Glucose-Induced Expression of DAPIT in Pancreatic β-Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
20-00408S
Grantová Agentura České Republiky - International
PubMed
32664368
PubMed Central
PMC7408392
DOI
10.3390/biom10071026
PII: biom10071026
Knihovny.cz E-zdroje
- Klíčová slova
- ATP synthase oligomers mitochondrial cristae morphology, USMG5/DAPIT, glucose-induced expression, glucose-stimulated insulin secretion, membrane subunits of ATP synthase, mitochondria,
- MeSH
- adenosintrifosfát metabolismus MeSH
- beta-buňky cytologie účinky léků metabolismus MeSH
- buněčné kultury MeSH
- buněčné linie MeSH
- glukosa aplikace a dávkování farmakologie MeSH
- konformace proteinů MeSH
- krysa rodu Rattus MeSH
- kyselina hyaluronová chemie MeSH
- membránové proteiny chemie genetika metabolismus MeSH
- mitochondriální DNA účinky léků genetika MeSH
- mitochondrie účinky léků genetika metabolismus MeSH
- molekulární modely MeSH
- myši MeSH
- upregulace * MeSH
- variabilita počtu kopií segmentů DNA účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- Atp5md protein, rat MeSH Prohlížeč
- glukosa MeSH
- kyselina hyaluronová MeSH
- membránové proteiny MeSH
- mitochondriální DNA MeSH
Transcript levels for selected ATP synthase membrane FO-subunits-including DAPIT-in INS-1E cells were found to be sensitive to lowering glucose down from 11 mM, in which these cells are routinely cultured. Depending on conditions, the diminished mRNA levels recovered when glucose was restored to 11 mM; or were elevated during further 120 min incubations with 20-mM glucose. Asking whether DAPIT expression may be elevated by hyperglycemia in vivo, we studied mice with hyaluronic acid implants delivering glucose for up to 14 days. Such continuous two-week glucose stimulations in mice increased DAPIT mRNA by >5-fold in isolated pancreatic islets (ATP synthase F1α mRNA by 1.5-fold). In INS-1E cells, the glucose-induced ATP increment vanished with DAPIT silencing (6% of ATP rise), likewise a portion of the mtDNA-copy number increment. With 20 and 11-mM glucose the phosphorylating/non-phosphorylating respiration rate ratio diminished to ~70% and 96%, respectively, upon DAPIT silencing, whereas net GSIS rates accounted for 80% and 90% in USMG5/DAPIT-deficient cells. Consequently, the sufficient DAPIT expression and complete ATP synthase assembly is required for maximum ATP synthesis and mitochondrial biogenesis, but not for insulin secretion as such. Elevated DAPIT expression at high glucose further increases the ATP synthesis efficiency.
Zobrazit více v PubMed
Ashcroft F.M., Rorsman P. Diabetes Mellitus and the β Cell: The Last Ten Years. Cell. 2012;148:1160–1171. doi: 10.1016/j.cell.2012.02.010. PubMed DOI PMC
Prentki M., Matschinsky F.M., Madiraju S.R.M. Metabolic Signaling in Fuel-Induced Insulin Secretion. Cell Metab. 2013;18:162–185. doi: 10.1016/j.cmet.2013.05.018. PubMed DOI
Maechler P. Mitochondrial function and insulin secretion. Mol. Cell. Endocrinol. 2013 doi: 10.1016/j.mce.2013.06.019. PubMed DOI
Rutter G.A., Pullen T.J., Hodson D.J., Martinez-Sanchez A. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem. J. 2015;466:203–218. doi: 10.1042/BJ20141384. PubMed DOI
Ježek P., Jabůrek M., Holendová B., Plecitá-Hlavatá L. Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules. 2018;23:1483. doi: 10.3390/molecules23061483. PubMed DOI PMC
Ježek P., Jabůrek M., Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid. Redox Signal. 2019 doi: 10.1089/ars.2018.7656. PubMed DOI PMC
Fex M., Nicholas L.M., Vishnu N., Medina A., Sharoyko V.V., Nicholls D.G., Spégel P., Mulder H. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J. Endocrinol. 2018;236:R145–r159. doi: 10.1530/JOE-17-0367. PubMed DOI
Plecita-Hlavata L., Jaburek M., Holendova B., Tauber J., Pavluch V., Berkova Z., Cahova M., Schroeder K., Brandes R.P., Siemen D., et al. Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4. Diabetes. 2020 doi: 10.2337/db19-1130. PubMed DOI
Leturque A., Brot-Laroche E., Le Gall M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am. J. Physiology. Endocrinol. Metab. 2009;296:E985–E992. doi: 10.1152/ajpendo.00004.2009. PubMed DOI
Park J.H., Kim S.J., Park S.H., Son D.G., Bae J.H., Kim H.K., Han J., Song D.K. Glucagon-like peptide-1 enhances glucokinase activity in pancreatic beta-cells through the association of Epac2 with Rim2 and Rab3A. Endocrinology. 2012;153:574–582. doi: 10.1210/en.2011-0259. PubMed DOI
Kahancová A., Sklenář F., Ježek P., Dlasková A. Regulation of glucose-stimulated insulin secretion by ATPase Inhibitory Factor 1 (IF1) FEBS Lett. 2018;592:999–1009. doi: 10.1002/1873-3468.12991. PubMed DOI
Špaček T., Šantorová J., Zacharovová K., Berková Z., Hlavatá L., Saudek F., Ježek P. Glucose-stimulated insulin secretion of insulinoma INS-1E cells is associated with elevation of both respiration and mitochondrial membrane potential. Int. J. Biochem. Cell Biol. 2008;40:1522–1535. doi: 10.1016/j.biocel.2007.11.015. PubMed DOI
Kahancová A., Sklenář F., Ježek P., Dlasková A. Overexpression of native IF1 downregulates glucose-stimulated insulin secretion by pancreatic INS-1E cells. Sci. Rep. 2020;10:1551. doi: 10.1038/s41598-020-58411-x. PubMed DOI PMC
Affourtit C., Alberts B., Barlow J., Carré J.E., Wynne A.G. Control of pancreatic β-cell bioenergetics. Biochem. Soc. Trans. 2018;46:555–564. doi: 10.1042/BST20170505. PubMed DOI
Bartley C., Brun T., Oberhauser L., Grimaldi M., Molica F., Kwak B.R., Bosco D., Chanson M., Maechler P. Chronic fructose renders pancreatic β-cells hyper-responsive to glucose-stimulated insulin secretion through extracellular ATP signaling. Am. J. Physiol. Endocrinol. Metab. 2019;317:E25–e41. doi: 10.1152/ajpendo.00456.2018. PubMed DOI
Gerencser A.A. Metabolic activation-driven mitochondrial hyperpolarization predicts insulin secretion in human pancreatic beta-cells. Biochim. Et Biophys. Acta (Bba) - Bioenerg. 2018;1859:817–828. doi: 10.1016/j.bbabio.2018.06.006. PubMed DOI PMC
Dlasková A., Engstová H., Špaček T., Kahancová A., Pavluch V., Smolková K., Špačková J., Bartoš M., Hlavatá L.P., Ježek P. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. Biochim. Et Biophys. Acta. Bioenerg. 2018;1859:829–844. doi: 10.1016/j.bbabio.2018.04.013. PubMed DOI
Dlaskova A., Spacek T., Engstova H., Spackova J., Schrofel A., Holendova B., Smolkova K., Plecita-Hlavata L., Jezek P. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Et Biophys. Acta. Bioenerg. 2019;1860:659–678. doi: 10.1016/j.bbabio.2019.06.015. PubMed DOI
Klusch N., Murphy B.J., Mills D.J., Yildiz O., Kuhlbrandt W. Structural basis of proton translocation and force generation in mitochondrial ATP synthase. eLife. 2017:6. doi: 10.7554/eLife.33274. PubMed DOI PMC
Gu J., Zhang L., Zong S., Guo R., Liu T., Yi J., Wang P., Zhuo W., Yang M. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science. 2019;364:1068–1075. doi: 10.1126/science.aaw4852. PubMed DOI
Davies K.M., Anselmi C., Wittig I., Faraldo-Gomez J.D., Kuhlbrandt W. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc. Natl. Acad. Sci. USA. 2012;109:13602–13607. doi: 10.1073/pnas.1204593109. PubMed DOI PMC
Daum B., Walter A., Horst A., Osiewacz H.D., Kuhlbrandt W. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc. Natl. Acad. Sci. USA. 2013;110:15301–15306. doi: 10.1073/pnas.1305462110. PubMed DOI PMC
Davies K.M., Strauss M., Daum B., Kief J.H., Osiewacz H.D., Rycovska A., Zickermann V., Kuhlbrandt W. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. USA. 2011;108:14121–14126. doi: 10.1073/pnas.1103621108. PubMed DOI PMC
Strauss M., Hofhaus G., Schroder R.R., Kuhlbrandt W. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 2008;27:1154–1160. doi: 10.1038/emboj.2008.35. PubMed DOI PMC
Jiko C., Davies K.M., Shinzawa-Itoh K., Tani K., Maeda S., Mills D.J., Tsukihara T., Fujiyoshi Y., Kuhlbrandt W., Gerle C. Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals. eLife. 2015;4:e06119. doi: 10.7554/eLife.06119. PubMed DOI PMC
He J., Ford H.C., Carroll J., Douglas C., Gonzales E., Ding S., Fearnley I.M., Walker J.E. Assembly of the membrane domain of ATP synthase in human mitochondria. Proc. Natl. Acad. Sci. USA. 2018;115:2988–2993. doi: 10.1073/pnas.1722086115. PubMed DOI PMC
Kontro H., Hulmi J.J., Rahkila P., Kainulainen H. Cellular and tissue expression of DAPIT, a phylogenetically conserved peptide. Eur. J. Histochem. EJH. 2012;56:e18. doi: 10.4081/ejh.2012.18. PubMed DOI PMC
Kontro H., Cannino G., Rustin P., Dufour E., Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990. doi: 10.1371/journal.pone.0143268. PubMed DOI PMC
Ohsakaya S., Fujikawa M., Hisabori T., Yoshida M. Knockdown of DAPIT (diabetes-associated protein in insulin-sensitive tissue) results in loss of ATP synthase in mitochondria. J. Biol. Chem. 2011;286:20292–20296. doi: 10.1074/jbc.M110.198523. PubMed DOI PMC
Paivarinne H., Kainulainen H. DAPIT, a novel protein down-regulated in insulin-sensitive tissues in streptozotocin-induced diabetes. Acta Diabetol. 2001;38:83–86. doi: 10.1007/s005920170018. PubMed DOI
Nagata Y., Yamagishi M., Konno T., Nakanishi C., Asano Y., Ito S., Nakajima Y., Seguchi O., Fujino N., Kawashiri M.A., et al. Heat Failure Phenotypes Induced by Knockdown of DAPIT in Zebrafish: A New Insight into Mechanism of Dilated Cardiomyopathy. Sci. Rep. 2017;7:17417. doi: 10.1038/s41598-017-17572-y. PubMed DOI PMC
Eydt K., Davies K.M., Behrendt C., Wittig I., Reichert A.S. Cristae architecture is determined by an interplay of the MICOS complex and the F1FO ATP synthase via Mic27 and Mic10. Microb. Cell (Grazaustria) 2017;4:259–272. doi: 10.15698/mic2017.08.585. PubMed DOI PMC
Rampelt H., Bohnert M., Zerbes R.M., Horvath S.E., Warscheid B., Pfanner N., van der Laan M. Mic10, a Core Subunit of the Mitochondrial Contact Site and Cristae Organizing System, Interacts with the Dimeric F1Fo-ATP Synthase. J. Mol. Biol. 2017;429:1162–1170. doi: 10.1016/j.jmb.2017.03.006. PubMed DOI
Barca E., Ganetzky R.D., Potluri P., Juanola-Falgarona M., Gai X., Li D., Jalas C., Hirsch Y., Emmanuele V., Tadesse S., et al. USMG5 Ashkenazi Jewish founder mutation impairs mitochondrial complex V dimerization and ATP synthesis. Hum. Mol. Genet. 2018;27:3305–3312. doi: 10.1093/hmg/ddy231. PubMed DOI PMC
Siegmund S.E., Grassucci R., Carter S.D., Barca E., Farino Z.J., Juanola-Falgarona M., Zhang P., Tanji K., Hirano M., Schon E.A., et al. Three-Dimensional Analysis of Mitochondrial Crista Ultrastructure in a Patient with Leigh Syndrome by In Situ Cryoelectron Tomography. iScience. 2018;6:83–91. doi: 10.1016/j.isci.2018.07.014. PubMed DOI PMC
Liu W., Zhang Z., Zhang Z.M., Hao P., Ding K., Li Z. Integrated phenotypic screening and activity-based protein profiling to reveal potential therapy targets of pancreatic cancer. Chem. Commun. (Camb. Engl. ) 2019;55:1596–1599. doi: 10.1039/C8CC08753A. PubMed DOI
Guo H., Bueler S.A., Rubinstein J.L. Atomic model for the dimeric F(O) region of mitochondrial ATP synthase. Science. 2017;358:936–940. doi: 10.1126/science.aao4815. PubMed DOI PMC
Ježek J., Dlasková A., Zelenka J., Jabůrek M., Ježek P. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells. Antioxid. Redox Signal. 2015;23:958–972. doi: 10.1089/ars.2014.6195. PubMed DOI PMC
Merglen A., Theander S., Rubi B., Chaffard G., Wollheim C.B., Maechler P. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology. 2004;145:667–678. doi: 10.1210/en.2003-1099. PubMed DOI
Alán L., Olejár T., Cahová M., Zelenka J., Berková Z., Smětáková M., Saudek F., Matěj R., Ježek P. Delta Cell Hyperplasia in Adult Goto-Kakizaki (GK/MolTac) Diabetic Rats. J. Diabetes Res. 2015;2015:1–16. doi: 10.1155/2015/385395. PubMed DOI PMC
Vaghy P.L., Matlib M.A., Schwartz A. Phosphate induced swelling, inhibition and partial uncoupling of oxidative phosphorylation in heart mitochondria in the absence of external calcium and the presence of EGTA. Biochem. Biophys. Res. Commun. 1981;100:37–44. doi: 10.1016/S0006-291X(81)80059-9. PubMed DOI
Praveen S.S., Hanumantha R., Belovich J.M., Davis B.L. Novel hyaluronic acid coating for potential use in glucose sensor design. Diabetes Technol. Ther. 2003;5:393–399. doi: 10.1089/152091503765691893. PubMed DOI
Hadler N.M. Enhanced diffusivity of glucose in a matrix of hyaluronic acid. J. Biol. Chem. 1980;255:3532–3535. PubMed
Plecitá-Hlavatá L., Engstová H., Alán L., Špaček T., Dlasková A., Smolková K., Špačková J., Tauber J., Strádalová V., Malínský J., et al. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering. FASEB J. 2016;30:1941–1957. doi: 10.1096/fj.201500176. PubMed DOI
Morgan D., Rebelato E., Abdulkader F., Graciano M.F.R., Oliveira-Emilio H.R., Hirata A.E., Rocha M.S., Bordin S., Curi R., Carpinelli A.R. Association of NAD(P)H Oxidase with Glucose-Induced Insulin Secretion by Pancreatic β-Cells. Endocrinology. 2009;150:2197–2201. doi: 10.1210/en.2008-1149. PubMed DOI
Newsholme P., Morgan D., Rebelato E., Oliveira-Emilio H.C., Procopio J., Curi R., Carpinelli A. Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell. Diabetologia. 2009;52:2489–2498. doi: 10.1007/s00125-009-1536-z. PubMed DOI
Bedard K., Krause K.-H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007;87:245–313. doi: 10.1152/physrev.00044.2005. PubMed DOI
Li N., Li B., Brun T., Deffert-Delbouille C., Mahiout Z., Daali Y., Ma X.-J., Krause K.-H., Maechler P. NADPH Oxidase NOX2 Defines a New Antagonistic Role for Reactive Oxygen Species and cAMP/PKA in the Regulation of Insulin Secretion. Diabetes. 2012;61:2842–2850. doi: 10.2337/db12-0009. PubMed DOI PMC
Serrander L., Cartier L., Bedard K., Banfi B., Lardy B., Plastre O., Sienkiewicz A., Fórró L., Schlegel W., Krause K.-H. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem. J. 2007;406:105–114. doi: 10.1042/BJ20061903. PubMed DOI PMC
Fujikawa M., Sugawara K., Tanabe T., Yoshida M. Assembly of human mitochondrial ATP synthase through two separate intermediates, F1-c-ring and b-e-g complex. Febs Lett. 2015;589:2707–2712. doi: 10.1016/j.febslet.2015.08.006. PubMed DOI
Lavie J., De Belvalet H., Sonon S., Ion A.M., Dumon E., Melser S., Lacombe D., Dupuy J.W., Lalou C., Bénard G. Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism. Cell Rep. 2018;23:2852–2863. doi: 10.1016/j.celrep.2018.05.013. PubMed DOI
Swisa A., Glaser B., Dor Y. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells. Front. Genet. 2017;08:21. doi: 10.3389/fgene.2017.00021. PubMed DOI PMC
Plecitá-Hlavatá L., Lessard M., Santorová J., Bewersdorf J., Jezek P. Mitochondrial oxidative phosphorylation and energetic status are reflected by morphology of mitochondrial network in INS-1E and HEP-G2 cells viewed by 4Pi microscopy. Biochim. Et Biophys. Acta. 2008;1777:834–846. doi: 10.1016/j.bbabio.2008.04.002. PubMed DOI
Pitfalls of Mitochondrial Redox Signaling Research
Deficiency of transcription factor Nkx6.1 does not prevent insulin secretion in INS-1E cells
Contribution of Mitochondria to Insulin Secretion by Various Secretagogues
The Pancreatic β-Cell: The Perfect Redox System