Contacts with environmental biodiversity affect human health: links revealed during the initial waves of the COVID-19 pandemic
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
START/SCI/113 with reg. no. CZ.02.2.69/0.0/0.0/19_073/0016935
Univerzita Karlova v Praze
260684/2023
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39080374
PubMed Central
PMC11289463
DOI
10.1038/s41598-024-67489-6
PII: 10.1038/s41598-024-67489-6
Knihovny.cz E-zdroje
- Klíčová slova
- Allergies, Biodiversity antigen richness, Civilization diseases, Contacts with nature, Infectious diseases, Wildlife,
- MeSH
- alergie epidemiologie MeSH
- biodiverzita * MeSH
- COVID-19 * epidemiologie MeSH
- dospělí MeSH
- duševní zdraví MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- pandemie MeSH
- průzkumy a dotazníky MeSH
- SARS-CoV-2 * izolace a purifikace patogenita MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
The gradual decrease in the prevalence of serious infectious diseases over the last century has been followed by increase in so called "modern" diseases, including allergies, chronic inflammatory conditions, psychiatric, and metabolic disorders. Between 2019 and 2022, public awareness of the threat of infectious diseases in humans was renewed by the global pandemic of a new type of a coronavirus, the SARS-COV-2. This public interest opened improved possibilities to test hypotheses on the factors associated with inter-individual variation in susceptibility to infectious and "modern" diseases. Based on the Hygiene hypothesis and Biodiversity hypothesis, we predicted that contacts with natural environment and wildlife in childhood and/or in adulthood can improve general health and decrease the risks of severe COVID-19 progression or prevalence of the "modern" diseases, namely the allergies. Here we report the results of an online, self-evaluating questionnaire survey conducted in the Czech Republic, where we contrasted selected health issues, and linked them to the living environment, including the level of contacts with biodiversity. In a sample of 1188 respondents, we revealed a significant association of time spent in nature or contacts with biodiversity with physical and mental health, or incidence of allergies. This is unlike the COVID-19 progression, which was related to age, physical health, smoking, allergies, and interaction of age with smoking, but not to contacts with the natural environmental diversity. Our findings regarding to physical and mental health and allergies are in agreement with the Biodiversity hypothesis of allergy and, linking human and environmental health, they urge for One Health approach application.
Department of Physiology Faculty of Science Charles University Prague Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Bosma-den Boer, M. M., van Wetten, M.-L. & Pruimboom, L. Chronic inflammatory diseases are stimulated by current lifestyle: How diet, stress levels and medication prevent our body from recovering. Nutr. Metab.9, 32 (2012).10.1186/1743-7075-9-32 PubMed DOI PMC
Rook, G. A. W. Hygiene hypothesis and autoimmune diseases. Clin. Rev. Allergy Immunol.42, 5–15 (2012). 10.1007/s12016-011-8285-8 PubMed DOI
Rook, G. A. W., Lowry, C. A. & Raison, C. L. Microbial ‘Old Friends’, immunoregulation and stress resilience. Evol. Med. Public Health2013, 46–64 (2013). 10.1093/emph/eot004 PubMed DOI PMC
Laprise, C. It’s time to take a sustainable approach to health care in the face of the challenges of the 21st century. One Health16, 100510 (2023). 10.1016/j.onehlt.2023.100510 PubMed DOI PMC
Perkin, M. R. & Strachan, D. P. The hygiene hypothesis for allergy—Conception and evolution. Front. Allergy3, 1051368 (2022). 10.3389/falgy.2022.1051368 PubMed DOI PMC
von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity: Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep.12, 1089–1093 (2011). 10.1038/embor.2011.195 PubMed DOI PMC
Graham, A. L., Allen, J. E. & Read, A. F. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst.36, 373–397 (2005).10.1146/annurev.ecolsys.36.102003.152622 DOI
Klement, E. et al. Childhood hygiene is associated with the risk for inflammatory bowel disease: A population-based study. Am. J. Gastroenterol.103, 1775–1782 (2008). 10.1111/j.1572-0241.2008.01905.x PubMed DOI
Weinstock, J. V. The worm returns. Nature491, 183–185 (2012). 10.1038/491183a PubMed DOI PMC
von Hertzen, L. et al. Helsinki alert of biodiversity and health. Ann. Med.47, 218–225 (2015). 10.3109/07853890.2015.1010226 PubMed DOI
Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci.110, 18360–18367 (2013). 10.1073/pnas.1313731110 PubMed DOI PMC
Russell, S. L. et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep.13, 440–447 (2012). 10.1038/embor.2012.32 PubMed DOI PMC
Sobotková, K. et al. Helminth therapy—From the parasite perspective. Trends Parasitol.35, 501–515 (2019). 10.1016/j.pt.2019.04.009 PubMed DOI
von Mutius, E. & Radon, K. Living on a farm: Impact on asthma induction and clinical course. Immunol. Allergy Clin. N. Am.28, 631–647 (2008).10.1016/j.iac.2008.03.010 PubMed DOI
Tokunaga, S., Hirohata, T. & Hirohata, I. Reproducibility of dietary and other data from a self-administered questionnaire. Environ. Health Perspect.102, 5–10 (1994). 10.1289/ehp.94102s85 PubMed DOI PMC
Eisenberg, J. N. S. et al. Environmental determinants of infectious disease: A framework for tracking causal links and guiding public health research. Environ. Health Perspect.115, 1216–1223 (2007). 10.1289/ehp.9806 PubMed DOI PMC
Gao, Y. et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy76, 428–455 (2021). 10.1111/all.14657 PubMed DOI
Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci.109, 8334–8339 (2012). 10.1073/pnas.1205624109 PubMed DOI PMC
Tischer, C. et al. Interplay between natural environment, human microbiota and immune system: A scoping review of interventions and future perspectives towards allergy prevention. Sci. Total Environ.821, 153422 (2022). 10.1016/j.scitotenv.2022.153422 PubMed DOI
Aquino, Y. et al. Dissecting human population variation in single-cell responses to SARS-CoV-2. Nature10.1038/s41586-023-06422-9 (2023). 10.1038/s41586-023-06422-9 PubMed DOI PMC
Hamer, M., Kivimäki, M., Gale, C. R. & Batty, G. D. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain. Behav. Immun.87, 184–187 (2020). 10.1016/j.bbi.2020.05.059 PubMed DOI PMC
Tavakol, Z. et al. Relationship between physical activity, healthy lifestyle and COVID-19 disease severity; a cross-sectional study. J. Public Health10.1007/s10389-020-01468-9 (2021). 10.1007/s10389-020-01468-9 PubMed DOI PMC
Gushulak, B. D. & MacPherson, D. W. Population mobility and infectious diseases: The diminishing impact of classical infectious diseases and new approaches for the 21st century. Clin. Infect. Dis.31, 776–780 (2000). 10.1086/313998 PubMed DOI
Merchant, J. A. et al. Asthma and farm exposures in a cohort of rural Iowa children. Environ. Health Perspect.113, 350–356 (2005). 10.1289/ehp.7240 PubMed DOI PMC
Turunen, M., Iso-Markku, K., Pekkonen, M. & Haverinen-Shaughnessy, U. Results from a national housing quality, health and safety questionnaire. ISEE Conf. Abstr.2013, 3998 (2013).10.1289/isee.2013.P-2-09-24 DOI
RStudio | Open source & professional software for data science teams. https://rstudio.comhttps://www.rstudio.com/.
Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology142, 46-54.e42 (2012). 10.1053/j.gastro.2011.10.001 PubMed DOI
Ferrari, A. J. et al. Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Med.10, e1001547 (2013). 10.1371/journal.pmed.1001547 PubMed DOI PMC
Fetissov, S. O., Averina, O. V. & Danilenko, V. N. Neuropeptides in the microbiota-brain axis and feeding behavior in autism spectrum disorder. Nutrition61, 43–48 (2019). 10.1016/j.nut.2018.10.030 PubMed DOI
Cani, P. D. et al. Endocannabinoids—At the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol.12, 133–143 (2016). 10.1038/nrendo.2015.211 PubMed DOI
Kuo, M. How might contact with nature promote human health? Promising mechanisms and a possible central pathway. Front. Psychol.10.3389/fpsyg.2015.01093 (2015). 10.3389/fpsyg.2015.01093 PubMed DOI PMC
Rojas-Rueda, D., Nieuwenhuijsen, M. J., Gascon, M., Perez-Leon, D. & Mudu, P. Green spaces and mortality: A systematic review and meta-analysis of cohort studies. Lancet Planet. Health3, e469–e477 (2019). 10.1016/S2542-5196(19)30215-3 PubMed DOI PMC
Wells, N. M. & Evans, G. W. Nearby nature: A buffer of life stress among rural children. Environ. Behav.35, 311–330 (2003).10.1177/0013916503035003001 DOI
Cox, D. et al. Doses of nearby nature simultaneously associated with multiple health benefits. Int. J. Environ. Res. Public Health14, 172 (2017). 10.3390/ijerph14020172 PubMed DOI PMC
Li, D., Menotti, T., Ding, Y. & Wells, N. M. Life course nature exposure and mental health outcomes: A systematic review and future directions. Int. J. Environ. Res. Public Health18, 5146 (2021). 10.3390/ijerph18105146 PubMed DOI PMC
Grinde, B. & Patil, G. Biophilia: Does visual contact with nature impact on health and well-being?. Int. J. Environ. Res. Public. Health6, 2332–2343 (2009). 10.3390/ijerph6092332 PubMed DOI PMC
McMahan, E. A. & Estes, D. The effect of contact with natural environments on positive and negative affect: A meta-analysis. J. Posit. Psychol.10, 507–519 (2015).10.1080/17439760.2014.994224 DOI
Bratman, G. N. et al. Nature and mental health: An ecosystem service perspective. Sci. Adv.5, eaax0903 (2019). 10.1126/sciadv.aax0903 PubMed DOI PMC
Mead, M. N. Benefits of sunlight: A bright spot for human health. Environ. Health Perspect.10.1289/ehp.116-a160 (2008). 10.1289/ehp.116-a160 PubMed DOI PMC
Wacker, M. & Holick, M. F. Sunlight and vitamin D: A global perspective for health. Dermatoendocrinology5, 51–108 (2013).10.4161/derm.24494 PubMed DOI PMC
Charoenngam, N. & Holick, M. F. Immunologic effects of vitamin D on human health and disease. Nutrients12, 2097 (2020). 10.3390/nu12072097 PubMed DOI PMC
Bell, S. L., Audrey, S., Gunnell, D., Cooper, A. & Campbell, R. The relationship between physical activity, mental wellbeing and symptoms of mental health disorder in adolescents: A cohort study. Int. J. Behav. Nutr. Phys. Act.16, 138 (2019). 10.1186/s12966-019-0901-7 PubMed DOI PMC
Stanhope, J., Breed, M. & Weinstein, P. Biodiversity, microbiomes, and human health. In Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis Vol. 89 (eds Rook, G. A. W. & Lowry, C. A.) 67–104 (Springer International Publishing, 2022).
Bloomfield, S. F., Stanwell-Smith, R., Crevel, R. W. R. & Pickup, J. Too clean, or not too clean: The hygiene hypothesis and home hygiene. Clin. Htmlent Glyphamp Asciiamp Exp. Allergy36, 402–425 (2006).10.1111/j.1365-2222.2006.02463.x PubMed DOI PMC
Reddy, R. K. et al. The effect of smoking on COVID-19 severity: A systematic review and meta-analysis. J. Med. Virol.93, 1045–1056 (2021). 10.1002/jmv.26389 PubMed DOI PMC
Flegr, J., Flegr, P. & Příplatová, L. The effects of 105 biological, socioeconomic, behavioral, and environmental factors on the risk of SARS-CoV-2 infection and a severe course of COVID-19: A prospective, explorative cohort study. Biol. Methods Protoc.7, bpac030 (2022). 10.1093/biomethods/bpac030 PubMed DOI PMC
Aguilera, M., Vergara, P. & Martínez, V. Environment-related adaptive changes of gut commensal microbiota do not alter colonic toll-like receptors but modulate the local expression of sensory-related systems in rats. Microb. Ecol.66, 232–243 (2013). 10.1007/s00248-013-0241-0 PubMed DOI
Vagnerová, K. et al. Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic–pituitary–adrenal axis and the intestine of male mice. Front. Immunol.10.3389/fimmu.2019.02655 (2019). 10.3389/fimmu.2019.02655 PubMed DOI PMC
Ege, M. et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J. Allergy Clin. Immunol.117, 817–823 (2006). 10.1016/j.jaci.2005.12.1307 PubMed DOI
Fleming, J. et al. Probiotic helminth administration in relapsing–remitting multiple sclerosis: A phase 1 study. Mult. Scler. J.17, 743–754 (2011).10.1177/1352458511398054 PubMed DOI PMC
Rhodes, R. E., Janssen, I., Bredin, S. S. D., Warburton, D. E. R. & Bauman, A. Physical activity: Health impact, prevalence, correlates and interventions. Psychol. Health32, 942–975 (2017). 10.1080/08870446.2017.1325486 PubMed DOI
Bateson, M. & Matheson, S. Performance on a categorisation task suggests that removal of environmental enrichment induces ‘pessimism’ in captive European starlings (Sturnusvulgaris ). Anim. Welf.10.1017/S0962728600031705 (2007).10.1017/S0962728600031705 DOI
Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull.127, 5–22 (2018). 10.1093/bmb/ldy021 PubMed DOI