Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30450940
PubMed Central
PMC6708273
DOI
10.1089/ars.2018.7656
Knihovny.cz E-zdroje
- Klíčová slova
- dedifferentiation, impaired redox signaling, oxidative stress, pancreatic β-cells, type 2 diabetes, β-cell identity self-checking,
- MeSH
- beta-buňky metabolismus MeSH
- diabetes mellitus 2. typu metabolismus MeSH
- lidé MeSH
- oxidační stres genetika fyziologie MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Significance: Type 2 diabetes development involves multiple changes in β-cells, related to the oxidative stress and impaired redox signaling, beginning frequently by sustained overfeeding due to the resulting lipotoxicity and glucotoxicity. Uncovering relationships among the dysregulated metabolism, impaired β-cell "well-being," biogenesis, or cross talk with peripheral insulin resistance is required for elucidation of type 2 diabetes etiology. Recent Advances: It has been recognized that the oxidative stress, lipotoxicity, and glucotoxicity cannot be separated from numerous other cell pathology events, such as the attempted compensation of β-cell for the increased insulin demand and dynamics of β-cell biogenesis and its "reversal" at dedifferentiation, that is, from the concomitantly decreasing islet β-cell mass (also due to transdifferentiation) and low-grade islet or systemic inflammation. Critical Issues: At prediabetes, the compensation responses of β-cells, attempting to delay the pathology progression-when exaggerated-set a new state, in which a self-checking redox signaling related to the expression of Ins gene expression is impaired. The resulting altered redox signaling, diminished insulin secretion responses to various secretagogues including glucose, may lead to excretion of cytokines or chemokines by β-cells or excretion of endosomes. They could substantiate putative stress signals to the periphery. Subsequent changes and lasting glucolipotoxicity promote islet inflammatory responses and further pathology spiral. Future Directions: Should bring an understanding of the β-cell self-checking and related redox signaling, including the putative stress signal to periphery. Strategies to cure or prevent type 2 diabetes could be based on the substitution of the "wrong" signal by the "correct" self-checking signal.
Zobrazit více v PubMed
Abedini A, Derk J, and Schmidt AM. The receptor for advanced glycation endproducts is a mediator of toxicity by IAPP and other proteotoxic aggregates: establishing and exploiting common ground for novel amyloidosis therapies. Protein Sci 27: 1166–1180, 2018 PubMed PMC
Aguirre V, Uchida T, Yenush L, Davis R, and White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275: 9047–9054, 2000 PubMed
Aharoni-Simon M, Shumiatcher R, Yeung A, Shih AZL, Dolinsky VW, Doucette CA, and Luciani DS. Bcl-2 regulates reactive oxygen species signaling and a redox-sensitive mitochondrial proton leak in mouse pancreatic β-cells. Endocrinology 157: 2270–2281, 2016 PubMed
Aizawa T, Yamauchi K, and Yamada M. Longitudinal changes in insulin sensitivity, insulin secretion, beta cell function and glucose effectiveness during development of non-diabetic hyperglycemia in a Japanese population. Springerplus 3: 1–6, 2014 PubMed PMC
Akhmedov D, De Marchi U, Wollheim CB, and Wiederkehr A. Pyruvate dehydrogenase E1α phosphorylation is induced by glucose but does not control metabolism-secretion coupling in INS-1E clonal β-cells. Biochim Biophys Acta 1823: 1815–1824, 2012 PubMed
Alán L, Olejár T, Cahová M, Zelenka J, Berková Z, Smětáková M, Saudek F, Matěj R, and Ježek P. Delta cell hyperplasia in adult Goto-Kakizaki (GK/MolTac) diabetic rats. J Diabetes Res 2015: 385395, 2015 PubMed PMC
Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Méneur C, and Bernal-Mizrachi E. Natural history of β-cell adaptation and failure in type 2 diabetes. Mol Aspects Med 42: 19–41, 2015 PubMed PMC
Alfar EA, Kirova D, Konantz J, Birke S, Mansfeld J, and Ninov N. Distinct levels of reactive oxygen species coordinate metabolic activity with beta-cell mass plasticity. Sci Rep 7: 3994, 2017 PubMed PMC
Anderson KA, Huynh FK, Fisher-Wellman K, Stuart JD, Peterson BS, Douros JD, Wagner GR, Thompson JW, Madsen AS, Green MF, Sivley RM, Ilkayeva OR, Stevens RD, Backos DS, Capra JA, Olsen CA, Campbell JE, Muoio DM, Grimsrud PA, and Hirschey MD. SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion. Cell Metab 25: 838.e15–855.e15, 2017 PubMed PMC
Ansari IH, Longacre MJ, Stoker SW, Kendrick MA, O'Neill LM, Zitur LJ, Fernandez LA, Ntambi JM, and MacDonald MJ. Characterization of Acyl-CoA synthetase isoforms in pancreatic beta cells: gene silencing shows participation of ACSL3 and ACSL4 in insulin secretion. Arch Biochem Biophys 618: 32–43, 2017 PubMed PMC
Archer SL, Wu XC, Thébaud B, Moudgil R, Hashimoto K, and Michelakis ED. O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide. Biol Chem 385: 205–216, 2004 PubMed
Arredouani A, Ruas M, Collins SC, Parkesh R, Clough F, Pillinger T, Coltart G, Rietdorf K, Royle A, Johnson P, Braun M, Zhang Q, Sones W, Shimomura K, Morgan AJ, Lewis AM, Chuang KT, Tunn R, Gadea J, Teboul L, Heister PM, Tynan PW, Bellomo EA, Rutter GA, Rorsman P, Churchill GC, Parrington J, and Galione A. Nicotinic acid adenine dinucleotide phosphate (NAADP) and endolysosomal two-pore channels modulate membrane excitability and stimulus-secretion coupling in mouse pancreatic β cells. J Biol Chem 290: 21376–21392, 2015 PubMed PMC
Ashcroft FMM. and Rorsman P. Diabetes mellitus and the β cell: the last ten years. Cell 148: 1160–1171, 2012 PubMed PMC
Aspinwall CA, Qian WJ, Roper MG, Kulkarni RN, Kahn CR, and Kennedy RT. Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in β-cells. J Biol Chem 275: 22331–22338, 2000 PubMed
Assmann A, Ueki K, Winnay JN, Kadowaki T, and Kulkarni RN. Glucose effects on beta-cell growth and survival require activation of insulin receptors and insulin receptor substrate 2. Mol Cell Biol 29: 3219–3228, 2009 PubMed PMC
Azevedo-Martins AK, Lortz S, Lenzen S, Curi R, Eizirik DL, and Tiedge M. Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. Diabetes 52: 93–101, 2003 PubMed
Bachnoff N, Trus M, and Atlas D. Alleviation of oxidative stress by potent and selective thioredoxin-mimetic peptides. Free Radic Biol Med 50: 1355–1367, 2011 PubMed
Back SH, Scheuner D, Han J, Song B, Ribick M, Wang J, Gildersleeve RD, Pennathur S, and Kaufman RJ. Translation attenuation through eIF2α phosphorylation prevents oxidative stress and maintains the differentiated state in β cells. Cell Metab 10: 13–26, 2009 PubMed PMC
Backe MB, Moen IW, Ellervik C, Hansen JB, and Mandrup-Poulsen T. Iron regulation of pancreatic beta-cell functions and oxidative stress. Annu Rev Nutr 36: 241–273, 2016 PubMed
Barazzoni R, Gortan Cappellari G, Ragni M, and Nisoli E. Insulin resistance in obesity: an overview of fundamental alterations. Eat Weight Disord 23: 149–157, 2018 PubMed
Baron AD, Brechtel G, Wallace P, and Edelman SV. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol 255: E769–E774, 1988 PubMed
Bedard K. and Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87: 245–313, 2007 PubMed
Bensellam M, Jonas JC, and Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 236: R109–R143, 2018 PubMed
Bensellam M, Laybutt DR, and Jonas JC. The molecular mechanisms of pancreatic beta-cell glucotoxicity: recent findings and future research directions. Mol Cell Endocrinol 364: 1–27, 2012 PubMed
Bensellam M, Van Lommel L, Overbergh L, Schuit FC, and Jonas JC. Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate- and high-glucose concentrations. Diabetologia 52: 463–476, 2009 PubMed
Bensellam M, Montgomery MK, Luzuriaga J, Chan JY, and Laybutt DR. Inhibitor of differentiation proteins protect against oxidative stress by regulating the antioxidant–mitochondrial response in mouse beta cells. Diabetologia 58: 758–770, 2015 PubMed
Berchtold LA, Prause M, Størling J, and Mandrup-Poulsen T. Cytokines and pancreatic β-cell apoptosis. Adv Clin Chem 75: 99–158, 2016 PubMed
Bermudez B, Ortega-Gomez A, Varela LM, Villar J, Abia R, Muriana FJG, and Lopez S. Clustering effects on postprandial insulin secretion and sensitivity in response to meals with different fatty acid compositions. Food Funct 5: 1374–1380, 2014 PubMed
Bernardi P, Rasola A, Forte M, and Lippe G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95: 1111–1155, 2015 PubMed PMC
Bessesen DH. The role of carbohydrates in insulin resistance. J Nutr 131: 2782S–2786S, 2001 PubMed
Biden TJ, Boslem E, Chu KY, and Sue N. Lipotoxic endoplasmic reticulum stress, β cell failure, and type 2 diabetes mellitus. Trends Endocrinol Metab 25: 389–398, 2014 PubMed
Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, and Philipson LH. Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem 278: 9796–9801, 2003 PubMed
Böni-Schnetzler M, Boller S, Debray S, Bouzakri K, Meier DT, Prazak R, Kerr-Conte J, Pattou F, Ehses JA, Schuit FC, and Donath MY. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150: 5218–5229, 2009 PubMed
Böni-Schnetzler M, Thorne J, Parnaud G, Marselli L, Ehses JA, Kerr-Conte J, Pattou F, Halban PA, Weir GC, and Donath MY. Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J Clin Endocrinol Metab 93: 4065–4074, 2008 PubMed PMC
Bouche C, Lopez X, Fleischman A, Cypess AM, O'Shea S, Stefanovski D, Bergman RN, Rogatsky E, Stein DT, Kahn CR, Kulkarni RN, and Goldfine AB. Insulin enhances glucose-stimulated insulin secretion in healthy humans. Proc Natl Acad Sci U S A 107: 4770–4775, 2010 PubMed PMC
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100: 14–31, 2016 PubMed
Braun M, Ramracheya R, and Rorsman P. Autocrine regulation of insulin secretion. Diabetes Obes Metab 14: 143–151, 2012 PubMed
Brennand K, Huangfu D, and Melton D. All β cells contribute equally to islet growth and maintenance. PLoS Biol 5: e163, 2007 PubMed PMC
Brereton MF, Iberl M, Shimomura K, Zhang Q, Adriaenssens AE, Proks P, Spiliotis II, Dace W, Mattis KK, Ramracheya R, Gribble FM, Reimann F, Clark A, Rorsman P, and Ashcroft FM. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat Commun 5: 4639, 2014 PubMed PMC
Brereton MF, Rohm M, Shimomura K, Holland C, Tornovsky-Babeay S, Dadon D, Iberl M, Chibalina MV, Lee S, Glaser B, Dor Y, Rorsman P, Clark A, and Ashcroft FM. Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells. Nat Commun 7: 13496, 2016 PubMed PMC
Broche B, Fradj S Ben, Aguilar E, Sancerni T, Bénard M, Makaci F, Berthault C, Scharfmann R, Alves-Guerra MC, and Duvillié B. Mitochondrial protein UCP2 controls pancreas development. Diabetes 67: 78–84, 2018 PubMed
Brozzi F, Nardelli TR, Lopes M, Millard I, Barthson J, Igoillo-Esteve M, Grieco FA, Villate O, Oliveira JM, Casimir M, Bugliani M, Engin F, Hotamisligil GS, Marchetti P, and Eizirik DL. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 58: 2307–2316, 2015 PubMed
Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, and Kahn CR. Role of brain insulin receptor in control of body weight and reproduction. Science 289: 2122–2125, 2000 PubMed
Brüning JC, Michael MD, Winnay JN, Hayashi T, Hörsch D, Accili D, Goodyear LJ, and Kahn CR. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2: 559–569, 1998 PubMed
Bugliani M, Liechti R, Cheon H, Suleiman M, Marselli L, Kirkpatrick C, Filipponi F, Boggi U, Xenarios I, Syed F, Ladriere L, Wollheim C, Lee MS, and Marchetti P. Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic beta cell dysfunction. Mol Cell Endocrinol 367: 1–10, 2013 PubMed
van de Bunt M, Gaulton KJ, Parts L, Moran I, Johnson PR, Lindgren CM, Ferrer J, Gloyn AL, and McCarthy MI. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 8: e55272, 2013 PubMed PMC
Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, Van Eylen F, Mandrup-Poulsen T, Herchuelz A, and Eizirik DL. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic β-cells. Diabetes 54: 452–461, 2005 PubMed
Carlsson C, Borg LAH, and Welsh N. Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology 140: 3422–3428, 1999 PubMed
Carpinelli AR, Picinato MC, Stevanato E, Oliveira HR, and Curi R. Insulin secretion induced by palmitate–a process fully dependent on glucose concentration. Diabetes Metab 28: 3S37–3S44; discussion 3S108–3S112, 2002 PubMed
Caton PW, Richardson SJ, Kieswich J, Bugliani M, Holland ML, Marchetti P, Morgan NG, Yaqoob MM, Holness MJ, and Sugden MC. Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia 56: 1068–1077, 2013 PubMed
Cen J, Sargsyan E, and Bergsten P. Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutr Metab (Lond) 13: 59, 2016 PubMed PMC
Chan JY, Cooney GJ, Biden TJ, and Laybutt DR. Differential regulation of adaptive and apoptotic unfolded protein response signalling by cytokine-induced nitric oxide production in mouse pancreatic beta cells. Diabetologia 54: 1766–1776, 2011 PubMed
Chen Y, Morrow JD, and Roberts LJ, 2nd. Formation of reactive cyclopentenone compounds in vivo as products of the isoprostane pathway. J Biol Chem 274: 10863–10868, 1999 PubMed
Cinti F, Bouchi R, Kim-Muller JY, Ohmura Y, Sandoval PR, Masini M, Marselli L, Suleiman M, Ratner LE, Marchetti P, and Accili D. Evidence of β-cell dedifferentiation in human type 2 diabetes. J Clin Endocrinol Metab 101: 1044–1054, 2016 PubMed PMC
Ciregia F, Bugliani M, Ronci M, Giusti L, Boldrini C, Mazzoni MR, Mossuto S, Grano F, Cnop M, Marselli L, Giannaccini G, Urbani A, Lucacchini A, and Marchetti P. Palmitate-induced lipotoxicity alters acetylation of multiple proteins in clonal β cells and human pancreatic islets. Sci Rep 7: 13445, 2017 PubMed PMC
Cnop M, Abdulkarim B, Bottu G, Cunha DA, Igoillo-Esteve M, Masini M, Turatsinze JV, Griebel T, Villate O, Santin I, Bugliani M, Ladriere L, Marselli L, McCarthy MI, Marchetti P, Sammeth M, and Eizirik DL. RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 63: 1978–1993, 2014 PubMed
Cohen G, Shamni O, Avrahami Y, Cohen O, Broner EC, Filippov-Levy N, Chatgilialoglu C, Ferreri C, Kaiser N, and Sasson S. Beta cell response to nutrient overload involves phospholipid remodelling and lipid peroxidation. Diabetologia 58: 1333–1343, 2015 PubMed
Cole JT. Metabolism of BBAAs. In: Branched Chain Amino Acids in Clinical Nutrition, edited by Rajendram R, Preedy VR, Patel V. New York, NY: Springer Science, 2015, pp. 13–24
Collier JJ, Sparer TE, Karlstad MD, and Burke SJ. Pancreatic islet inflammation: an emerging role for chemokines. J Mol Endocrinol 59: R33–R46, 2017 PubMed PMC
Cornu M, Modi H, Kawamori D, Kulkarni RN, Joffraud M, and Thorens B. Glucagon-like peptide-1 increases β-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. J Biol Chem 285: 10538–10545, 2010 PubMed PMC
Coughlan MT, Yap FYT, Tong DCK, Andrikopoulos S, Gasser A, Thallas-Bonke V, Webster DE, Miyazaki J, Kay TW, Slattery RM, Kaye DM, Drew BG, Kingwell BA, Fourlanos S, Groop PH, Harrison LC, Knip M, and Forbes JM. Advanced glycation end products are direct modulators of β-cell function. Diabetes 60: 2523–2532, 2011 PubMed PMC
Cruciani-Guglielmacci C, Bellini L, Denom J, Oshima M, Fernandez N, Normandie-Levi P, Berney XP, Kassis N, Rouch C, Dairou J, Gorman T, Smith DM, Marley A, Liechti R, Kuznetsov D, Wigger L, Burdet F, Lefèvre AL, Wehrle I, Uphues I, Hildebrandt T, Rust W, Bernard C, Ktorza A, Rutter GA, Scharfmann R, Xenarios I, Le Stunff H, Thorens B, Magnan C, and Ibberson M. Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for Elovl2 in glucose-induced insulin secretion. Mol Metab 6: 340–351, 2017 PubMed PMC
Cucak H, Mayer C, Tonnesen M, Thomsen LH, Grunnet LG, and Rosendahl A. Macrophage contact dependent and independent TLR4 mechanisms induce β-cell dysfunction and apoptosis in a mouse model of type 2 diabetes. PLoS One 9: e90685, 2014 PubMed PMC
Cunha DA, Igoillo-Esteve M, Gurzov EN, Germano CM, Naamane N, Marhfour I, Fukaya M, Vanderwinden JM, Gysemans C, Mathieu C, Marselli L, Marchetti P, Harding HP, Ron D, Eizirik DL, and Cnop M. Death protein 5 and p53-upregulated modulator of apoptosis mediate the endoplasmic reticulum stress-mitochondrial dialog triggering lipotoxic rodent and human β-cell apoptosis. Diabetes 61: 2763–2775, 2012 PubMed PMC
Dahan T, Ziv O, Horwitz E, Zemmour H, Lavi J, Swisa A, Leibowitz G, Ashcroft FM, In't Veld PIt, Glaser B, and Dor Y. Pancreatic β-cells express the fetal islet hormone gastrin in rodent and human diabetes. Diabetes 66: 426–436, 2017 PubMed PMC
Dalgaard LT. and Eliasson L. An “alpha-beta” of pancreatic islet microribonucleotides. Int J Biochem Cell Biol 88: 208–219, 2017 PubMed
Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, Fessel JP, Gamboa JL, Harrison DG, and Dikalov SI. Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension. Circ Res 121: 564–574, 2017 PubMed PMC
Dinič S, Grdovič N, Uskokovič A, Đordevič M, Mihailovič M, Jovanovič JA, Poznanovič G, and Vidakovič M. CXCL12 protects pancreatic β-cells from oxidative stress by a Nrf2-induced increase in catalase expression and activity. Proc Jpn Acad Ser B Phys Biol Sci 92: 436–454, 2016 PubMed PMC
Dlasková A, Engstová H, Špaček T, Kahancová A, Pavluch V, Smolková K, Špačková J, Bartoš M, Hlavatá LP, and Ježek P. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. Biochim Biophys Acta 1859: 829–844, 2018 PubMed
Dooley J, Garcia-Perez JE, Sreenivasan J, Schlenner SM, Vangoitsenhoven R, Papadopoulou AS, Tian L, Schonefeldt S, Serneels L, Deroose C, Staats KA, Van Der Schueren B, De Strooper B, McGuinness OP, Mathieu C, and Liston A. The microRNA-29 family dictates the balance between homeostatic and pathological glucose handling in diabetes and obesity. Diabetes 65: 53–61, 2016 PubMed PMC
Dor Y. and Glaser B. Beta-cell dedifferentiation and type 2 diabetes. N Engl J Med 368: 572–573, 2013 PubMed
Drews G, Krippeit-Drews P, and Düfer M. Electrophysiology of islet cells. Adv Exp Med Biol 654: 115–163, 2010 PubMed
Du SC, Ge QM, Lin N, Dong Y, and Su Q. ROS-mediated lipopolysaccharide-induced apoptosis in INS-1 cells by modulation of Bcl-2 and Bax. Cell Mol Biol (Noisy-le-grand) 58 (Suppl): OL1654–OL1659, 2012 PubMed
Duan Y, Li F, Li Y, Tang Y, Kong X, Feng Z, Anthony TG, Watford M, Hou Y, Wu G, and Yin Y. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 48: 41–51, 2016 PubMed
Dubey R, Minj P, Malik N, Sardesai DM, Kulkarni SH, Acharya JD, Bhavesh NS, Sharma S, and Kumar A. Recombinant human islet amyloid polypeptide forms shorter fibrils and mediates β-cell apoptosis via generation of oxidative stress. Biochem J 474: 3915–3934, 2017 PubMed
Edalat A, Schulte-Mecklenbeck P, Bauer C, Undank S, Krippeit-Drews P, Drews G, and Düfer M. Mitochondrial succinate dehydrogenase is involved in stimulus-secretion coupling and endogenous ROS formation in murine beta cells. Diabetologia 58: 1532–1541, 2015 PubMed
Eguchi K. and Manabe I. Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab 15: 152–158, 2013 PubMed
Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, Yagi N, Ohto U, Kimoto M, Miyake K, Tobe K, Arai H, Kadowaki T, and Nagai R. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab 15: 518–533, 2012 PubMed
Eguchi K. and Nagai R. Islet inflammation in type 2 diabetes and physiology. J Clin Invest 127: 14–23, 2017 PubMed PMC
Eisenberg-Lerner A, Bialik S, Simon HU, and Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16: 966–975, 2009 PubMed
Elumalai S, Karunakaran U, Lee IK, Moon JS, and Won KC. Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells. Redox Biol 11: 126–134, 2017 PubMed PMC
Fava GE, Dong EW, and Wu H. Intra-islet glucagon-like peptide 1. J Diabetes Complications 30: 1651–1658, 2016 PubMed PMC
Fernández-Díaz CM, Escobar-Curbelo L, López-Acosta JF, Lobatón CD, Moreno A, Sanz-Ortega J, Perdomo G, and Cózar-Castellano I. Insulin degrading enzyme is up-regulated in pancreatic βcells by insulin treatment. Histol Histopathol 4: 11997, 2018 PubMed
Fernández-Millán E, Martín MA, Goya L, Lizárraga-Mollinedo E, Escrivá F, Ramos S, and Álvarez C. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation. Free Radic Biol Med 95: 16–26, 2016 PubMed
Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, Spégel P, and Mulder H. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J Endocrinol 236: R145–R159, 2018 PubMed
Finocchietto P, Barreyro F, Holod S, Peralta J, Franco MC, Méndez C, Converso DP, Estévez A, Carreras MC, and Poderoso JJ. Control of muscle mitochondria by insulin entails activation of Akt2-mtNOS pathway: imlpications for the metabolic syndrome. PLoS One 3: e1749, 2008 PubMed PMC
Finol-Urdaneta RK, Remedi MS, Raasch W, Becker S, Clark RB, Strüver N, Pavlov E, Nichols CG, French RJ, and Terlau H. Block of K v 1.7 potassium currents increases glucose-stimulated insulin secretion. EMBO Mol Med 4: 424–434, 2012 PubMed PMC
Fridlyand LE. and Philipson LH. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic β-cells? Diabetes 53: 1942–1948, 2004 PubMed
Fu J, Zheng H, Wang H, Yang B, Zhao R, Lu C, Liu Z, Hou Y, Xu Y, Zhang Q, Qu W, and Pi J. Protective role of nuclear factor E2-related factor 2 against acute oxidative stress-induced pancreatic β-cell damage. Oxid Med Cell Longev 2015: 639191, 2015 PubMed PMC
Fu Z, Gilbert ER, and Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev 9: 25–53, 2013 PubMed PMC
Gao T, McKenna B, Li C, Reichert M, Nguyen J, Singh T, Yang C, Pannikar A, Doliba N, Zhang T, Stoffers DA, Edlund H, Matschinsky F, Stein R, and Stanger BZ. Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab 19: 259–271, 2014 PubMed PMC
Gehrmann W, Elsner M, and Lenzen S. Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells. Diabetes Obes Metab 12: 149–158, 2010 PubMed
Gehrmann W, Würdemann W, Plötz T, Jörns A, Lenzen S, and Elsner M. Antagonism between saturated and unsaturated fatty acids in ROS mediated lipotoxicity in rat insulin-producing cells. Cell Physiol Biochem 36: 852–865, 2015 PubMed
Giacca A, Xiao C, Oprescu AI, Carpentier AC, and Lewis GF. Lipid-induced pancreatic β-cell dysfunction: focus on in vivo studies. Am J Physiol Endocrinol Metab 300: E255–E262, 2011 PubMed
Giorgio V, Guo L, Bassot C, Petronilli V, and Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 70: 56–63, 2018 PubMed
Gorski JN, Pachanski MJ, Mane J, Plummer CW, Souza S, Thomas-Fowlkes BS, Ogawa AM, Weinglass AB, Di Salvo J, Cheewatrakoolpong B, Howard AD, Colletti SL, and Trujillo ME. GPR40 reduces food intake and body weight through GLP-1. Am J Physiol Endocrinol Metab 313: E37–E47, 2017 PubMed
Graaf CD, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, Ahn JM, Liao J, Fletcher MM, Yang D, Brown AJH, Zhou C, Deng J, and Wang MW. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. Pharmacol Rev 68: 954–1013, 2016 PubMed PMC
Graciano MF, Valle MM, Curi R, and Carpinelli AR. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. Islets 5: 139–148, 2013 PubMed
Graciano MF, Valle MM, Kowluru A, Curi R, and Carpinelli AR. Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets. Islets 3: 213–223, 2011 PubMed
Grankvist K, Marklund SL, and Täljedal IB. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199: 393–398, 1981 PubMed PMC
Grupe M, Myers G, Penner R, and Fleig A. Activation of store-operated I(CRAC) by hydrogen peroxide. Cell Calcium 48: 1–9, 2010 PubMed PMC
Guardado-Mendoza R, Davalli AM, Chavez AO, Hubbard GB, Dick EJ, Majluf-Cruz A, Tene-Perez CE, Goldschmidt L, Hart J, Perego C, Comuzzie AG, Tejero ME, Finzi G, Placidi C, La Rosa S, Capella C, Halff G, Gastaldelli A, DeFronzo RA, and Folli F. Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci U S A 106: 13992–13997, 2009 PubMed PMC
Guo L, Inada A, Aguayo-Mazzucato C, Hollister-Lock J, Fujitani Y, Weir GC, Wright CVE, Sharma A, and Bonner-Weir S. PDX1 in ducts is not required for postnatal formation of β-cells but is necessary for their subsequent maturation. Diabetes 62: 3459–3468, 2013 PubMed PMC
Guo S, Dai C, Guo M, Taylor B, Harmon JS, Sander M, Robertson RP, Powers AC, and Stein R. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest 123: 3305–3316, 2013 PubMed PMC
Gurgul-Convey E, Mehmeti I, Plötz T, Jörns A, and Lenzen S. Sensitivity profile of the human EndoC-βH1 beta cell line to proinflammatory cytokines. Diabetologia 59: 2125–2133, 2016 PubMed
Gurzov EN. and Eizirik DL. Bcl-2 proteins in diabetes: mitochondrial pathways of β-cell death and dysfunction. Trends Cell Biol 21: 424–431, 2011 PubMed
Haeusler RA, McGraw TE, and Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 19: 31–44, 2018 PubMed PMC
Hagman DK, Hays LB, Parazzoli SD, and Poitout V. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 280: 32413–32418, 2005 PubMed PMC
Hamaoka R, Fujii J, Miyagawa J, Takahashi M, Kishimoto M, Moriwaki M, Yamamoto K, Kajimoto Y, Yamasaki Y, Hanafusa T, Matsuzawa Y, and Taniguchi N. Overexpression of the aldose reductase gene induces apoptosis in pancreatic beta-cells by causing a redox imbalance. J Biochem 126: 41–47, 1999 PubMed
Han J, Song B, Kim J, Kodali VK, Pottekat A, Wang M, Hassler J, Wang S, Pennathur S, Back SH, Katze MG, and Kaufman RJ. Antioxidants complement the requirement for protein chaperone function to maintain β-cell function and glucose homeostasis. Diabetes 64: 2892–2904, 2015 PubMed PMC
Hara T, Mahadevan J, Kanekura K, Hara M, Lu S, and Urano F. Calcium efflux from the endoplasmic reticulum leads to β-cell death. Endocrinology 155: 758–768, 2014 PubMed PMC
Harmon JS, Stein R, and Robertson RP. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells. J Biol Chem 280: 11107–11113, 2005 PubMed
Hauge M, Vestmar MA, Husted AS, Ekberg JP, Wright MJ, Di Salvo J, Weinglass AB, Engelstoft MS, Madsen AN, Lückmann M, Miller MW, Trujillo ME, Frimurer TM, Holst B, Howard AD, and Schwartz TW. GPR40 (FFAR1)—combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol Metab 4: 3–14, 2015 PubMed PMC
Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52: 739–751, 2009 PubMed
Hirata T, Kawai T, Hirose H, Tanaka K, Kurosawa H, Fujii C, Fujita H, Seto Y, Matsumoto H, and Itoh H. Palmitic acid-rich diet suppresses glucose-stimulated insulin secretion (GSIS) and induces endoplasmic reticulum (ER) stress in pancreatic islets in mice. Endocr Res 41: 8–15, 2016 PubMed
Hoarau E, Chandra V, Rustin P, Scharfmann R, and Duvillie B. Pro-oxidant/antioxidant balance controls pancreatic β-cell differentiation through the ERK1/2 pathway. Cell Death Dis 5: e1487, 2014 PubMed PMC
Hoppa MB, Collins S, Ramracheya R, Hodson L, Amisten S, Zhang Q, Johnson P, Ashcroft FM, and Rorsman P. Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca2+ channels from secretory granules. Cell Metab 10: 455–465, 2009 PubMed PMC
Hou N, Torii S, Saito N, Hosaka M, and Takeuchi T. Reactive oxygen species-mediated pancreatic β-cell death is regulated by interactions between stress-activated protein kinases, p38 and c-jun N-terminal kinase, and mitogen-activated protein kinase phosphatases. Endocrinology 149: 1654–1665, 2008 PubMed
Huang CF, Yang CY, Tsai JR, Wu CT, and Liu SH. Lan KC. Low-dose tributyltin exposure induces an oxidative stress-triggered JNK-related pancreatic β-cell apoptosis and a reversible hypoinsulinemic hyperglycemia in mice. Sci Rep 8: 5734, 2018 PubMed PMC
Huang Y. and Chang Y. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling. Prog Mol Biol Transl Sci 121: 321–349, 2014 PubMed
Huebschmann AG, Regensteiner JG, Vlassara H, and Reusch JEB. Diabetes and advanced glycoxidation end products. Diabetes Care 29: 1420–1432, 2006 PubMed
Husted AS, Trauelsen M, Rudenko O, Hjorth SA, and Schwartz TW. GPCR-mediated signaling of metabolites. Cell Metab 25: 777–796, 2017 PubMed
Igoillo-Esteve M, Marselli L, Cunha DA, Ladrière L, Ortis F, Grieco FA, Dotta F, Weir GC, Marchetti P, Eizirik DL, and Cnop M. Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53: 1395–1405, 2010 PubMed
Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H, Hiai H, Seino Y, and Yamada Y. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes 48: 927–932, 1999 PubMed
Imai Y, Dobrian AD, Morris MA, Taylor-Fishwick DA, and Nadler JL. Lipids and immunoinflammatory pathways of beta cell destruction. Diabetologia 59: 673–678, 2016 PubMed PMC
Imai Y, Fink BD, Promes JA, Kulkarni CA, Kerns RJ, and Sivitz WI. Effect of a mitochondrial-targeted coenzyme Q analog on pancreatic β-cell function and energetics in high fat fed obese mice. Pharmacol Res Perspect 6: e00393, 2018 PubMed PMC
Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, and Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49: 1939–1945, 2000 PubMed
Inoue H, Shirakawa J, Togashi Y, Tajima K, Okuyama T, Kyohara M, Tanaka Y, Orime K, Saisho Y, Yamada T, Shibue K, Kulkarni RN, and Terauchi Y. Signaling between pancreatic β cells and macrophages via S100 calcium-binding protein A8 exacerbates β-cell apoptosis and islet inflammation. J Biol Chem 293: 5934–5946, 2018 PubMed PMC
Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, and Fujino M. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422: 173–176, 2003 PubMed
Ivanov S, Merlin J, Lee MKS, Murphy AJ, and Guinamard RR. Biology and function of adipose tissue macrophages, dendritic cells and B cells. Atherosclerosis 271: 102–110, 2018 PubMed
Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, in 't Veld P, Renström E, and Schuit FC. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 54: 2132–2142, 2005 PubMed
Iwaoka R. and Kataoka K. Glucose regulates Mafa transcription factor abundance and insulin gene expression by inhibiting AMP-activated protein kinase in pancreatic β-cells. J Biol Chem 293: 3524–3534, 2018 PubMed PMC
Jabůrek M, Ježek J, Zelenka J, and Ježek P. Antioxidant activity by a synergy of redox-sensitive mitochondrial phospholipase A2 and uncoupling protein-2 in lung and spleen. Int J Biochem Cell Biol 45: 816–825, 2013 PubMed
Jager J, Grémeaux T, Cormont M, Le Marchand-Brustel Y, and Tanti JF. Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148: 241–251, 2007 PubMed PMC
Janikiewicz J, Hanzelka K, Kozinski K, Kolczynska K, and Dobrzyn A. Islet β-cell failure in type 2 diabetes—within the network of toxic lipids. Biochem Biophys Res Commun 460: 491–496, 2015 PubMed
Ježek J, Dlasková A, Zelenka J, Jabůrek M, and Ježek P. H2O2-activated mitochondrial phospholipase iPLA2γ prevents lipotoxic oxidative stress in synergy with UCP2, amplifies signaling via G-protein–coupled receptor GPR40, and regulates insulin secretion in pancreatic β-cells. Antioxid Redox Signal 23: 958–972, 2015 PubMed PMC
Ježek P. and Hlavatá L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37: 2478–2503, 2005 PubMed
Ježek P, Holendová B, Garlid KD, and Jabůrek M. Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxid Redox Signal 29: 667–714, 2018 PubMed PMC
Ježek P, Jabůrek M, Holendová B, and Plecitá-Hlavatá L. Fatty acid-stimulated insulin secretion vs. lipotoxicity. Molecules 23: 1483, 2018 PubMed PMC
This reference has been deleted
Jitrapakdee S, Wutthisathapornchai A, Wallace JC, and MacDonald MJ. Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53: 1019–1032, 2010 PubMed PMC
Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patanè G, Laybutt R, Bonner-Weir S, and Weir GC. Chronic hyperglycemia triggers loss of pancreatic β cell differentiation in an animal model of diabetes. J Biol Chem 274: 14112–14121, 1999 PubMed
Joseph JW, Jensen MV, Ilkayeva O, Palmieri F, Alárcon C, Rhodes CJ, and Newgard CB. The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion. J Biol Chem 281: 35624–35632, 2006 PubMed
Jourdan T, Godlewski G, Cinar R, Bertola A, Szanda G, Liu J, Tam J, Han T, Mukhopadhyay B, Skarulis MC, Ju C, Aouadi M, Czech MP, and Kunos G. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 19: 1132–1140, 2013 PubMed PMC
Jourdan T, Godlewski G, and Kunos G. Endocannabinoid regulation of β-cell functions: implications for glycaemic control and diabetes. Diabetes Obes Metab 18: 549–557, 2016 PubMed PMC
Jung IR, Choi SE, Jung JG, Lee SA, Han SJ, Kim HJ, Kim DJ, Lee KW, and Kang Y. Involvement of iron depletion in palmitate-induced lipotoxicity of beta cells. Mol Cell Endocrinol 407: 74–84, 2015 PubMed
Kabe Y, Ando K, Hirao S, Yoshida M, and Handa H. Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7: 395–403, 2005 PubMed
Kahancová A, Sklenář F, Ježek P, and Dlasková A. Regulation of glucose-stimulated insulin secretion by ATPase inhibitory factor 1 (IF1). FEBS Lett 592: 999–1009, 2018 PubMed
Kahn SE, Hull RL, and Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840–846, 2006 PubMed
Kamalden TA, Macgregor-Das AM, Kannan SM, Dunkerly-Eyring B, Khaliddin N, Xu Z, Fusco AP, Yazib SA, Chow RC, Duh EJ, Halushka MK, Steenbergen C, and Das S. Exosomal microRNA-15a transfer from the pancreas augments diabetic complications by inducing oxidative stress. Antioxid Redox Signal 27: 913–930, 2017 PubMed PMC
Kaminski MT, Lenzen S, and Baltrusch S. Real-time analysis of intracellular glucose and calcium in pancreatic beta cells by fluorescence microscopy. Biochim Biophys Acta 1823: 1697–1707, 2012 PubMed
Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa KI, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, and Kasuga M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116: 1494–1505, 2006 PubMed PMC
Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, and Hori M. Beneficial effects of antioxidants in diabetes: possible protection of pancreatic β-cells against glucose toxicity. Diabetes 48: 2398–2406, 1999 PubMed
Kaneto H, Xu G, Song KH, Suzuma K, Bonner-Weir S, Sharma A, and Weir GC. Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. J Biol Chem 276: 31099–31104, 2001 PubMed
Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, and Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology 147: 3398–3407, 2006 PubMed
Katsuta H, Akashi T, Katsuta R, Nagaya M, Kim D, Arinobu Y, Hara M, Bonner-Weir S, Sharma AJ, Akashi K, and Weir GC. Single pancreatic beta cells co-express multiple islet hormone genes in mice. Diabetologia 53: 128–138, 2010 PubMed PMC
Kaufman BA, Li C, and Soleimanpour SA. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Mol Aspects Med 42: 91–104, 2015 PubMed PMC
Kawamori D, Shirakawa J, Liew CW, Hu J, Morioka T, Duttaroy A, Burkey B, and Kulkarni RN. GLP-1 signalling compensates for impaired insulin signalling in regulating beta cell proliferation in βIRKO mice. Diabetologia 60: 1442–1453, 2017 PubMed PMC
Kern PA, Ranganathan S, Li C, Wood L, and Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280: E745–E751, 2001 PubMed
Kim M, Lee JS, Oh JE, Nan J, Lee H, Jung HS, Chung SS, and Park KS. SIRT3 overexpression attenuates palmitate-induced pancreatic β-cell dysfunction. PLoS One 10: e0124744, 2015 PubMed PMC
Kim MH, Kim EH, Jung HS, Yang D, Park EY, and Jun HS. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage. Toxicol Appl Pharmacol 315: 60–69, 2017 PubMed
Kim-Muller JY, Kim YJR, Fan J, Zhao S, Banks AS, Prentki M, and Accili D. FoxO1 deacetylation decreases fatty acid oxidation in β-cells and sustains insulin secretion in diabetes. J Biol Chem 291: 10162–10172, 2016 PubMed PMC
Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W, and Accili D. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab 2: 153–163, 2005 PubMed
Komatsu M, Takei M, Ishii H, and Sato Y. Glucose-stimulated insulin secretion: a newer perspective. J Diabetes Investig 4: 511–516, 2013 PubMed PMC
Koshkin V, Wang X, Scherer PE, Chan CB, and Wheeler MB. Mitochondrial functional state in clonal pancreatic beta-cells exposed to free fatty acids. J Biol Chem 278: 19709–19715, 2003 PubMed
Koya D. and King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 47: 859–866, 1998 PubMed
Krause MS, Mcclenaghan NH, Flatt PR, de Bittencourt PIH, Murphy C, and Newsholme P. l-Arginine is essential for pancreatic β-cell functional integrity, metabolism and defense from inflammatory challenge. J Endocrinol 211: 87–97, 2011 PubMed
Kristinsson H, Bergsten P, and Sargsyan E. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure. Biochim Biophys Acta 1853: 3248–3257, 2015 PubMed
Kugelberg E. Diabetes: macrophages mediate β-cell loss in T2DM. Nat Rev Endocrinol 9: 626, 2013 PubMed
Kulkarni RN, Brüning JC, Winnay JN, Postic C, Magnuson MA, and Kahn CR. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96: 329–339, 1999 PubMed
Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, Lin DCH, and Poitout V. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56: 1087–1094, 2007 PubMed PMC
Lawson R, Maret W, and Hogstrand C. Prolonged stimulation of insulin release from MIN6 cells causes zinc depletion and loss of β-cell markers. J Trace Elem Med Biol 49: 51–59, 2018 PubMed
Laybutt DR, Hawkins YC, Lock J, Lebet J, Sharma A, Bonner-Weir S, and Weir GC. Influence of diabetes on the loss of beta cell differentiation after islet transplantation in rats. Diabetologia 50: 2117–2125, 2007 PubMed
Lee SH, Jouihan HA, Cooksey RC, Jones D, Kim HJ, Winge DR, and McClain DA. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology 154: 1029–1038, 2013 PubMed PMC
Leguina-Ruzzi A, Průchova P, Holendová B, Ježek P, and Jabůrek M. iPLA2γ ablation alters glucose homeostasis and insulin secretion in response to fatty acids. Free Radic Biol Med 112: 152–153, 2017
Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, Colombani AL, Ktorza A, Casteilla L, and Pénicaud L. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58: 673–681, 2009 PubMed PMC
Lenzen S. Oxidative stress: the vulnerable β-cell. Biochem Soc Trans 36: 343–347, 2008 PubMed
Lenzen S. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells. Biochim Biophys Acta Gen Subj 1861: 1929–1942, 2017 PubMed
Lenzen S, Drinkgern J, and Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20: 463–466, 1996 PubMed
Li N, Karaca M, and Maechler P. Upregulation of UCP2 in beta-cells confers partial protection against both oxidative stress and glucotoxicity. Redox Biol 13: 541–549, 2017 PubMed PMC
Li XN, Herrington J, Petrov A, Ge L, Eiermann G, Xiong Y, Jensen MV, Hohmeier HE, Newgard CB, Garcia ML, Wagner M, Zhang BB, Thornberry NA, Howard AD, Kaczorowski GJ, and Zhou YP. The role of voltage-gated potassium channels Kv2.1 and Kv2.2 in the regulation of insulin and somatostatin release from pancreatic islets. J Pharmacol Exp Ther 344: 407–416, 2013 PubMed
Lim S, Rashid MA, Jang M, Kim Y, Won H, Lee J, Woo JT, Kim YS, Murphy MP, Ali L, Ha J, and Kim SS. Mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. Cell Physiol Biochem 28: 873–886, 2011 PubMed
Lin N, Chen H, Zhang H, Wan X, and Su Q. Mitochondrial reactive oxygen species (ROS) inhibition ameliorates palmitate-induced INS-1 beta cell death. Endocrine 42: 107–117, 2012 PubMed
Liu C, Huang Y, Zhang Y, Chen X, Kong X, and Dong Y. Intracellular methylglyoxal induces oxidative damage to pancreatic beta cell line INS-1 cell through Ire1α-JNK and mitochondrial apoptotic pathway. Free Radic Res 51: 337–350, 2017 PubMed
Liu H, Javaheri A, Godar RJ, Murphy J, Ma X, Rohatgi N, Mahadevan J, Hyrc K, Saftig P, Marshall C, McDaniel ML, Remedi MS, Razani B, Urano F, and Diwan A. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy 13: 1952–1968, 2017 PubMed PMC
Liu S, Okada T, Assmann A, Soto J, Liew CW, Bugger H, Shirihai OS, Abel ED, and Kulkarni RN. Insulin signaling regulates mitochondrial function in pancreatic β-cells. PLoS One 4: e7983, 2009 PubMed PMC
Lu H, Hao L, Li S, Lin S, Lv L, Chen Y, Cui H, Zi T, Chu X, Na L, and Sun C. Elevated circulating stearic acid leads to a major lipotoxic effect on mouse pancreatic beta cells in hyperlipidaemia via a miR-34a-5p-mediated PERK/p53-dependent pathway. Diabetologia 59: 1247–1257, 2016 PubMed
Ly LD, Xu S, Choi SK, Ha CM, Thoudam T, Cha SK, Wiederkehr A, Wollheim CB, Lee IK, and Park KS. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 49: e291, 2017 PubMed PMC
MacDonald PE. Signal integration at the level of ion channel and exocytotic function in pancreatic β-cells. Am J Physiol Endocrinol Metab 301: E1065–E1069, 2011 PubMed
MacDonald PE, Salapatek AMF, and Wheeler MB. Temperature and redox state dependence of native Kv2.1 currents in rat pancreatic β-cells. J Physiol 546: 647–653, 2003 PubMed PMC
Maechler P. Mitochondrial function and insulin secretion. Mol Cell Endocrinol 379: 12–18, 2013 PubMed
Mahadevan J, Parazzoli S, Oseid E, Hertzel AV, Bernlohr DA, Vallerie SN, Liu CQ, Lopez M, Harmon JS, and Robertson RP. Ebselen treatment prevents islet apoptosis, maintains intranuclear Pdx-1 and MafA levels, and preserves β-cell mass and function in ZDF rats. Diabetes 62: 3582–3588, 2013 PubMed PMC
Mahdi T, Hänzelmann S, Salehi A, Muhammed SJ, Reinbothe TM, Tang Y, Axelsson AS, Zhou Y, Jing X, Almgren P, Krus U, Taneera J, Blom AM, Lyssenko V, Esguerra JLS, Hansson O, Eliasson L, Derry J, Zhang E, Wollheim CB, Groop L, Renström E, and Rosengren AH. Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 16: 625–633, 2012 PubMed
Mancini AD, Bertrand G, Vivot K, Carpentier É, Tremblay C, Ghislain J, Bouvier M, and Poitout V. B-arrestin recruitment and biased agonism at free fatty acid receptor 1. J Biol Chem 290: 21131–21140, 2015 PubMed PMC
Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, Marchetti P, and Weir GC. Gene expression profiles of beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5: e11499, 2010 PubMed PMC
Martens GA, Cai Y, Hinke S, Stangé G, Van De Casteele M, and Pipeleers D. Glucose suppresses superoxide generation in metabolically responsive pancreatic β cells. J Biol Chem 280: 20389–20396, 2005 PubMed
Maulucci G, Daniel B, Cohen O, Avrahami Y, and Sasson S. Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 49: 49–77, 2016 PubMed
McIntosh CHS, Widenmaier S, and Kim SJ. Glucose-dependent insulinotropic polypeptide signaling in pancreatic β-cells and adipocytes. J Diabetes Investig 3: 96–106, 2012 PubMed PMC
Mehmeti I, Gurgul-Convey E, Lenzen S, and Lortz S. Induction of the intrinsic apoptosis pathway in insulin-secreting cells is dependent on oxidative damage of mitochondria but independent of caspase-12 activation. Biochim Biophys Acta 1813: 1827–1835, 2011 PubMed
Mehmeti I, Lortz S, Avezov E, Jörns A, and Lenzen S. ER-resident antioxidative GPx7 and GPx8 enzyme isoforms protect insulin-secreting INS-1E β-cells against lipotoxicity by improving the ER antioxidative capacity. Free Radic Biol Med 112: 121–130, 2017 PubMed
Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, and Maechler P. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145: 667–678, 2004 PubMed
Mittal M, Gu XQ, Pak O, Pamenter ME, Haag D, Fuchs DB, Schermuly RT, Ghofrani HA, Brandes RP, Seeger W, Grimminger F, Haddad GG, and Weissmann N. Hypoxia induces Kvchannel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 52: 1033–1042, 2012 PubMed
Modak MA, Datar SP, Bhonde RR, and Ghaskadbi SS. Differential susceptibility of chick and mouse islets to streptozotocin and its co-relation with islet antioxidant status. J Comp Physiol B 177: 247–257, 2007 PubMed
Modak MA, Parab PB, and Ghaskadbi SS. Pancreatic islets are very poor in rectifying oxidative DNA damage. Pancreas 38: 23–29, 2009 PubMed
Montane J, Klimek-Abercrombie A, Potter KJ, Westwell-Roper C, and Bruce Verchere C. Metabolic stress, IAPP and islet amyloid. Diabetes Obes Metab 14: 68–77, 2012 PubMed
Monteiro G, Horta BB, Pimenta DC, Augusto O, and Netto LES. Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Proc Natl Acad Sci U S A 104: 4886–4891, 2007 PubMed PMC
Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, Bordin S, Curi R, Newsholme P, and Carpinelli AR. Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 50: 359–369, 2007 PubMed
Morita S, Shimajiri Y, Sakagashira S, Furuta M, and Sanke T. Effect of exposure to non-esterified fatty acid on progressive deterioration of insulin secretion in patients with type 2 diabetes: a long-term follow-up study. Diabet Med 29: 980–985, 2012 PubMed
Mukhuty A, Fouzder C, Mukherjee S, Malick C, Mukhopadhyay S, Bhattacharya S, and Kundu R. Palmitate induced Fetuin-A secretion from pancreatic β-cells adversely affects its function and elicits inflammation. Biochem Biophys Res Commun 491: 1118–1124, 2017 PubMed
Natalicchio A, Biondi G, Marrano N, Labarbuta R, Tortosa F, Spagnuolo R, D'Oria R, Carcjkjhia E, Leonardini A, Cignarelli A, Perrini S, Laviola L, and Giorgino F. Long-term exposure of pancreatic β-cells to palmitate results in SREBP-1C-dependent decreases in GLP-1 receptor signaling via CREB and AKT and insulin secretory response. Endocrinology 157: 2243–2258, 2016 PubMed
Newsholme P, Homem De Bittencourt PI, O' Hagan C, De Vito G, Murphy C, and Krause MS. Exercise and possible molecular mechanisms of protection from vascular disease and diabetes: the central role of ROS and nitric oxide. Clin Sci (Lond) 118: 341–349, 2009 PubMed
Newsholme P, Morgan D, Rebelato E, Oliveira-Emilio HC, Procopio J, Curi R, and Carpinelli A. Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell. Diabetologia 52: 2489–2498, 2009 PubMed
Ng NHJ. and Teo AKK. Heterogeneity and cell fate fl ux in single human pancreatic islet cells. Cell Death Dis 9: 222, 2018 PubMed PMC
Nicholas LM, Valtat B, Medina A, Andersson L, Abels M, Mollet IG, Jain D, Eliasson L, Wierup N, Fex M, and Mulder H. Mitochondrial transcription factor B2 is essential for mitochondrial and cellular function in pancreatic β-cells. Mol Metab 6: 651–663, 2017 PubMed PMC
Nicholson T, Church C, Baker DJ, and Jones SW. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J Inflamm (Lond) 15: 9, 2018 PubMed PMC
Nishikawa T. and Araki E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9: 343–353, 2007 PubMed
Nti BK, Markman JL, Bertera S, Styche AJ, Lakomy RJ, Subbotin VM, Trucco M, and Zorina TD. Treg cells in pancreatic lymph nodes: the possible role in diabetogenesis and β cell regeneration in a T1D model. Cell Mol Immunol 9: 455–463, 2012 PubMed PMC
Ocaña GJ, Pérez L, Guindon L, Deffit SN, Evans-Molina C, Thurmond DC, and Blum JS. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α. Immunology 151: 198–210, 2017 PubMed PMC
Odegaard ML, Joseph JW, Jensen MV, Lu D, Ilkayeva O, Ronnebaum SM, Becker TC, and Newgard CB. The mitochondrial 2-oxoglutarate carrier is part of a metabolic pathway that mediates glucose- and glutamine-stimulated insulin secretion. J Biol Chem 285: 16530–16537, 2010 PubMed PMC
Okada T, Liew CW, Hu J, Hinault C, Michael MD, Krtzfeldt J, Yin C, Holzenberger M, Stoffel M, and Kulkarni RN. Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci U S A 104: 8977–8982, 2007 PubMed PMC
Okado-Matsumoto A. and Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem 276: 38388–38393, 2001 PubMed
Oliveira JM, Rebuffat SA, Gasa R, and Gomis R. Targeting type 2 diabetes: lessons from a knockout model of insulin receptor substrate 2. Can J Physiol Pharmacol 92: 613–620, 2014 PubMed
Oslowski CM, Hara T, O'Sullivan-Murphy B, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST, Greiner D, Kaufman RJ, Bortell R, and Urano F. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab 16: 265–273, 2012 PubMed PMC
Ota T. Chemokine systems link obesity to insulin resistance. Diabetes Metab J 37: 165–172, 2013 PubMed PMC
Panse M, Kluth O, Lorza-Gil E, Kaiser G, Mühlbauer E, Schürmann A, Häring HU, Ullrich S, and Gerst F. Palmitate and insulin counteract glucose-induced thioredoxin interacting protein (TXNIP) expression in insulin secreting cells via distinct mechanisms. PLoS One 13: e0198016, 2018 PubMed PMC
Park JH, Kim SJ, Park SH, Son DG, Bae JH, Kim HK, Han J, and Song DK. Glucagon-like peptide-1 enhances glucokinase activity in pancreatic β-cells through the association of Epac2 with Rim2 and Rab3A. Endocrinology 153: 574–582, 2012 PubMed
Persaud SJ, Asare-Anane H, and Jones PM. Insulin receptor activation inhibits insulin secretion from human islets of Langerhans. FEBS Lett 510: 225–228, 2002 PubMed
Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT, Andersen ME, Corkey BE, and Collins S. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56: 1783–1791, 2007 PubMed
Plecitá-Hlavatá L. and Ježek P. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int J Biochem Cell Biol 80: 31–50, 2016 PubMed
Plötz T, Krümmel B, Laporte A, Pingitore A, Persaud SJ, Jörns A, Elsner M, Mehmeti I, and Lenzen S. The monounsaturated fatty acid oleate is the major physiological toxic free fatty acid for human beta cells. Nutr Diabetes 7: 305, 2017 PubMed PMC
Prentki M, Matschinsky FM, and Madiraju SRM. Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18: 162–185, 2013 PubMed
Preston AM, Gurisik E, Bartley C, Laybutt DR, and Biden TJ. Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia 52: 2369–2373, 2009 PubMed
Puri S, Roy N, Russ HA, Leonhardt L, French EK, Roy R, Bengtsson H, Scott DK, Stewart AF, and Hebrok M. Replication confers β cell immaturity. Nat Commun 9: 485, 2018 PubMed PMC
Purves T, Middlemas A, Agthong S, Jude EB, Boulton AJM, Fernyhough P, and Tomlinson DR. A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J 15: 2508–2514, 2001 PubMed
Qian J, Gu Y, Wu C, Yu F, Chen Y, Zhu J, Yao X, Bei C, and Zhu Q. Agonist-induced activation of human FFA1 receptor signals to extracellular signal-regulated kinase 1 and 2 through Gq- and Gi-coupled signaling cascades. Cell Mol Biol Lett 22: 13, 2017 PubMed PMC
Qiu Y, Guo M, Huang S, and Stein R. Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, BETA2, and E47. Mol Cell Biol 22: 412–420, 2002 PubMed PMC
Rabhi N, Salas E, Froguel P, and Annicotte JS. Role of the unfolded protein response in β cell compensation and failure during diabetes. J Diabetes Res 2014: 795171, 2014 PubMed PMC
Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, Guo A, Gut P, Sahu AK, Li B, Uppala R, Fitch M, Riiff T, Zhu L, Zhou J, Mulhern D, Stevens RD, Ilkayeva OR, Newgard CB, Jacobson MP, Hellerstein M, Goetzman ES, Gibson BW, and Verdin E. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18: 920–933, 2013 PubMed PMC
Rehman K. and Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 23: 87, 2016 PubMed PMC
Reinbothe TM, Ivarsson R, Li DQ, Niazi O, Jing X, Zhang E, Stenson L, Bryborn U, and Renström E. Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion. Mol Endocrinol 23: 893–900, 2009 PubMed PMC
Rhodes CJ, White MF, Leahy JL, and Kahn SE. Direct autocrine action of insulin on β-cells: does it make physiological sense? Diabetes 62: 2157–2163, 2013 PubMed PMC
Rojas J, Bermudez V, Palmar J, Sofía Martínez M, Olivar LC, Nava M, Tomey D, Rojas M, Salazar J, Garicano C, and Velasco M. Pancreatic beta cell death: novel potential mechanisms in diabetes therapy. J Diabetes Res 2018: 9601801, 2018 PubMed PMC
Roma LP, Duprez J, Takahashi HK, Gilon P, Wiederkehr A, and Jonas JC. Dynamic measurements of mitochondrial hydrogen peroxide concentration and glutathione redox state in rat pancreatic β-cells using ratiometric fluorescent proteins: confounding effects of pH with HyPer but not roGFP1. Biochem J 441: 971–978, 2012 PubMed
Ronnebaum SM, Ilkayeva O, Burgess SC, Joseph JW, Lu D, Stevens RD, Becker TC, Sherry AD, Newgard CB, and Jensen MV. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J Biol Chem 281: 30593–30602, 2006 PubMed
Rorsman P. and Huising MO. The somatostatin-secreting pancreatic δ-cell in health and disease. Nat Rev Endocrinol 14: 404–414, 2018 PubMed PMC
Rutter GA, Pullen TJ, Hodson DJ, and Martinez-Sanchez A. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J 466: 203–218, 2015 PubMed
Saadeh M, Ferrante TC, Kane A, Shirihai O, Corkey BE, and Deeney JT. Reactive oxygen species stimulate insulin secretion in rat pancreatic islets: studies using mono-oleoyl-glycerol. PLoS One 7: e30200, 2012 PubMed PMC
Sabrautzki S, Kaiser G, Przemeck GKH, Gerst F, Lorza-Gil E, Panse M, Sartorius T, Hoene M, Marschall S, Häring HU, Hrabě de Angelis M, and Ullrich S. Point mutation of Ffar1 abrogates fatty acid-dependent insulin secretion, but protects against HFD-induced glucose intolerance. Mol Metab 6: 1304–1312, 2017 PubMed PMC
Safayee S, Karbalaei N, Noorafshan A, and Nadimi E. Induction of oxidative stress, suppression of glucose-induced insulin release, ATP production, glucokinase activity, and histomorphometric changes in pancreatic islets of hypothyroid rat. Eur J Pharmacol 791: 147–156, 2016 PubMed
Salomon RG. Levuglandins and isolevuglandins: stealthy toxins of oxidative injury. Antioxid Redox Signal 7: 185–201, 2005 PubMed
Sampson SR, Bucris E, Horovitz-Fried M, Parnas A, Kahana S, Abitbol G, Chetboun M, Rosenzweig T, Brodie C, and Frankel S. Insulin increases H2O2-induced pancreatic beta cell death. Apoptosis 15: 1165–1176, 2010 PubMed
Sarre A, Gabrielli J, Vial G, Leverve XM, and Assimacopoulos-Jeannet F. Reactive oxygen species are produced at low glucose and contribute to the activation of AMPK in insulin-secreting cells. Free Radic Biol Med 52: 142–150, 2012 PubMed
Sasson S. Nutrient overload, lipid peroxidation and pancreatic beta cell function. Free Radic Biol Med 111: 102–109, 2017 PubMed
Schuit F, Flamez D, De Vos A, and Pipeleers D. Glucose-regulated gene expression maintaining the glucose-responsive state of β-cells. Diabetes 51: S326–S332, 2002 PubMed
Schuit F, Moens K, Heimberg H, and Pipeleers D. Cellular origin of hexokinase in pancreatic islets. J Biol Chem 274: 32803–32809, 1999 PubMed
Schulthess FT, Paroni F, Sauter NS, Shu L, Ribaux P, Haataja L, Strieter RM, Oberholzer J, King CC, and Maedler K. CXCL10 impairs β cell function and viability in diabetes through TLR4 signaling. Cell Metab 9: 125–139, 2009 PubMed
Shida T, Kamei N, Takeda-Morishita M, Isowa K, and Takayama K. Colonic delivery of docosahexaenoic acid improves impaired glucose tolerance via GLP-1 secretion and suppresses pancreatic islet hyperplasia in diabetic KK-A(y) mice. Int J Pharm 450: 63–69, 2013 PubMed
Shukla S. and Mishra R. Level of hydrogen peroxide affects expression and sub-cellular localization of Pax6. Mol Biol Rep 45: 533–544, 2018 PubMed
Singh S, Bhowmick DC, Pany S, Joe M, Zaghlula N, and Jeremic AM. Apoptosis signal regulating kinase-1 and NADPH oxidase mediate human amylin evoked redox stress and apoptosis in pancreatic beta-cells. Biochim Biophys Acta Biomembr 1860: 1721–1733, 2018 PubMed PMC
Sireesh D, Dhamodharan U, Ezhilarasi K, Vijay V, and Ramkumar KM. Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset type 2 diabetes mellitus. Sci Rep 8: 5126, 2018 PubMed PMC
This reference has been deleted
Song H, Wohltmann M, Tan M, Ladenson JH, and Turk J. Group VIA phospholipase A2 mitigates palmitate-induced beta-cell mitochondrial injury and apoptosis. J Biol Chem 289: 14194–14210, 2014 PubMed PMC
Špaček T, Pavluch V, Alán L, Capková N, Engstová H, Dlasková A, Berková Z, Saudek F, and Ježek P. Nkx6.1 decline accompanies mitochondrial DNA reduction but subtle nucleoid size decrease in pancreatic islet β-cells of diabetic Goto Kakizaki rats. Sci Rep 7: 15674, 2017 PubMed PMC
Spacek T, Santorová J, Zacharovová K, Berková Z, Hlavatá L, Saudek F, and Jezek P. Glucose-stimulated insulin secretion of insulinoma INS-1E cells is associated with elevation of both respiration and mitochondrial membrane potential. Int J Biochem Cell Biol 40: 1522–1535, 2008 PubMed
Spijker HS, Ravelli RBG, Mommaas-Kienhuis AM, Van Apeldoorn AA, Engelse MA, Zaldumbide A, Bonner-Weir S, Rabelink TJ, Hoeben RC, Clevers H, Mummery CL, Carlotti F, and De Koning EJP. Conversion of mature human β-cells into glucagon-producing α-cells. Diabetes 62: 2471–2480, 2013 PubMed PMC
Spijker HS, Song H, Ellenbroek JH, Roefs MM, Engelse MA, Bos E, Koster AJ, Rabelink TJ, Hansen BC, Clark A, Carlotti F, and De Koning EJP. Loss of β-cell identity occurs in type 2 diabetes and is associated with islet amyloid deposits. Diabetes 64: 2928–2938, 2015 PubMed
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, and Zhang DD. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171: 273–285, 2017 PubMed PMC
Sun W, Liu C, Chen Q, Liu N, Yan Y, and Liu B. SIRT3: a new regulator of cardiovascular diseases. Oxid Med Cell Longev 2018: 1–11, 2018 PubMed PMC
Supale S, Li N, Brun T, and Maechler P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab 23: 477–487, 2012 PubMed
Swisa A, Avrahami D, Eden N, Zhang J, Feleke E, Dahan T, Cohen-Tayar Y, Stolovich-Rain M, Kaestner KH, Glaser B, Ashery-Padan R, and Dor Y. PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J Clin Invest 127: 230–243, 2017 PubMed PMC
Swisa A, Glaser B, and Dor Y. Metabolic stress and compromised identity of pancreatic beta cells. Front Genet 8: 21, 2017 PubMed PMC
Tachibana K, Sakurai K, Yokoh H, Ishibashi T, Ishikawa K, Shirasawa T, and Yokote K. Mutation in insulin receptor attenuates oxidative stress and apoptosis in pancreatic beta-cells induced by nutrition excess: reduced insulin signaling and ROS. Horm Metab Res 47: 176–183, 2015 PubMed
Takahashi HK, Santos LRB, Roma LP, Duprez J, Broca C, Wojtusciszyn A, and Jonas JC. Acute nutrient regulation of the mitochondrial glutathione redox state in pancreatic β-cells. Biochem J 460: 411–423, 2014 PubMed
Talchai C, Xuan S, Lin HV, Sussel L, and Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150: 1223–1234, 2012 PubMed PMC
Taneera J, Lang S, Sharma A, Fadista J, Zhou Y, Ahlqvist E, Jonsson A, Lyssenko V, Vikman P, Hansson O, Parikh H, Korsgren O, Soni A, Krus U, Zhang E, Jing XJ, Esguerra JLS, Wollheim CB, Salehi A, Rosengren A, Renström E, and Groop L. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16: 122–134, 2012 PubMed
Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald WH, Olivier AK, Spitz DR, and Gius D. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40: 893–904, 2010 PubMed PMC
Tao R, Vassilopoulos A, Parisiadou L, Yan Y, and Gius D. Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid Redox Signal 20: 1646–1654, 2014 PubMed PMC
Taylor BL, Liu FF, and Sander M. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep 4: 1262–1275, 2013 PubMed PMC
Teo AKK, Lim CS, Cheow LF, Kin T, Shapiro JA, Kang NY, Burkholder W, and Lau HH. Single-cell analyses of human islet cells reveal de-differentiation signatures. Cell Death Discov 4: 14, 2018 PubMed PMC
Tian G, Sol ER, Xu Y, Shuai H, and Tengholm A. Impaired cAMP generation contributes to defective glucose-stimulated insulin secretion after long-term exposure to palmitate. Diabetes 64: 904–915, 2015 PubMed
Tiedge M, Lortz S, Drinkgern J, and Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46: 1733–1742, 1997 PubMed
Tonooka N, Oseid E, Zhou H, Harmon JS, and Robertson RP. Glutathione peroxidase protein expression and activity in human islets isolated for transplantation. Clin Transpl 21: 767–772, 2007 PubMed
Tyurina YY, Shrivastava I, Tyurin VA, Mao G, Dar HH, Watkins S, Epperly M, Bahar I, Shvedova AA, Pitt B, Wenzel SE, Mallampalli RK, Sadovsky Y, Gabrilovich D, Greenberger JS, Bayır H, and Kagan VE. “Only a life lived for others is worth living”: redox signaling by oxygenated phospholipids in cell fate decisions. Antioxid Redox Signal 29: 1333–1358, 2018 PubMed PMC
Uchizono Y, Alarcón C, Wicksteed BL, Marsh BJ, and Rhodes CJ. The balance between proinsulin biosynthesis and insulin secretion: where can imbalance lead? Diabetes Obes Metab 9: 56–66, 2007 PubMed
Uruno A, Yagishita Y, and Yamamoto M. The Keap1-Nrf2 system and diabetes mellitus. Arch Biochem Biophys 566: 76–84, 2015 PubMed
Velasquez C, Vasquez JS, and Balcazar N. In vitro effect of fatty acids identified in the plasma of obese adolescents on the function of pancreatic β-cells. Diabetes Metab J 41: 303–315, 2017 PubMed PMC
Victor VM, Rocha M, Herance R, and Hernandez-Mijares A. Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr Pharm Des 17: 3947–3958, 2011 PubMed
Villard O, Brun JF, Bories L, Molinari N, Benhamou PY, Berney T, and Wojtusciszyn A. The second phase of insulin secretion in nondiabetic islet-grafted recipients is altered and can predict graft outcome. J Clin Endocrinol Metab 103: 1310–1319, 2018 PubMed
Wang J, Gu W, and Chen C. Knocking down insulin receptor in pancreatic beta cell lines with lentiviral-small hairpin RNA reduces glucose-stimulated insulin secretion via decreasing the gene expression of insulin, GLUT2 and Pdx1. Int J Mol Sci 19: 985, 2018 PubMed PMC
Wang J, Yang X, and Zhang J. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells. Cell Signal 28: 1099–1104, 2016 PubMed
Wang X, Ge QM, Bian F, Dong Y, and Huang CM. Inhibition of TLR4 protects rat islets against lipopolysaccharide-induced dysfunction. Mol Med Rep 15: 805–812, 2017 PubMed
Wang X, Vatamaniuk MZ, Roneker CA, Pepper MP, Hu LG, Simmons RA, and Lei XG. Knockouts of SOD1 and GPX1 exert different impacts on murine islet function and pancreatic integrity. Antioxid Redox Signal 14: 391–401, 2011 PubMed PMC
Wang Z, York NW, Nichols CG, and Remedi MS. Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab 19: 872–882, 2014 PubMed PMC
Watada H. and Fujitani Y. Minireview: autophagy in pancreatic β-cells and its implication in diabetes. Mol Endocrinol 29: 338–348, 2015 PubMed PMC
Watkins RA, Evans-Molina C, Terrell JK, Day KH, Guindon L, Restrepo IA, Mirmira RG, Blum JS, and DiMeglio LA. Proinsulin and heat shock protein 90 as biomarkers of beta-cell stress in the early period after onset of type 1 diabetes. Transl Res 168: 96.e1–106.e1, 2016 PubMed PMC
Weaver J. and Taylor-Fishwick DA. Relationship of NADPH oxidase-1 expression to beta cell dysfunction induced by inflammatory cytokines. Biochem Biophys Res Commun 485: 290–294, 2017 PubMed
Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, and Ferrante AW. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116: 115–124, 2006 PubMed PMC
Welsh N, Margulis B, Borg LA, Wiklund HJ, Saldeen J, Flodström M, Mello MA, Andersson A, Pipeleers DG, and Hellerström C. Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol Med 1: 806–820, 1995 PubMed PMC
Westermark P, Andersson A, and Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91: 795–826, 2011 PubMed
Wiederkehr A. and Wollheim CB. Mitochondrial signals drive insulin secretion in the pancreatic β-cell. Mol Cell Endocrinol 353: 128–137, 2012 PubMed
Xiao C, Giacca A, Carpentier A, and Lewis GF. Differential effects of monounsaturated, polyunsaturated and saturated fat ingestion on glucose-stimulated insulin secretion, sensitivity and clearance in overweight and obese, non-diabetic humans. Diabetologia 49: 1371–1379, 2006 PubMed
Xu G, Chen J, Jing G, and Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 19: 1141–1146, 2013 PubMed PMC
Yang KS, Kang SW, Woo HA, Hwang SC, Chae HZ, Kim K, and Rhee SG. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J Biol Chem 277: 38029–38036, 2002 PubMed
Yang SN, Shi Y, Yang G, Li Y, Yu J, and Berggren PO. Ionic mechanisms in pancreatic β cell signaling. Cell Mol Life Sci 71: 4149–4177, 2014 PubMed PMC
Yao T, Fujimura T, Murayama K, Okumura K, and Seko Y. Oxidative stress-responsive apoptosis inducing protein (ORAIP) plays a critical role in high glucose-induced apoptosis in rat cardiac myocytes and murine pancreatic β-cells. Cells 6: 35, 2017 PubMed PMC
Yasui S, Mawatari K, Morizumi R, Furukawa H, Shimohata T, Harada N, Takahashi A, and Nakaya Y. Hydrogen peroxide inhibits insulin-induced ATP-sensitive potassium channel activation independent of insulin signaling pathway in cultured vascular smooth muscle cells. J Med Invest 59: 36–44, 2012 PubMed
Yavari A, Stocker CJ, Ghaffari S, Wargent ET, Steeples V, Czibik G, Pinter K, Bellahcene M, Woods A, Martínez De Morentin PB, Cansell C, Lam BYH, Chuster A, Petkevicius K, Nguyen-Tu MS, Martinez-Sanchez A, Pullen TJ, Oliver PL, Stockenhuber A, Nguyen C, Lazdam M, O'Dowd JF, Harikumar P, Tóth M, Beall C, Kyriakou T, Parnis J, Sarma D, Katritsis G, Wortmann DDJ, Harper AR, Brown LA, Willows R, Gandra S, Poncio V, De Oliveira Figueiredo MJ, Qi NR, Peirson SN, McCrimmon RJ, Gereben B, Tretter L, Fekete C, Redwood C, Yeo GSH, Heisler LK, Rutter GA, Smith MA, Withers DJ, Carling D, Sternick EB, Arch JRS, Cawthorne MA, Watkins H, and Ashrafian H. Chronic activation of γ2 AMPK induces obesity and reduces β cell function. Cell Metab 23: 821–836, 2016 PubMed PMC
Yu H, Guo P, Xie X, Wang Y, and Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med 21: 648–657, 2017 PubMed PMC
Yu JH, Kim KH, and Kim H. Role of NADPH oxidase and calcium in cerulein-induced apoptosis: involvement of apoptosis-inducing factor. Ann N Y Acad Sci 1090: 292–297, 2006 PubMed
Zand H, Morshedzadeh N, and Naghashian F. Signaling pathways linking inflammation to insulin resistance. Diabetes Metab Syndr 11: S307–S309, 2017 PubMed
Zhang Y, Bharathi SS, Rardin MJ, Lu J, Maringer KV, Sims-Lucas S, Prochownik EV, Gibson BW, and Goetzman ES. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain. J Biol Chem 292: 10239–10249, 2017 PubMed PMC
Zhang Y, Warnock GL, Ao Z, Park YJ, Safikhan N, Ghahary A, and Marzban L. Amyloid formation reduces protein kinase B phosphorylation in primary islet β-cells which is improved by blocking IL-1β signaling. PLoS One 13: e0193184, 2018 PubMed PMC
Zhao F. and Wang Q. The protective effect of peroxiredoxin II on oxidative stress induced apoptosis in pancreatic β-cells. Cell Biosci 2: 22, 2012 PubMed PMC
Zheng S, Ren X, Han T, Chen Y, Qiu H, Liu W, and Hu Y. Fenofibrate attenuates fatty acid-induced islet β-cell dysfunction and apoptosis via inhibiting the NF-κB/MIF dependent inflammatory pathway. Metabolism 77: 23–38, 2017 PubMed
Zhou Y, Chung ACK, Fan R, Lee HM, Xu G, Tomlinson B, Chan JCN, and Kong APS. Sirt3 deficiency increased the vulnerability of pancreatic beta cells to oxidative stress-induced dysfunction. Antioxid Redox Signal 27: 962–976, 2017 PubMed
Mitochondrial Physiology of Cellular Redox Regulations
Deficiency of transcription factor Nkx6.1 does not prevent insulin secretion in INS-1E cells
Contribution of Mitochondria to Insulin Secretion by Various Secretagogues
The Pancreatic β-Cell: The Perfect Redox System
Glucose-Induced Expression of DAPIT in Pancreatic β-Cells
Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4
Redox Signaling from Mitochondria: Signal Propagation and Its Targets
Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic β-cells