Pitfalls of Mitochondrial Redox Signaling Research
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-01205S
Czech Science Foundation
PubMed
37759999
PubMed Central
PMC10525995
DOI
10.3390/antiox12091696
PII: antiox12091696
Knihovny.cz E-zdroje
- Klíčová slova
- H2O2 release into intracristal space, MnSOD, cytosolic H2O2 release, matrix H2O2 release, peroxiredoxins, redox buffers, redox signaling from mitochondria, redox-sensitive probes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Redox signaling from mitochondria (mt) to the cytosol and plasma membrane (PM) has been scarcely reported, such as in the case of hypoxic cell adaptation or (2-oxo-) 2-keto-isocaproate (KIC) β-like-oxidation stimulating insulin secretion in pancreatic β-cells. Mutual redox state influence between mitochondrial major compartments, the matrix and the intracristal space, and the cytosol is therefore derived theoretically in this article to predict possible conditions, when mt-to-cytosol and mt-to-PM signals may occur, as well as conditions in which the cytosolic redox signaling is not overwhelmed by the mitochondrial antioxidant capacity. Possible peroxiredoxin 3 participation in mt-to-cytosol redox signaling is discussed, as well as another specific case, whereby mitochondrial superoxide release is diminished, whereas the matrix MnSOD is activated. As a result, the enhanced conversion to H2O2 allows H2O2 diffusion into the cytosol, where it could be a predominant component of the H2O2 release. In both of these ways, mt-to-cytosol and mt-to-PM signals may be realized. Finally, the use of redox-sensitive probes is discussed, which disturb redox equilibria, and hence add a surplus redox-buffering to the compartment, where they are localized. Specifically, when attempts to quantify net H2O2 fluxes are to be made, this should be taken into account.
Zobrazit více v PubMed
Shadel G.S., Horvath T.L. Mitochondrial ROS signaling in organismal homeostasis. Cell. 2015;163:560–569. doi: 10.1016/j.cell.2015.10.001. PubMed DOI PMC
Ježek P., Holendová B., Plecitá-Hlavatá L. Redox Signaling from Mitochondria: Signal Propagation and Its Targets. Biomolecules. 2020;10:93. doi: 10.3390/biom10010093. PubMed DOI PMC
Picard M., Shirihai O.S. Mitochondrial signal transduction. Cell Metab. 2022;34:1620–1653. doi: 10.1016/j.cmet.2022.10.008. PubMed DOI PMC
Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21:363–383. doi: 10.1038/s41580-020-0230-3. PubMed DOI
Chandel N.S., McClintock D.S., Feliciano C.E., Wood T.M., Melendez J.A., Rodriguez A.M., Schumacker P.T. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1a. J. Biol. Chem. 2000;275:25130–25138. doi: 10.1074/jbc.M001914200. PubMed DOI
Lee P., Chandel N.S., Simon M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 2020;21:268–283. doi: 10.1038/s41580-020-0227-y. PubMed DOI PMC
Kirova D.G., Judasova K., Vorhauser J., Zerjatke T., Leung J.K., Glauche I., Mansfeld J. A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Dev. Cell. 2022;57:1712–1727. doi: 10.1016/j.devcel.2022.06.008. PubMed DOI PMC
Chakrabarty R.P., Chandel N.S. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem. Cell. 2021;28:394–408. doi: 10.1016/j.stem.2021.02.011. PubMed DOI PMC
Chouchani E.T., Pell V.R., Gaude E., Aksentijević D., Sundier S.Y., Robb E.L., Logan A., Nadtochiy S.M., Ord E.N.J., Smith A.C., et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–435. doi: 10.1038/nature13909. PubMed DOI PMC
Mills E.L., Pierce K.A., Jedrychowski M.P., Garrity R., Winther S., Vidoni S., Yoneshiro T., Spinelli J.B., Lu G.Z., Kazak L., et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature. 2018;560:102–106. doi: 10.1038/s41586-018-0353-2. PubMed DOI PMC
Mills E.L., Kelly B., Logan A., Costa A.S.H., Varma M., Bryant C.E., Tourlomousis P., Däbritz J.H.M., Gottlieb E., Latorre I., et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell. 2016;167:457–470. doi: 10.1016/j.cell.2016.08.064. PubMed DOI PMC
Ježek P., Jabůrek M., Holendová B., Plecitá-Hlavatá L. Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules. 2018;23:1483. doi: 10.3390/molecules23061483. PubMed DOI PMC
Ježek P., Holendová B., Jabůrek M., Tauber J., Dlasková A., Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants. 2021;10:197. doi: 10.3390/antiox10020197. PubMed DOI PMC
Ježek P., Holendová B., Jabůrek M., Dlasková A., Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid. Redox Signal. 2022;36:920–952. doi: 10.1089/ars.2021.0113. PubMed DOI PMC
Rorsman P., Ashcroft F.M. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol. Rev. 2018;98:117–214. doi: 10.1152/physrev.00008.2017. PubMed DOI PMC
Merrins M.J., Corkey B.E., Kibbey R.G., Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metab. 2022;34:947–968. doi: 10.1016/j.cmet.2022.06.003. PubMed DOI PMC
Yosida M., Dezaki K., Uchida K., Kodera S., Lam N.V., Ito K., Rita R.S., Yamada H., Shimomura K., Ishikawa S.E., et al. Involvement of cAMP/EPAC/TRPM2 activation in glucose- and incretin-induced insulin secretion. Diabetes. 2014;63:3394–3403. doi: 10.2337/db13-1868. PubMed DOI
Plecitá-Hlavatá L., Jabůrek M., Holendová B., Tauber J., Pavluch V., Berková Z., Cahová M., Schröder K., Brandes R.P., Siemen D., et al. Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4. Diabetes. 2020;69:1341–1354. doi: 10.2337/db19-1130. PubMed DOI
Plecitá-Hlavatá L., Engstová H., Holendová B., Tauber J., Špaček T., Petrásková L., Křen V., Špačková J., Gotvaldová K., Ježek J., et al. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD+ Ratio. Antioxid. Redox Signal. 2020;33:789–815. doi: 10.1089/ars.2019.7800. PubMed DOI PMC
Pavluch V., Engstová H., Špačková J., Ježek P. Deficiency of transcription factor Nkx6.1 does not prevent insulin secretion in INS-1E cells. Sci. Rep. 2023;13:683. doi: 10.1038/s41598-023-27985-7. PubMed DOI PMC
Leguina-Ruzzi A., Vodičková A., Holendová B., Pavluch V., Tauber J., Engstová H., Dlasková A., Ježek P. Glucose-Induced Expression of DAPIT in Pancreatic β-Cells. Biomolecules. 2020;10:1026. doi: 10.3390/biom10071026. PubMed DOI PMC
Ježek J., Dlasková A., Zelenka J., Jabůrek M., Ježek P. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein-Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells. Antioxid. Redox Signal. 2015;23:958–972. doi: 10.1089/ars.2014.6195. PubMed DOI PMC
Deglasse J.-P., Roma L.P., Pastor-Flores D., Gilon P., Dick T.P., Jonas J.-C. Glucose acutely reduces cytosolic and mitochondrial H2O2 in rat pancreatic beta cells. Antioxid. Redox Signal. 2019;30:297–313. doi: 10.1089/ars.2017.7287. PubMed DOI
Spégel P., Sharoyko V.V., Goehring I., Danielsson A.P., Malmgren S., Nagorny C.L., Andersson L.E., Koeck T., Sharp G.W., Straub S.G., et al. Time resolved metabolomics analysis of b-cells implicates the pentose phosphate pathway in the control of insulin release. BioChem. J. 2013;450:595–605. doi: 10.1042/BJ20121349. PubMed DOI
Ježek P. 2-Hydroxyglutarate in Cancer Cells. Antioxid. Redox Signal. 2020;33:903–926. doi: 10.1089/ars.2019.7902. PubMed DOI PMC
Rhee S.G., Kil I.S. Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm. Free Radic. Biol. Med. 2016;100:73–80. doi: 10.1016/j.freeradbiomed.2016.10.011. PubMed DOI
Ježek P., Holendová B., Garlid K.D., Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid. Redox Signal. 2018;29:667–714. doi: 10.1089/ars.2017.7225. PubMed DOI PMC
Plecitá-Hlavatá L., Lessard M., Šantorová J., Bewersdorf J., Ježek P. Mitochondrial oxidative phosphorylation and energetic status are reflected by morphology of mitochondrial network in INS-1E and HEP-G2 cells viewed by 4Pi microscopy. Biochim. Biophys. Acta. 2008;1777:834–846. doi: 10.1016/j.bbabio.2008.04.002. PubMed DOI
Dlasková A., Špaček T., Šantorová J., Plecitá-Hlavatá L., Berková Z., Saudek F., Lessard M., Bewersdorf J., Ježek P. 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an experimental model of type-2 diabetes. Biochim. Biophys. Acta. 2010;1797:1327–1341. doi: 10.1016/j.bbabio.2010.02.003. PubMed DOI
Dlasková A., Engstová H., Plecitá-Hlavatá L., Lessard M., Alán L., Reguera D.P., Jabůrek M., Ježek P. Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy. J. Bioenerg. Biomembr. 2015;47:255–263. doi: 10.1007/s10863-015-9610-3. PubMed DOI
Ježek P., Jabůrek M., Holendová B., Engstová H., Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid. Redox Signal. 2023, ahead of print. PubMed DOI PMC
Kawano I., Bazila B., Ježek P., Dlasková A. Mitochondrial dynamics and cristae shape changes during metabolic reprogramming. Antioxid. Redox Signal. 2023. ahead of print . PubMed DOI
Dlasková A., Špaček T., Engstová H., Špačková J., Schröfel A., Holendová B., Smolková K., Plecitá-Hlavatá L., Ježek P. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Biophys. Acta. 2019;1860:659–678. doi: 10.1016/j.bbabio.2019.06.015. PubMed DOI
Nesterov S., Chesnokov Y., Kamyshinsky R., Panteleeva A., Lyamzaev K., Vasilov R., Yaguzhinsky L. Ordered Clusters of the Complete Oxidative Phosphorylation System in Cardiac Mitochondria. Int. J. Mol. Sci. 2021;22:1462. doi: 10.3390/ijms22031462. PubMed DOI PMC
Plecitá-Hlavatá L., Engstová H., Alán L., Špaček T., Dlasková A., Smolková K., Špačková J., Tauber J., Strádalová V., Malínský J., et al. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering. FASEB J. 2016;30:1941–1957. doi: 10.1096/fj.201500176. PubMed DOI
Dlasková A., Engstová H., Špaček T., Kahancová A., Pavluch V., Smolková K., Špačková J., Bartoš M., Hlavatá L., Ježek P. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. Biochim. Biophys. Acta. 2018;1859:829–844. doi: 10.1016/j.bbabio.2018.04.013. PubMed DOI
Brand M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol. Med. 2016;100:14–31. doi: 10.1016/j.freeradbiomed.2016.04.001. PubMed DOI
Wong H.S., Dighe P.A., Mezera V., Monternier P.A., Brand M.D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 2017;292:16804–16809. doi: 10.1074/jbc.R117.789271. PubMed DOI PMC
Brand M.D. Riding the tiger—Physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit. Rev. BioChem. Mol. Biol. 2020;55:592–661. doi: 10.1080/10409238.2020.1828258. PubMed DOI
Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012;287:27255–27264. doi: 10.1074/jbc.M112.374629. PubMed DOI PMC
Mukhopadhyay S., Encarnación-Rosado J., Lin E.Y., Sohn A.S.W., Zhang H., Mancias J.D., Kimmelman A.C. Autophagy supports mitochondrial metabolism through the regulation of iron homeostasis in pancreatic cancer. Sci. Adv. 2023;9:eadf9284. doi: 10.1126/sciadv.adf9284. PubMed DOI PMC
Ježek P., Plecitá-Hlavatá L. Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia. Int. J. BioChem. Cell Biol. 2009;41:1790–1804. doi: 10.1016/j.biocel.2009.02.014. PubMed DOI
Dickson-Murray E., Nedara K., Modjtahedi N., Tokatlidis K. The Mia40/CHCHD4 Oxidative Folding System: Redox Regulation and Signaling in the Mitochondrial Intermembrane Space. Antioxidants. 2021;10:592. doi: 10.3390/antiox10040592. PubMed DOI PMC
Bolduc J., Koruza K., Luo T., Malo Pueyo J., Vo T.N., Ezeriņa D., Messens J. Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities. Redox Biol. 2021;42:101959. doi: 10.1016/j.redox.2021.101959. PubMed DOI PMC
Rhee S.G., Kang S.W., Chang T.S., Jeong W., Kim K. Peroxiredoxin, a novel family of peroxidases. IUBMB Life. 2001;52:35–41. doi: 10.1080/15216540252774748. PubMed DOI
Rhee S.G. Overview on Peroxiredoxin. Mol. Cells. 2016;39:1–5. PubMed PMC
Villar S.F., Ferrer-Sueta G., Denicola A. The multifaceted nature of peroxiredoxins in chemical biology. Curr. Opin. Chem. Biol. 2023;76:102355. doi: 10.1016/j.cbpa.2023.102355. PubMed DOI
Rhee S.G., Woo H.A. Multiple functions of 2-Cys peroxiredoxins, I and II, and their regulations via post-translational modifications. Free Radic. Biol. Med. 2020;152:107–115. doi: 10.1016/j.freeradbiomed.2020.02.028. PubMed DOI
Thapa P., Jiang H., Ding N., Hao Y., Alshahrani A., Wei Q. The Role of Peroxiredoxins in Cancer Development. Biology. 2023;12:666. doi: 10.3390/biology12050666. PubMed DOI PMC
Liu Y., Wang P., Hu W., Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed. Pharmacother. 2023;164:114896. doi: 10.1016/j.biopha.2023.114896. PubMed DOI
Jeong S.J., Park J.G., Oh G.T. Peroxiredoxins as Potential Targets for Cardiovascular Disease. Antioxidants. 2021;10:1244. doi: 10.3390/antiox10081244. PubMed DOI PMC
Szeliga M. Peroxiredoxins in Neurodegenerative Diseases. Antioxidants. 2020;9:1203. doi: 10.3390/antiox9121203. PubMed DOI PMC
Stancill J.S., Corbett J.A. The Role of Thioredoxin/Peroxiredoxin in the β-Cell Defense Against Oxidative Damage. Front. Endocrinol. 2021;12:718235. doi: 10.3389/fendo.2021.718235. PubMed DOI PMC
Heo S., Kim S., Kang D. The Role of Hydrogen Peroxide and Peroxiredoxins throughout the Cell Cycle. Antioxidants. 2020;9:280. doi: 10.3390/antiox9040280. PubMed DOI PMC
Stocker S., Van Laer K., Mijuskovic A., Dick T.P. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs. Antioxid. Redox Signal. 2018;28:558–573. doi: 10.1089/ars.2017.7162. PubMed DOI
Rhee S.G., Woo H.A., Kang D. The Role of Peroxiredoxins in the Transduction of H2O2 Signals. Antioxid. Redox Signal. 2018;28:537–557. doi: 10.1089/ars.2017.7167. PubMed DOI
Sobotta M.C., Liou W., Stocker S., Talwar D., Oehler M., Ruppert T., Scharf A.N., Dick T.P. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 2015;11:64–70. doi: 10.1038/nchembio.1695. PubMed DOI
Jarvis R.M., Hughes S.M., Ledgerwood E.C. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 2012;53:1522–1530. doi: 10.1016/j.freeradbiomed.2012.08.001. PubMed DOI
Woo H.A., Yim S.H., Shin D.H., Kang D., Yu D.Y., Rhee S.G. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell. 2010;140:517–528. doi: 10.1016/j.cell.2010.01.009. PubMed DOI
Reczek C.R., Chandel N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 2015;33:8–13. doi: 10.1016/j.ceb.2014.09.010. PubMed DOI PMC
Mishra M., Jiang H., Wu L., Chawsheen H.A., Wei Q. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett. 2015;366:150–159. doi: 10.1016/j.canlet.2015.07.002. PubMed DOI PMC
Del Olmo M., Kramer A., Herzel H. A Robust Model for Circadian Redox Oscillations. Int. J. Mol. Sci. 2019;20:2368. doi: 10.3390/ijms20092368. PubMed DOI PMC
Lee J., Liu R., de Jesus D., Kim B.S., Ma K., Moulik M., Yechoor V. Circadian control of β-cell function and stress responses. Diabetes Obes. Metab. 2015;17((Suppl. 1)):123–133. doi: 10.1111/dom.12524. PubMed DOI PMC
Knoops B., Goemaere J., Van der Eecken V., Declercq J.P. Peroxiredoxin 5: Structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid. Redox Signal. 2011;15:817–829. doi: 10.1089/ars.2010.3584. PubMed DOI
Sabharwal S.S., Waypa G.B., Marks J.D., Schumacker P.T. Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling. BioChem. J. 2013;456:337–346. doi: 10.1042/BJ20130740. PubMed DOI PMC
Sabharwal S.S., Dudley V.J., Landwerlin C., Schumacker P.T. H2O2 transit through the mitochondrial intermembrane space promotes tumor cell growth in vitro and in vivo. J. Biol. Chem. 2023;299:104624. doi: 10.1016/j.jbc.2023.104624. PubMed DOI PMC
Ma S., Zhang X., Zheng L., Li Z., Zhao X., Lai W., Shen H., Lv J., Yang G., Wang Q., et al. Peroxiredoxin 6 Is a Crucial Factor in the Initial Step of Mitochondrial Clearance and Is Upstream of the PINK1-Parkin Pathway. Antioxid. Redox Signal. 2016;24:486–501. doi: 10.1089/ars.2015.6336. PubMed DOI
López-Grueso M.J., Lagal D.J., García-Jiménez Á.F., Tarradas R.M., Carmona-Hidalgo B., Peinado J., Requejo-Aguilar R., Bárcena J.A., Padilla C.A. Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells. Redox Biol. 2020;37:101737. doi: 10.1016/j.redox.2020.101737. PubMed DOI PMC
Pacifici F., Della-Morte D., Capuani B., Coppola A., Scioli M.G., Donadel G., Andreadi A., Ciccosanti F., Fimia G.M., Bellia A., et al. Peroxiredoxin 6 Modulates Insulin Secretion and Beta Cell Death via a Mitochondrial Dynamic Network. Front. Endocrinol. 2022;13:842575. doi: 10.3389/fendo.2022.842575. PubMed DOI PMC
Brigelius-Flohe R., Maiorino M. Glutathione peroxidases. Biochim. Biophys. Acta. 2013;1830:3289–3303. doi: 10.1016/j.bbagen.2012.11.020. PubMed DOI
Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018;54:287–293. doi: 10.1016/j.ajme.2017.09.001. DOI
Herbette S., Roeckel-Drevet P., Drevet J.R. Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers. FEBS J. 2007;274:2163–2180. doi: 10.1111/j.1742-4658.2007.05774.x. PubMed DOI
Cheng X., Zhang J., Xiao Y., Wang Z., He J., Ke M., Liu S., Wang Q., Zhang L. Mitochondrial Regulation of Ferroptosis in Cancer Therapy. Int. J. Mol. Sci. 2023;24:10037. doi: 10.3390/ijms241210037. PubMed DOI PMC
Valentine J.S., Doucette P.A., Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev. Biochem. 2005;74:563–593. doi: 10.1146/annurev.biochem.72.121801.161647. PubMed DOI
Fujiki Y., Okumoto K., Honsho M., Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. Biochim. Biophys. Acta. 2022;1869:119330. doi: 10.1016/j.bbamcr.2022.119330. PubMed DOI
Ozden O., Park S.H., Kim H.S., Jiang H., Coleman M.C., Spitz D.R., Gius D. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging. 2011;3:102–107. doi: 10.18632/aging.100291. PubMed DOI PMC
Tao R., Vassilopoulos A., Parisiadou L., Yan Y., Gius D. Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid. Redox Signal. 2014;20:1646–1654. doi: 10.1089/ars.2013.5482. PubMed DOI PMC
Salvatori I., Valle C., Ferri A., Carrì M.T. SIRT3 and mitochondrial metabolism in neurodegenerative diseases. NeuroChem. Int. 2017;109:184–192. doi: 10.1016/j.neuint.2017.04.012. PubMed DOI
Gao E., Sun X., Thorne R.F., Zhang X.D., Li J., Shao F., Ma J., Wu M. NIPSNAP1 directs dual mechanisms to restrain senescence in cancer cells. J. Transl. Med. 2023;21:401. doi: 10.1186/s12967-023-04232-1. PubMed DOI PMC
Anamika Roy A., Trigun S.K. Hippocampus mitochondrial MnSOD activation by a SIRT3 activator, honokiol, correlates with its deacetylation and upregulation of FoxO3a and PGC1α in a rat model of ammonia neurotoxicity. J. Cell. Biochem. 2023;124:606–618. doi: 10.1002/jcb.30393. PubMed DOI
Mohan M.S., Aswani S.S., Aparna N.S., Boban P.T., Sudhakaran P.R., Saja K. Effect of acute cold exposure on cardiac mitochondrial function: Role of sirtuins. Mol. Cell Biochem. 2023. ahead of print . PubMed DOI
Liu X., Xie X., Li D., Liu Z., Zhang B., Zang Y., Yuan H., Shen C. Sirt3-dependent regulation of mitochondrial oxidative stress and apoptosis contributes to the dysfunction of pancreatic islets after severe burns. Free Radic. Biol. Med. 2023;198:59–67. doi: 10.1016/j.freeradbiomed.2023.01.027. PubMed DOI
Ma C., Sun Y., Pi C., Wang H., Sun H., Yu X., Shi Y., He X. Sirt3 Attenuates Oxidative Stress Damage and Rescues Cellular Senescence in Rat Bone Marrow Mesenchymal Stem Cells by Targeting Superoxide Dismutase 2. Front. Cell Dev. Biol. 2020;8:599376. doi: 10.3389/fcell.2020.599376. PubMed DOI PMC
Elumalai S., Karunakaran U., Moon J.S., Won K.C. High glucose-induced PRDX3 acetylation contributes to glucotoxicity in pancreatic β-cells: Prevention by Teneligliptin. Free Radic. Biol. Med. 2020;160:618–629. doi: 10.1016/j.freeradbiomed.2020.07.030. PubMed DOI
de Cubas L., Pak V.V., Belousov V.V., Ayté J., Hidalgo E. The Mitochondria-to-Cytosol H2O2 Gradient Is Caused by Peroxiredoxin-Dependent Cytosolic Scavenging. Antioxidants. 2021;10:731. doi: 10.3390/antiox10050731. PubMed DOI PMC
Hoehne M.N., Jacobs L.J.H.C., Lapacz K.J., Calabrese G., Murschall L.M., Marker T., Kaul H., Trifunovic A., Morgan B., Fricker M., et al. Spatial and temporal control of mitochondrial H2O2 release in intact human cells. EMBO J. 2022;41:e109169. doi: 10.15252/embj.2021109169. PubMed DOI PMC
Pak V.V., Ezeriņa D., Lyublinskaya O.G., Pedre B., Tyurin-Kuzmin P.A., Mishina N.M., Thauvin M., Young D., Wahni K., Martínez Gache S.A., et al. Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metab. 2020;31:642–653. doi: 10.1016/j.cmet.2020.02.003. PubMed DOI PMC
Alshaabi H., Shannon N., Gravelle R., Milczarek S., Messier T., Cunniff B. Miro1-mediated mitochondrial positioning supports subcellular redox status. Redox Biol. 2021;38:101818. doi: 10.1016/j.redox.2020.101818. PubMed DOI PMC
Berry B.J., Wojtovich A.P. Mitochondrial light switches: Optogenetic approaches to control metabolism. FEBS J. 2020;287:4544–4556. doi: 10.1111/febs.15424. PubMed DOI PMC
Onukwufor J.O., Farooqi M.A., Vodičková A., Koren S.A., Baldzizhar A., Berry B.J., Beutner G., Porter G.A., Jr., Belousov V., Grossfield A., et al. A reversible mitochondrial complex I thiol switch mediates hypoxic avoidance behavior in C. elegans. Nat. Commun. 2022;13:2403. doi: 10.1038/s41467-022-30169-y. PubMed DOI PMC
den Toom W.T.F., van Soest D.M.K., Polderman P.E., van Triest M.H., Bruurs L.J.M., De Henau S., Burgering B.M.T., Dansen T.B. Oxygen-consumption based quantification of chemogenetic H2O2 production in live human cells. Free Radic. Biol. Med. 2023;206:134–142. doi: 10.1016/j.freeradbiomed.2023.06.030. PubMed DOI
Fang J., Zhang Y., Gerencser A.A., Brand M.D. Effects of sugars, fatty acids and amino acids on cytosolic and mitochondrial hydrogen peroxide release from liver cells. Free Radic. Biol. Med. 2022;188:92–102. doi: 10.1016/j.freeradbiomed.2022.06.225. PubMed DOI PMC
Fang J., Wong H.S., Brand M.D. Production of superoxide and hydrogen peroxide in the mitochondrial matrix is dominated by site IQ of complex I in diverse cell lines. Redox Biol. 2020;37:101722. doi: 10.1016/j.redox.2020.101722. PubMed DOI PMC
Goncalves R.L.S., Watson M.A., Wong H.S., Orr A.L., Brand M.D. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Redox Biol. 2020;28:101341. doi: 10.1016/j.redox.2019.101341. PubMed DOI PMC
Wong H.S., Benoit B., Brand M.D. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radic. Biol. Med. 2019;130:140–150. doi: 10.1016/j.freeradbiomed.2018.10.448. PubMed DOI
Dlasková A., Hlavatá L., Jezek P. Oxidative stress caused by blocking of mitochondrial complex I H(+) pumping as a link in aging/disease vicious cycle. Int. J. BioChem. Cell Biol. 2008;40:1792–1805. doi: 10.1016/j.biocel.2008.01.012. PubMed DOI
Plecitá-Hlavatá L., Ježek J., Ježek P. Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells. J. Bioenerg. Biomembr. 2015;47:467–476. doi: 10.1007/s10863-015-9628-6. PubMed DOI
Murphy M.P., Bayir H., Belousov V., Chang C.J., Davies K.J.A., Davies M.J., Dick T.P., Finkel T., Forman H.J., Janssen-Heininger Y., et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 2022;4:651–662. doi: 10.1038/s42255-022-00591-z. PubMed DOI PMC
Smolyarova D.D., Podgorny O.V., Bilan D.S., Belousov V.V. A guide to genetically encoded tools for the study of H2O2. FEBS J. 2022;289:5382–5395. doi: 10.1111/febs.16088. PubMed DOI
Kostyuk A.I., Panova A.S., Kokova A.D., Kotova D.A., Maltsev D.I., Podgorny O.V., Belousov V.V., Bilan D.S. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int. J. Mol. Sci. 2020;21:8164. doi: 10.3390/ijms21218164. PubMed DOI PMC
Bilan D.S., Belousov V.V. In Vivo Imaging of Hydrogen Peroxide with HyPer Probes. Antioxid. Redox Signal. 2018;29:569–584. doi: 10.1089/ars.2018.7540. PubMed DOI
Bilan D.S., Belousov V.V. Genetically encoded probes for NAD+/NADH monitoring. Free Radic. Biol. Med. 2016;100:32–42. doi: 10.1016/j.freeradbiomed.2016.06.018. PubMed DOI
Besson E., Gastaldi S., Bloch E., Zielonka J., Zielonka M., Kalyanaraman B., Aslan S., Karoui H., Rockenbauer A., Ouari O., et al. Embedding cyclic nitrone in mesoporous silica particles for EPR spin trapping of superoxide and other radicals. Analyst. 2019;144:4194–4203. doi: 10.1039/C9AN00468H. PubMed DOI
Hardy M., Zielonka J., Karoui H., Sikora A., Michalski R., Podsiadły R., Lopez M., Vasquez-Vivar J., Kalyanaraman B., Ouari O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid. Redox Signal. 2018;28:1416–1432. doi: 10.1089/ars.2017.7398. PubMed DOI PMC
Davies M.J. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods. 2016;109:21–30. doi: 10.1016/j.ymeth.2016.05.013. PubMed DOI
Zielonka J., Vasquez-Vivar J., Kalyanaraman B. Detection of 2-hydroxyethidium in cellular systems: A unique marker product of superoxide and hydroethidine. Nat. Protoc. 2008;3:8–21. doi: 10.1038/nprot.2007.473. PubMed DOI
Shchepinova M.M., Cairns A.G., Prime T.A., Logan A., James A.M., Hall A.R., Vidoni S., Arndt S., Caldwell S.T., Prag H.A., et al. MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chem. Biol. 2017;24:1285–1298. doi: 10.1016/j.chembiol.2017.08.003. PubMed DOI PMC
Lippert A.R., Van de Bittner G.C., Chang C.J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 2011;44:793–804. doi: 10.1021/ar200126t. PubMed DOI PMC
Winterbourn C.C. Biological production, detection, and fate of hydrogen peroxide. Antioxid. Redox Signal. 2018;29:541–551. doi: 10.1089/ars.2017.7425. PubMed DOI
Gatin-Fraudet B., Ottenwelter R., Le Saux T., Norsikian S., Pucher M., Lombès T., Baron A., Durand P., Doisneau G., Bourdreux Y., et al. Evaluation of borinic acids as new, fast hydrogen peroxide-responsive triggers. Proc. Natl. Acad. Sci. USA. 2021;118:e2107503118. doi: 10.1073/pnas.2107503118. PubMed DOI PMC
Zielonka J., Sikora A., Hardy M., Joseph J., Dranka B.P., Kalyanaraman B. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides. Chem. Res. Toxicol. 2012;25:1793–1799. doi: 10.1021/tx300164j. PubMed DOI PMC
Cocheme’ H.M., Logan A., Prime T.A., Abakumova I., Quin C., McQuaker S.J., Patel J.V., Fearnley I.M., James A.M., Porteous C.M., et al. Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nat. Protoc. 2012;7:946–958. doi: 10.1038/nprot.2012.035. PubMed DOI
Morgan B., Van Laer K., Owusu T.N., Ezeriņa D., Pastor-Flores D., Amponsah P.S., Tursch A., Dick T.P. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 2016;12:437–443. doi: 10.1038/nchembio.2067. PubMed DOI
Kritsiligkou P., Shen T.K., Dick T.P. A comparison of Prx- and OxyR-based H2O2 probes expressed in S. cerevisiae. J. Biol. Chem. 2021;297:100866. doi: 10.1016/j.jbc.2021.100866. PubMed DOI PMC
Carmona M., de Cubas L., Bautista E., Moral-Blanch M., Medraño-Fernández I., Sitia R., Boronat S., Ayté J., Hidalgo E. Monitoring cytosolic H2O2 fluctuations arising from altered plasma membrane gradients or from mitochondrial activity. Nat. Commun. 2019;10:4526. doi: 10.1038/s41467-019-12475-0. PubMed DOI PMC
Castejon-Vega B., Cordero M.D., Sanz A. How the Disruption of Mitochondrial Redox Signalling Contributes to Ageing. Antioxidants. 2023;12:831. doi: 10.3390/antiox12040831. PubMed DOI PMC
Vicente-Gutierrez C., Bonora N., Bobo-Jimenez V., Jimenez-Blasco D., Lopez-Fabuel I., Fernandez E., Josephine C., Bonvento G., Enriquez J.A., Almeida A., et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat. Metab. 2019;1:201–211. doi: 10.1038/s42255-018-0031-6. PubMed DOI
Dumont A., Lee M., Barouillet T., Murphy A., Yvan-Charvet L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol. Aspects. Med. 2021;77:100922. doi: 10.1016/j.mam.2020.100922. PubMed DOI
Guzy R.D., Sharma B., Bell E., Chandel N.S., Schumacker P.T. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell. Biol. 2008;28:718–731. doi: 10.1128/MCB.01338-07. PubMed DOI PMC
Bastin J., Sroussi M., Nemazanyy I., Laurent-Puig P., Mouillet-Richard S., Djouadi F. Downregulation of mitochondrial complex I induces ROS production in colorectal cancer subtypes that differently controls migration. J. Transl. Med. 2023;21:522. doi: 10.1186/s12967-023-04341-x. PubMed DOI PMC
Wen Y.A., Xiong X., Scott T., Li A.T., Wang C., Weiss H.L., Tan L., Bradford E., Fan T.W.M., Chandel N.S., et al. The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer. Cell Death Differ. 2019;26:1955–1969. doi: 10.1038/s41418-018-0265-6. PubMed DOI PMC
Comito G., Calvani M., Giannoni E., Bianchini F., Calorini L., Torre E., Migliore C., Giordano S., Chiarugi P. HIF1alpha stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic. Biol. Med. 2011;51:893–904. doi: 10.1016/j.freeradbiomed.2011.05.042. PubMed DOI
Capeloa T., Van de Velde J.A., d’Hose D., Lipari S.G., Derouane F., Hamelin L., Bedin M., Vazeille T., Duhoux F.P., Murphy M.P., et al. Inhibition of Mitochondrial Redox Signaling with MitoQ Prevents Metastasis of Human Pancreatic Cancer in Mice. Cancers. 2022;14:4918. doi: 10.3390/cancers14194918. PubMed DOI PMC
Swisa A., Glaser B., Dor Y. Metabolic stress and compromised identity of pancreatic beta cells. Front. Genet. 2017;8:21. doi: 10.3389/fgene.2017.00021. PubMed DOI PMC
Apostolova N., Vezza T., Muntane J., Rocha M., Víctor V.M. Mitochondrial Dysfunction and Mitophagy in Type 2 Diabetes: Pathophysiology and Therapeutic Targets. Antioxid. Redox Signal. 2023;39:278–320. doi: 10.1089/ars.2022.0016. PubMed DOI
Ayer A., Fazakerley D.J., James D.E., Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic. Biol. Med. 2022;179:339–362. doi: 10.1016/j.freeradbiomed.2021.11.007. PubMed DOI
Aon M.A., Cortassa S., Marban E., O’Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J. Biol. Chem. 2003;278:44735–44744. doi: 10.1074/jbc.M302673200. PubMed DOI
Nanadikar M.S., Vergel Leon A.M., Guo J., van Belle G.J., Jatho A., Philip E.S., Brandner A.F., Böckmann R.A., Shi R., Zieseniss A., et al. IDH3γ functions as a redox switch regulating mitochondrial energy metabolism and contractility in the heart. Nat. Commun. 2023;14:2123. doi: 10.1038/s41467-023-37744-x. PubMed DOI PMC
Rukavina-Mikusic I.A., Rey M., Adán Areán J.S., Vanasco V., Alvarez S., Valdez L.B. Mitochondrial H2O2 metabolism as central event of heart complex I syndrome in early diabetes. Free Radic. Biol. Med. 2023;201:66–75. doi: 10.1016/j.freeradbiomed.2023.03.011. PubMed DOI
Guzy R.D., Hoyos B., Robin E., Chen H., Liu L., Mansfield K.D., Simon M.C., Hammerling U., Schumacker P.T. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401–408. doi: 10.1016/j.cmet.2005.05.001. PubMed DOI
Waypa G.B., Marks J.D., Guzy R., Mungai P.T., Schriewer J., Dokic D., Schumacker P.T. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ. Res. 2010;106:526–535. doi: 10.1161/CIRCRESAHA.109.206334. PubMed DOI PMC
Nazarewicz R.R., Dikalova A.E., Bikineyeva A., Dikalov S.I. Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. Am. J. Physiol. 2013;305:H1131–H1140. doi: 10.1152/ajpheart.00063.2013. PubMed DOI PMC
Salazar G., Huang J., Feresin R.G., Zhao Y., Griendling K.K. Zinc regulates Nox1 expression through a NF-kappaB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic. Biol. Med. 2017;108:225–235. doi: 10.1016/j.freeradbiomed.2017.03.032. PubMed DOI
Daiber A., Di Lisa F., Oelze M., Kroller-Schon S., Steven S., Schulz E., Munzel T. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br. J. Pharmacol. 2017;174:1670–1689. doi: 10.1111/bph.13403. PubMed DOI PMC
Reyes-García J., Carbajal-García A., Di Mise A., Zheng Y.M., Wang X., Wang Y.X. Important Functions and Molecular Mechanisms of Mitochondrial Redox Signaling in Pulmonary Hypertension. Antioxidants. 2022;11:473. doi: 10.3390/antiox11030473. PubMed DOI PMC
Moon J.S., Lee S., Park M.A., Siempos I.I., Haslip M., Lee P.J., Yun M., Kim C.K., Howrylak J., Ryter S.W., et al. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J. Clin. Investig. 2015;125:665–680. doi: 10.1172/JCI78253. PubMed DOI PMC
Horn A., Van der Meulen J.H., Defour A., Hogarth M., Sreetama S.C., Reed A., Scheffer L., Chandel N.S., Jaiswal J.K. Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci. Signal. 2017;10:eaaj1978. doi: 10.1126/scisignal.aaj1978. PubMed DOI PMC
Garcia S., Nissanka N., Mareco E.A., Rossi S., Peralta S., Diaz F., Rotundo R.L., Carvalho R.F., Moraes C.T. Overexpression of PGC-1alpha in aging muscle enhances a subset of young-like molecular patterns. Aging Cell. 2018;17:e12707. doi: 10.1111/acel.12707. PubMed DOI PMC
Zhou R., Yazdi A.S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–225. doi: 10.1038/nature09663. PubMed DOI
Zhong Z., Liang S., Sanchez-Lopez E., He F., Shalapour S., Lin X.J., Wong J., Ding S., Seki E., Schnabl B., et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018;560:198–203. doi: 10.1038/s41586-018-0372-z. PubMed DOI PMC
Moon J.S., Nakahira K., Chung K.P., DeNicola G.M., Koo M.J., Pabon M.A., Rooney K.T., Yoon J.H., Ryter S.W., Stout-Delgado H., et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat. Med. 2016;22:1002–1012. doi: 10.1038/nm.4153. PubMed DOI PMC
Mitochondrial Physiology of Cellular Redox Regulations