PubMed DOI

Merchant, J. A. et al. Asthma and farm exposures in a cohort of rural Iowa children. Environ. Health Perspect.113, 350–356 (2005). 10.1289/ehp.7240 PubMed DOI PMC

Turunen, M., Iso-Markku, K., Pekkonen, M. & Haverinen-Shaughnessy, U. Results from a national housing quality, health and safety questionnaire. ISEE Conf. Abstr.2013, 3998 (2013).10.1289/isee.2013.P-2-09-24 DOI

RStudio | Open source & professional software for data science teams. https://rstudio.comhttps://www.rstudio.com/.

Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology142, 46-54.e42 (2012). 10.1053/j.gastro.2011.10.001 PubMed DOI

Ferrari, A. J. et al. Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Med.10, e1001547 (2013). 10.1371/journal.pmed.1001547 PubMed DOI PMC

Fetissov, S. O., Averina, O. V. & Danilenko, V. N. Neuropeptides in the microbiota-brain axis and feeding behavior in autism spectrum disorder. Nutrition61, 43–48 (2019). 10.1016/j.nut.2018.10.030 PubMed DOI

Cani, P. D. et al. Endocannabinoids—At the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol.12, 133–143 (2016). 10.1038/nrendo.2015.211 PubMed DOI

Kuo, M. How might contact with nature promote human health? Promising mechanisms and a possible central pathway. Front. Psychol.10.3389/fpsyg.2015.01093 (2015). 10.3389/fpsyg.2015.01093 PubMed DOI PMC

Rojas-Rueda, D., Nieuwenhuijsen, M. J., Gascon, M., Perez-Leon, D. & Mudu, P. Green spaces and mortality: A systematic review and meta-analysis of cohort studies. Lancet Planet. Health3, e469–e477 (2019). 10.1016/S2542-5196(19)30215-3 PubMed DOI PMC

Wells, N. M. & Evans, G. W. Nearby nature: A buffer of life stress among rural children. Environ. Behav.35, 311–330 (2003).10.1177/0013916503035003001 DOI

Cox, D. et al. Doses of nearby nature simultaneously associated with multiple health benefits. Int. J. Environ. Res. Public Health14, 172 (2017). 10.3390/ijerph14020172 PubMed DOI PMC

Li, D., Menotti, T., Ding, Y. & Wells, N. M. Life course nature exposure and mental health outcomes: A systematic review and future directions. Int. J. Environ. Res. Public Health18, 5146 (2021). 10.3390/ijerph18105146 PubMed DOI PMC

Grinde, B. & Patil, G. Biophilia: Does visual contact with nature impact on health and well-being?. Int. J. Environ. Res. Public. Health6, 2332–2343 (2009). 10.3390/ijerph6092332 PubMed DOI PMC

McMahan, E. A. & Estes, D. The effect of contact with natural environments on positive and negative affect: A meta-analysis. J. Posit. Psychol.10, 507–519 (2015).10.1080/17439760.2014.994224 DOI

Bratman, G. N. et al. Nature and mental health: An ecosystem service perspective. Sci. Adv.5, eaax0903 (2019). 10.1126/sciadv.aax0903 PubMed DOI PMC

Mead, M. N. Benefits of sunlight: A bright spot for human health. Environ. Health Perspect.10.1289/ehp.116-a160 (2008). 10.1289/ehp.116-a160 PubMed DOI PMC

Wacker, M. & Holick, M. F. Sunlight and vitamin D: A global perspective for health. Dermatoendocrinology5, 51–108 (2013).10.4161/derm.24494 PubMed DOI PMC

Charoenngam, N. & Holick, M. F. Immunologic effects of vitamin D on human health and disease. Nutrients12, 2097 (2020). 10.3390/nu12072097 PubMed DOI PMC

Bell, S. L., Audrey, S., Gunnell, D., Cooper, A. & Campbell, R. The relationship between physical activity, mental wellbeing and symptoms of mental health disorder in adolescents: A cohort study. Int. J. Behav. Nutr. Phys. Act.16, 138 (2019). 10.1186/s12966-019-0901-7 PubMed DOI PMC

Stanhope, J., Breed, M. & Weinstein, P. Biodiversity, microbiomes, and human health. In Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis Vol. 89 (eds Rook, G. A. W. & Lowry, C. A.) 67–104 (Springer International Publishing, 2022).

Bloomfield, S. F., Stanwell-Smith, R., Crevel, R. W. R. & Pickup, J. Too clean, or not too clean: The hygiene hypothesis and home hygiene. Clin. Htmlent Glyphamp Asciiamp Exp. Allergy36, 402–425 (2006).10.1111/j.1365-2222.2006.02463.x PubMed DOI PMC

Reddy, R. K. et al. The effect of smoking on COVID-19 severity: A systematic review and meta-analysis. J. Med. Virol.93, 1045–1056 (2021). 10.1002/jmv.26389 PubMed DOI PMC

Flegr, J., Flegr, P. & Příplatová, L. The effects of 105 biological, socioeconomic, behavioral, and environmental factors on the risk of SARS-CoV-2 infection and a severe course of COVID-19: A prospective, explorative cohort study. Biol. Methods Protoc.7, bpac030 (2022). 10.1093/biomethods/bpac030 PubMed DOI PMC

Aguilera, M., Vergara, P. & Martínez, V. Environment-related adaptive changes of gut commensal microbiota do not alter colonic toll-like receptors but modulate the local expression of sensory-related systems in rats. Microb. Ecol.66, 232–243 (2013). 10.1007/s00248-013-0241-0 PubMed DOI

Vagnerová, K. et al. Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic–pituitary–adrenal axis and the intestine of male mice. Front. Immunol.10.3389/fimmu.2019.02655 (2019). 10.3389/fimmu.2019.02655 PubMed DOI PMC

Ege, M. et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J. Allergy Clin. Immunol.117, 817–823 (2006). 10.1016/j.jaci.2005.12.1307 PubMed DOI

Fleming, J. et al. Probiotic helminth administration in relapsing–remitting multiple sclerosis: A phase 1 study. Mult. Scler. J.17, 743–754 (2011).10.1177/1352458511398054 PubMed DOI PMC

Rhodes, R. E., Janssen, I., Bredin, S. S. D., Warburton, D. E. R. & Bauman, A. Physical activity: Health impact, prevalence, correlates and interventions. Psychol. Health32, 942–975 (2017). 10.1080/08870446.2017.1325486 PubMed DOI

Bateson, M. & Matheson, S. Performance on a categorisation task suggests that removal of environmental enrichment induces ‘pessimism’ in captive European starlings (Sturnusvulgaris ). Anim. Welf.10.1017/S0962728600031705 (2007).10.1017/S0962728600031705 DOI

Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull.127, 5–22 (2018). 10.1093/bmb/ldy021 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...