Overexpression of native IF1 downregulates glucose-stimulated insulin secretion by pancreatic INS-1E cells
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32005857
PubMed Central
PMC6994519
DOI
10.1038/s41598-020-58411-x
PII: 10.1038/s41598-020-58411-x
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- beta-buňky metabolismus MeSH
- buněčné linie MeSH
- CMP cyklický analogy a deriváty metabolismus MeSH
- down regulace MeSH
- glukosa metabolismus MeSH
- krysa rodu Rattus MeSH
- malá interferující RNA genetika MeSH
- protein inhibující ATPasu MeSH
- proteinkinasy závislé na cyklickém AMP metabolismus MeSH
- proteiny genetika metabolismus MeSH
- sekrece inzulinu * MeSH
- signální transdukce MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- CMP cyklický MeSH
- dibutyryl cyclic-3',5'-cytidine monophosphate MeSH Prohlížeč
- glukosa MeSH
- malá interferující RNA MeSH
- proteinkinasy závislé na cyklickém AMP MeSH
- proteiny MeSH
We have previously reported that transient knock-down of ATPase inhibitory factor 1 (IF1) by siRNA upregulates ATP levels and subsequently augments insulin secretion in model pancreatic β-cells INS-1E. Here we investigated how long-term IF1-overexpression impacts pancreatic β-cell bioenergetics and insulin secretion. We generated INS-1E cell line stably overexpressing native IF1. We revealed that IF1 overexpression leads to a substantial decrease in ATP levels and reduced glucose-stimulated insulin secretion. A decrease in total cellular ATP content was also reflected in decreased free ATP cytosolic and mitochondrial levels, as monitored with ATeam biosensor. Consistently, cellular respiration of IF1-overexpressing cells was decreased. 3D structured illumination microscopy (SIM) revealed a higher amount of insulin granules with higher volume in IF1-overexpressing cells. Similar effects occurred when cells were incubated at low glucose concentrations. Noteworthy, activation of PKA by dibutyryl cAMP entirely abolished the inhibitory effect of IF1 overexpression on ATP production and insulin secretion. Mitochondrial network morphology and cristae ultrastructure in INS-1E overexpressing IF1 remained mostly unchanged. Finally, we show that INS-1E cells decrease their IF1 protein levels relative to ATP synthase α-subunit in response to increased glucose. In conclusion, IF1 actively downregulates INS-1E cellular metabolism and reduces their ability to secrete insulin.
Zobrazit více v PubMed
Ashcroft FM, Rorsman P. Diabetes Mellitus and the β Cell: The Last Ten Years. Cell. 2012;148:1160–1171. doi: 10.1016/j.cell.2012.02.010. PubMed DOI PMC
Prentki M, Matschinsky FM, Madiraju SRM. Metabolic Signaling in Fuel-Induced Insulin Secretion. Cell Metab. 2013;18:162–185. doi: 10.1016/j.cmet.2013.05.018. PubMed DOI
Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49:1751–60. doi: 10.2337/diabetes.49.11.1751. PubMed DOI
Ježek J, Dlasková A, Zelenka J, Jabůrek M, Ježek P. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein-Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells. Antioxid. Redox Signal. 2015;23:958–72. doi: 10.1089/ars.2014.6195. PubMed DOI PMC
Ježek P, Dlasková A, Plecitá-Hlavatá L. Redox homeostasis in pancreatic β cells. Oxid. Med. Cell. Longev. 2012;2012:932838. doi: 10.1155/2012/932838. PubMed DOI PMC
Ježek, P., Jabůrek, M., Holendová, B. & Plecitá-Hlavatá, L. Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules23 (2018). PubMed PMC
Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J. Mol. Endocrinol. 2016;57:R93–R108. doi: 10.1530/JME-15-0316. PubMed DOI
Nesher R, et al. β-Cell Protein Kinases and the Dynamics of the Insulin Response to Glucose. Diabetes. 2002;51:S68–S73. doi: 10.2337/diabetes.51.2007.S68. PubMed DOI
Kaihara KA, et al. β-cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes. 2013;62:1527–1536. doi: 10.2337/db12-1013. PubMed DOI PMC
Hatakeyama H, Kishimoto T, Nemoto T, Kasai H, Takahashi N. Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets. J Physiol. 2006;570:271–282. doi: 10.1113/jphysiol.2005.096560. PubMed DOI PMC
da Silva Xavier G, et al. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem. J. 2003;371:761–74. doi: 10.1042/bj20021812. PubMed DOI PMC
Leclerc I, et al. Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2004;286:E1023–31. doi: 10.1152/ajpendo.00532.2003. PubMed DOI
Nicholls DG. The pancreatic β-cell: A bioenergetic perspective. Physiol. Rev. 2016;96:1385–1447. doi: 10.1152/physrev.00009.2016. PubMed DOI
Affourtit, C., Alberts, B., Barlow, J., Carre, J. E. & Wynne, A. G. Control of pancreatic β-cell bioenergetics. Biochemical Society Transactions46 (2018). PubMed
Matschinsky FM, Glaser B, Magnuson MA. Pancreatic β-cell glucokinase: Closing the gap between theoretical concepts and experimental realities. Diabetes. 1998;47:307–315. doi: 10.2337/diabetes.47.3.307. PubMed DOI
Sweet IR, Li G, Najafi H, Berner D, Matschinsky FM. Effect of a glucokinase inhibitor on energy production and insulin release in pancreatic islets. Am. J. Physiol. 1996;271:E606–25. PubMed
Matschinsky, F. M. & Wilson, D. F. The central role of glucokinase in glucose homeostasis: A perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front. Physiol. 10 (2019). PubMed PMC
Suzuki, R., Hotta, K. & Oka, K. Transitional correlation between inner-membrane potential and ATP levels of neuronal mitochondria. Sci. Rep. 8 (2018). PubMed PMC
Zorova LD, et al. Mitochondrial membrane potential. Anal. Biochem. 2018;552:50–59. doi: 10.1016/j.ab.2017.07.009. PubMed DOI PMC
Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. 2018;70:56–63. doi: 10.1016/j.ceca.2017.05.004. PubMed DOI
Ichikawa N, Ushida S, Kawabata M, Masazumi Y. Nucleotide sequence of cDNA coding the mitochondrial precursor protein of the ATPase inhibitor from humans. Biosci. Biotechnol. Biochem. 1999;63:2225–7. doi: 10.1271/bbb.63.2225. PubMed DOI
Pullman ME, Monroy GC. A Naturally Occuring Inhibitor of Mitochondrial Adenosine Triphosphatase. J. Biol. Chem. 1963;238:3762–9. PubMed
Rouslin W. Regulation of the mitochondrial ATPase in situ in cardiac muscle: role of the inhibitor subunit. J. Bioenerg. Biomembr. 1991;23:873–88. doi: 10.1007/BF00786006. PubMed DOI
Di Pancrazio F, et al. In vitro and in vivo studies of F(0)F(1)ATP synthase regulation by inhibitor protein IF(1) in goat heart. Biochim. Biophys. Acta. 2004;1659:52–62. doi: 10.1016/j.bbabio.2004.07.009. PubMed DOI
Rouslin W, Frank GD, Broge CW. Content and binding characteristics of the mitochondrial ATPase inhibitor, IF1, in the tissues of several slow and fast heart-rate homeothermic species and in two poikilotherms. J Bioenerg Biomembr. 1995;27:117–125. doi: 10.1007/BF02110339. PubMed DOI
Sánchez-Cenizo L, et al. Up-regulation of the ATPase Inhibitory Factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J. Biol. Chem. 2010;285:25308–25313. doi: 10.1074/jbc.M110.146480. PubMed DOI PMC
Formentini L, Sanchez-Arago M, Sanchez-Cenizo L, Cuezva JM. The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell. 2012;45:731–742. doi: 10.1016/j.molcel.2012.01.008. PubMed DOI
Santacatterina F, et al. Down-regulation of oxidative phosphorylation in the liver by expression of the ATPase inhibitory factor 1 induces a tumor-promoter metabolic state. Oncotarget. 2016;7:490–508. doi: 10.18632/oncotarget.6357. PubMed DOI PMC
Sánchez-Aragó M, Formentini L, García-Bermúdez J, Cuezva JM. IF1 reprograms energy metabolism and signals the oncogenic phenotype in cancer. Cell Cycle. 2012;11:2963–4. doi: 10.4161/cc.21387. PubMed DOI PMC
Formentini L, et al. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning. EMBO J. 2014;33:762–78. doi: 10.1002/embj.201386392. PubMed DOI PMC
García-Bermúdez J, Cuezva JM. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival. Biochim. Biophys. Acta. 2016;1857(8):1167–1182. doi: 10.1016/j.bbabio.2016.02.004. PubMed DOI
Gu J, et al. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science. 2019;364(6445):1068–1075. doi: 10.1126/science.aaw4852. PubMed DOI
Kahancová A, Sklenář F, Ježek P, Dlasková A. Regulation of glucose-stimulated insulin secretion by ATPase Inhibitory Factor 1 (IF1) FEBS Lett. 2018;592(6):999–1009. doi: 10.1002/1873-3468.12991. PubMed DOI
De Marchi U, Thevenet J, Hermant A, Dioum E, Wiederkehr A. Calcium co-regulates oxidative metabolism and ATP synthase-dependent respiration in pancreatic beta cells. The Journal of Biological Chemistry. 2014;289(13):9182–9194. doi: 10.1074/jbc.M113.513184. PubMed DOI PMC
Leitner JW, Sussman KE, Vatter AE, Schneider FH. Adenine nucleotides in the secretory granule fraction of rat islets. Endocrinology. 1975;96:662–677. doi: 10.1210/endo-96-3-662. PubMed DOI
Yoshida T, Alfaqaan S, Sasaoka N, Imamura H. Application of FRET-Based Biosensor ‘ATeam’ for Visualization of ATP Levels in the Mitochondrial Matrix of Living Mammalian Cells. Methods Mol. Biol. 2017;1567:231–243. doi: 10.1007/978-1-4939-6824-4_14. PubMed DOI
Ježek P, Dlasková A. Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic β-cells. Mitochondrion. 2019 doi: 10.1016/j.mito.2019.06.007. PubMed DOI
García-Bermúdez J, et al. PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H(+)-ATP Synthase. Cell Rep. 2015;12:2143–55. doi: 10.1016/j.celrep.2015.08.052. PubMed DOI
Esparza-Moltó PB, et al. Tissue-specific expression and post-transcriptional regulation of the ATPase inhibitory factor 1 (IF1) in human and mouse tissues. FASEB J. 2019;33:1836–1851. doi: 10.1096/fj.201800756R. PubMed DOI
Sekine N, et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J. Biol. Chem. 1994;269:4895–902. PubMed
García-Aguilar, A. & Cuezva, J. M. A review of the inhibition of the mitochondrial ATP synthase by IF1 in vivo: Reprogramming energy metabolism and inducing mitohormesis. Frontiers in Physiology9 (2018). PubMed PMC
Panchenko MV, Vinogradov AD. Interaction between the mitochondrial ATP synthetase and ATPase inhibitor protein. Active/inactive slow pH-dependent transitions of the inhibitor protein. FEBS Lett. 1985;184:226–30. doi: 10.1016/0014-5793(85)80611-6. PubMed DOI
Zanotti F, Gnoni A, Mangiullo R, Papa S. Effect of the ATPase inhibitor protein IF1 on H+ translocation in the mitochondrial ATP synthase complex. Biochem Biophys Res Commun. 2009;384:43–48. doi: 10.1016/j.bbrc.2009.04.046. PubMed DOI
Gao Z, et al. Protein kinase A translocation and insulin secretion in pancreatic beta-cells: studies with adenylate cyclase toxin from Bordetella pertussis. Biochem. J. 2002;368:397–404. doi: 10.1042/bj20020999. PubMed DOI PMC
Aggeler R, et al. A functionally active human F1F0 ATPase can be purified by immunocapture from heart tissue and fibroblast cell lines. Subunit structure and activity studies. J. Biol. Chem. 2002;277:33906–12. doi: 10.1074/jbc.M204538200. PubMed DOI
Cabezon E, Butler PJ, Runswick MJ, Walker JE. Modulation of the oligomerization state of the bovine F1-ATPase inhibitor protein, IF1, by pH. J Biol Chem. 2000;275:25460–25464. doi: 10.1074/jbc.M003859200. PubMed DOI
Gordon-Smith DJ, et al. Solution structure of a C-terminal coiled-coil domain from bovine IF(1): the inhibitor protein of F(1) ATPase. J. Mol. Biol. 2001;308:325–39. doi: 10.1006/jmbi.2001.4570. PubMed DOI
Boreikaite V, Wicky BIM, Watt IN, Clarke J, Walker JE. Extrinsic conditions influence the self-association and structure of IF1, the regulatory protein of mitochondrial ATP synthase. Proc. Natl. Acad. Sci. USA. 2019;116:10354–10359. doi: 10.1073/pnas.1903535116. PubMed DOI PMC
Davies KM, Anselmi C, Wittig I, Faraldo-Gomez JD, Kühlbrandt W. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc. Natl. Acad. Sci. 2012;109:13602–13607. doi: 10.1073/pnas.1204593109. PubMed DOI PMC
Dlasková A, et al. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Biophys. acta. Bioenerg. 2019;1860:659–678. doi: 10.1016/j.bbabio.2019.06.015. PubMed DOI
Campanella M, et al. IF1, the endogenous regulator of the F(1)F(o)-ATPsynthase, defines mitochondrial volume fraction in HeLa cells by regulating autophagy. Biochim Biophys Acta. 2009;5:393–401. doi: 10.1016/j.bbabio.2009.02.023. PubMed DOI
Merglen A, et al. Glucose Sensitivity and Metabolism-Secretion Coupling Studied during Two-Year Continuous Culture in INS-1E Insulinoma Cells. Endocrinology. 2004;145:667–678. doi: 10.1210/en.2003-1099. PubMed DOI
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Contribution of Mitochondria to Insulin Secretion by Various Secretagogues
The Pancreatic β-Cell: The Perfect Redox System