Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic β-cells

. 2019 ; 2019 () : 1826303. [epub] 20190521

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31249641

Pancreatic β-cells are vulnerable to oxidative stress due to their low content of redox buffers, such as glutathione, but possess a rich content of thioredoxin, peroxiredoxin, and other proteins capable of redox relay, transferring redox signaling. Consequently, it may be predicted that cytosolic antioxidants could interfere with the cytosolic redox signaling and should not be recommended for any potential therapy. In contrast, mitochondrial matrix-targeted antioxidants could prevent the primary oxidative stress arising from the primary superoxide sources within the mitochondrial matrix, such as at the flavin (IF) and ubiquinone (IQ) sites of superoxide formation within respiratory chain complex I and the outer ubiquinone site (IIIQ) of complex III. Therefore, using time-resolved confocal fluorescence monitoring with MitoSOX Red, we investigated various effects of mitochondria-targeted antioxidants in model pancreatic β-cells (insulinoma INS-1E cells) and pancreatic islets. Both SkQ1 (a mitochondria-targeted plastoquinone) and a suppressor of complex III site Q electron leak (S3QEL) prevented superoxide production released to the mitochondrial matrix in INS-1E cells with stimulatory glucose, where SkQ1 also exhibited an antioxidant role for UCP2-silenced cells. SkQ1 acted similarly at nonstimulatory glucose but not in UCP2-silenced cells. Thus, UCP2 can facilitate the antioxidant mechanism based on SkQ1+ fatty acid anion- pairing. The elevated superoxide formation induced by antimycin A was largely prevented by S3QEL, and that induced by rotenone was decreased by SkQ1 and S3QEL and slightly by S1QEL, acting at complex I site Q. Similar results were obtained with the MitoB probe, for the LC-MS-based assessment of the 4 hr accumulation of reactive oxygen species within the mitochondrial matrix but for isolated pancreatic islets. For 2 hr INS-1E incubations, some samples were influenced by the cell death during the experiment. Due to the frequent dependency of antioxidant effects on metabolic modes, we suggest a potential use of mitochondria-targeted antioxidants for the treatment of prediabetic states after cautious nutrition-controlled tests. Their targeted delivery might eventually attenuate the vicious spiral leading to type 2 diabetes.

Zobrazit více v PubMed

Ashcroft F. M., Rorsman P. Diabetes mellitus and the β cell: the last ten years. Cell. 2012;148(6):1160–1171. doi: 10.1016/j.cell.2012.02.010. PubMed DOI PMC

Prentki M., Matschinsky F. M., Madiraju S. R. M. Metabolic signaling in fuel-induced insulin secretion. Computers & Geosciences. 2013;18(2):162–185. doi: 10.1016/j.cmet.2013.05.018. PubMed DOI

Rutter G. A., Pullen T. J., Hodson D. J., Martinez-Sanchez A. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochemical Journal. 2015;466(2):203–218. doi: 10.1042/BJ20141384. PubMed DOI

Ježek P., Jabůrek M., Plecitá-Hlavatá L. Contribution of oxidative stress and impaired biogenesis of pancreatic β-cells to type 2 diabetes. Antioxidants & Redox Signaling. 2019 doi: 10.1089/ars.2018.7656. PubMed DOI PMC

Zand H., Morshedzadeh N., Naghashian F. Signaling pathways linking inflammation to insulin resistance. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2017;11(Supplement 1):S307–S309. doi: 10.1016/j.dsx.2017.03.006. PubMed DOI

Alejandro E. U., Gregg B., Blandino-Rosano M., Cras-Meneur C., Bernal-Mizrachi E. Natural history of β-cell adaptation and failure in type 2 diabetes. Molecular Aspects of Medicine. 2015;42:19–41. doi: 10.1016/j.mam.2014.12.002. PubMed DOI PMC

Nishikawa T., Araki E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxidants & Redox Signaling. 2007;9(3):343–353. doi: 10.1089/ars.2006.1458. PubMed DOI

Lenzen S. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells. Biochimica et Biophysica Acta (BBA) - General Subjects. 2017;1861(8):1929–1942. doi: 10.1016/j.bbagen.2017.05.013. PubMed DOI

Watada H., Fujitani Y. Minireview: Autophagy in pancreatic β-cells and its implication in diabetes. Molecular Endocrinology. 2015;29(3):338–348. doi: 10.1210/me.2014-1367. PubMed DOI PMC

Kaufman B. A., Li C., Soleimanpour S. A. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Molecular Aspects of Medicine. 2015;42:91–104. doi: 10.1016/j.mam.2015.01.004. PubMed DOI PMC

Lenzen S., Drinkgern J., Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radical Biology and Medicine. 1996;20(3):463–466. doi: 10.1016/0891-5849(96)02051-5. PubMed DOI

Tiedge M., Lortz S., Drinkgern J., Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes. 1997;46(11):1733–1742. doi: 10.2337/diab.46.11.1733. PubMed DOI

Welsh N., Margulis B., Borg L. A. H., et al. Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus. Molecular Medicine. 1995;1(7):806–820. doi: 10.1007/BF03401895. PubMed DOI PMC

Ivarsson R., Quintens R., Dejonghe S., et al. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes. 2005;54(7):2132–2142. doi: 10.2337/diabetes.54.7.2132. PubMed DOI

Reinbothe T. M., Ivarsson R., Li D. Q., et al. Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium dependent insulin secretion. Molecular Endocrinology. 2009;23(6):893–900. doi: 10.1210/me.2008-0306. PubMed DOI PMC

Bachnoff N., Trus M., Atlas D. Alleviation of oxidative stress by potent and selective thioredoxin-mimetic peptides. Free Radical Biology and Medicine. 2011;50(10):1355–1367. doi: 10.1016/j.freeradbiomed.2011.02.026. PubMed DOI

Plecitá-Hlavatá L., Ježek P. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. The International Journal of Biochemistry & Cell Biology. 2016;80:31–50. doi: 10.1016/j.biocel.2016.09.010. PubMed DOI

Pace P. E., Peskin A. V., Konigstorfer A., Jasoni C. J., Winterbourn C. C., Hampton M. B. Peroxiredoxin interaction with the cytoskeletal-regulatory protein CRMP2: investigation of a putative redox relay. Free Radical Biology and Medicine. 2018;129:383–393. doi: 10.1016/j.freeradbiomed.2018.10.407. PubMed DOI

Dlasková A., Špaček T., Šantorová J., et al. 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet β-cells, an experimental model of type-2 diabetes. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2010;1797(6–7):1327–1341. doi: 10.1016/j.bbabio.2010.02.003. PubMed DOI

Ježek P., Jabůrek M., Holendová B., Plecitá-Hlavatá L. Fatty acid-stimulated insulin secretion vs. lipotoxicity. Molecules. 2018;23(6):p. 1483. doi: 10.3390/molecules23061483. PubMed DOI PMC

Brand M. D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Biology and Medicine. 2016;100:14–31. doi: 10.1016/j.freeradbiomed.2016.04.001. PubMed DOI

Ježek P., Hlavatá L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. The International Journal of Biochemistry & Cell Biology. 2005;37(12):2478–2503. doi: 10.1016/j.biocel.2005.05.013. PubMed DOI

Grankvist K., Marklund S. L., Taljedal I. B. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochemical Journal. 1981;199(2):393–398. doi: 10.1042/bj1990393. PubMed DOI PMC

Lim S., Rashid M. A., Jang M., et al. Mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. Cellular Physiology and Biochemistry. 2011;28(5):873–886. doi: 10.1159/000335802. PubMed DOI

Imai Y., Fink B. D., Promes J. A., Kulkarni C. A., Kerns R. J., Sivitz W. I. Effect of a mitochondrial-targeted coenzyme Q analog on pancreatic β-cell function and energetics in high fat fed obese mice. Pharmacology Research & Perspectives. 2018;6(3, article e00393) doi: 10.1002/prp2.393. PubMed DOI PMC

Armstrong J. S. Mitochondria-directed therapeutics. Antioxidants & Redox Signaling. 2008;10(3):575–578. doi: 10.1089/ars.2007.1929. PubMed DOI

Cochemé H. M., Kelso G. F., James A. M., et al. Mitochondrial targeting of quinones: therapeutic implications. Mitochondrion. 2007;7:S94–S102. doi: 10.1016/j.mito.2007.02.007. PubMed DOI

Plecitá-Hlavatá L., Ježek J., Ježek P. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within complex I. The International Journal of Biochemistry & Cell Biology. 2009;41(8-9):1697–1707. doi: 10.1016/j.biocel.2009.02.015. PubMed DOI

Doughan A. K., Dikalov S. I. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxidants & Redox Signaling. 2007;9(11):1825–1836. doi: 10.1089/ars.2007.1693. PubMed DOI

Skulachev V. P., Antonenko Y. N., Cherepanov D. A., et al. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs) Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2010;1797(6-7):878–889. doi: 10.1016/j.bbabio.2010.03.015. PubMed DOI

Skulachev V. P., Anisimov V. N., Antonenko Y. N., et al. An attempt to prevent senescence: a mitochondrial approach. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2009;1787(5):437–461. doi: 10.1016/j.bbabio.2008.12.008. PubMed DOI

Severin F. F., Severina I. I., Antonenko Y. N., et al. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(2):663–668. doi: 10.1073/pnas.0910216107. PubMed DOI PMC

Popova E. N., Pletjushkina O. Y., Dugina V. B., et al. Scavenging of reactive oxygen species in mitochondria induces myofibroblast differentiation. Antioxidants & Redox Signaling. 2010;13(9):1297–1307. doi: 10.1089/ars.2009.2949. PubMed DOI

Ježek J., Engstová H., Ježek P. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2017;1858(9):750–762. doi: 10.1016/j.bbabio.2017.05.005. PubMed DOI

Silachev D., Plotnikov E., Pevzner I., et al. Neuroprotective effects of mitochondria-targeted plastoquinone in a rat model of neonatal hypoxic-ischemic brain injury. Molecules. 2018;23(8):p. 1871. doi: 10.3390/molecules23081871. PubMed DOI PMC

Zinovkin R. A., Zamyatnin A. A. Mitochondria-targeted drugs. Current Molecular Pharmacology. 2018;12 doi: 10.2174/1874467212666181127151059. PubMed DOI PMC

Teixeira J., Deus C. M., Borges F., Oliveira P. J. Mitochondria: targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants. The International Journal of Biochemistry & Cell Biology. 2018;97:98–103. doi: 10.1016/j.biocel.2018.02.007. PubMed DOI

Escribano-Lopez I., Diaz-Morales N., Iannantuoni F., et al. The mitochondrial antioxidant SS-31 increases SIRT1 levels and ameliorates inflammation, oxidative stress and leukocyte-endothelium interactions in type 2 diabetes. Scientific Reports. 2018;8(1, article 15862) doi: 10.1038/s41598-018-34251-8. PubMed DOI PMC

Zhu Y., Wang H., Fang J., et al. SS-31 provides neuroprotection by reversing mitochondrial dysfunction after traumatic brain injury. Oxidative Medicine and Cellular Longevity. 2018;2018:12. doi: 10.1155/2018/4783602.4783602 PubMed DOI PMC

Szeto H. H., Liu S. Cardiolipin-targeted peptides rejuvenate mitochondrial function, remodel mitochondria, and promote tissue regeneration during aging. Archives of Biochemistry and Biophysics. 2018;660:137–148. doi: 10.1016/j.abb.2018.10.013. PubMed DOI

Cochemé H. M., Logan A., Prime T. A., et al. Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nature Protocols. 2012;7(5):946–958. doi: 10.1038/nprot.2012.035. PubMed DOI

Cairns A. G., McQuaker S. J., Murphy M. P., Hartley R. C. Targeting mitochondria with small molecules: the preparation of MitoB and MitoP as exomarkers of mitochondrial hydrogen peroxide. Methods in Molecular Biology. 2015;1265:25–50. doi: 10.1007/978-1-4939-2288-8_3. PubMed DOI

Logan A., Cochemé H. M., Li Pun P. B., et al. Using exomarkers to assess mitochondrial reactive species in vivo. Biochimica et Biophysica Acta (BBA) - General Subjects. 2014;1840(2):923–930. doi: 10.1016/j.bbagen.2013.05.026. PubMed DOI

Cochemé H. M., Quin C., McQuaker S. J., et al. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metabolism. 2011;13(3):340–350. doi: 10.1016/j.cmet.2011.02.003. PubMed DOI PMC

Brand M. D., Goncalves R. L. S., Orr A. L., et al. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metabolism. 2016;24(4):582–592. doi: 10.1016/j.cmet.2016.08.012. PubMed DOI PMC

Wong H. S., Dighe P. A., Mezera V., Monternier P. A., Brand M. D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. Journal of Biological Chemistry. 2017;292(41):16804–16809. doi: 10.1074/jbc.R117.789271. PubMed DOI PMC

Wong H. S., Benoit B., Brand M. D. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radical Biology and Medicine. 2019;130:140–150. doi: 10.1016/j.freeradbiomed.2018.10.448. PubMed DOI

Chouchani E. T., Pell V. R., Gaude E., et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–435. doi: 10.1038/nature13909. PubMed DOI PMC

Mills E. L., Pierce K. A., Jedrychowski M. P., et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature. 2018;560(7716):102–106. doi: 10.1038/s41586-018-0353-2. PubMed DOI PMC

Merglen A., Theander S., Rubi B., Chaffard G., Wollheim C. B., Maechler P. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology. 2004;145(2):667–678. doi: 10.1210/en.2003-1099. PubMed DOI

Ježek J., Dlasková A., Zelenka J., Jabůrek M., Ježek P. H2O2-activated mitochondrial phospholipase iPLA2γ prevents lipotoxic oxidative stress in synergy with UCP2, amplifies signaling via G-protein–coupled receptor GPR40, and regulates insulin secretion in pancreatic β-cells. Antioxidants & Redox Signaling. 2015;23(12):958–972. doi: 10.1089/ars.2014.6195. PubMed DOI PMC

Dlasková A., Hlavatá L., Ježek P. Oxidative stress caused by blocking of mitochondrial complex I H+ pumping as a link in aging/disease vicious cycle. The International Journal of Biochemistry & Cell Biology. 2008;40(9):1792–1805. doi: 10.1016/j.biocel.2008.01.012. PubMed DOI

Plecitá-Hlavatá L., Engstová H., Alán L., et al. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering. The FASEB Journal. 2016;30(5):1941–1957. doi: 10.1096/fj.201500176. PubMed DOI

Ježek P., Holendová B., Garlid K. D., Jabůrek M. Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxidants & Redox Signaling. 2018;29(7):667–714. doi: 10.1089/ars.2017.7225. PubMed DOI PMC

Wikstrom J. D., Mahdaviani K., Liesa M., et al. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. The EMBO Journal. 2014;33(5):418–436. doi: 10.1002/embj.201385014. PubMed DOI PMC

Ježek J., Plecitá-Hlavatá L., Ježek P. Aglycemic HepG2 cells switch from aminotransferase glutaminolytic pathway of pyruvate utilization to complete Krebs cycle at hypoxia. Frontiers in Endocrinology. 2018;9:p. 637. doi: 10.3389/fendo.2018.00637. PubMed DOI PMC

McElroy G. S., Chandel N. S. Mitochondria control acute and chronic responses to hypoxia. Experimental Cell Research. 2017;356(2):217–222. doi: 10.1016/j.yexcr.2017.03.034. PubMed DOI PMC

Twig G., Elorza A., Molina A. J. A., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO Journal. 2008;27(2):433–446. doi: 10.1038/sj.emboj.7601963. PubMed DOI PMC

Molina A. J. A., Wikstrom J. D., Stiles L., et al. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes. 2009;58(10):2303–2315. doi: 10.2337/db07-1781. PubMed DOI PMC

Pernas L., Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annual Review of Physiology. 2016;78(1):505–531. doi: 10.1146/annurev-physiol-021115-105011. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Redox Status as a Key Driver of Healthy Pancreatic Beta-Cells

. 2024 Aug 30 ; 73 (S1) : S139-S152. [epub] 20240422

Redox Homeostasis in Pancreatic β-Cells: From Development to Failure

. 2021 Mar 27 ; 10 (4) : . [epub] 20210327

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...