Pitfalls of Mitochondrial Redox Signaling Research

. 2023 Aug 31 ; 12 (9) : . [epub] 20230831

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37759999

Grantová podpora
21-01205S Czech Science Foundation

Redox signaling from mitochondria (mt) to the cytosol and plasma membrane (PM) has been scarcely reported, such as in the case of hypoxic cell adaptation or (2-oxo-) 2-keto-isocaproate (KIC) β-like-oxidation stimulating insulin secretion in pancreatic β-cells. Mutual redox state influence between mitochondrial major compartments, the matrix and the intracristal space, and the cytosol is therefore derived theoretically in this article to predict possible conditions, when mt-to-cytosol and mt-to-PM signals may occur, as well as conditions in which the cytosolic redox signaling is not overwhelmed by the mitochondrial antioxidant capacity. Possible peroxiredoxin 3 participation in mt-to-cytosol redox signaling is discussed, as well as another specific case, whereby mitochondrial superoxide release is diminished, whereas the matrix MnSOD is activated. As a result, the enhanced conversion to H2O2 allows H2O2 diffusion into the cytosol, where it could be a predominant component of the H2O2 release. In both of these ways, mt-to-cytosol and mt-to-PM signals may be realized. Finally, the use of redox-sensitive probes is discussed, which disturb redox equilibria, and hence add a surplus redox-buffering to the compartment, where they are localized. Specifically, when attempts to quantify net H2O2 fluxes are to be made, this should be taken into account.

Zobrazit více v PubMed

Shadel G.S., Horvath T.L. Mitochondrial ROS signaling in organismal homeostasis. Cell. 2015;163:560–569. doi: 10.1016/j.cell.2015.10.001. PubMed DOI PMC

Ježek P., Holendová B., Plecitá-Hlavatá L. Redox Signaling from Mitochondria: Signal Propagation and Its Targets. Biomolecules. 2020;10:93. doi: 10.3390/biom10010093. PubMed DOI PMC

Picard M., Shirihai O.S. Mitochondrial signal transduction. Cell Metab. 2022;34:1620–1653. doi: 10.1016/j.cmet.2022.10.008. PubMed DOI PMC

Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21:363–383. doi: 10.1038/s41580-020-0230-3. PubMed DOI

Chandel N.S., McClintock D.S., Feliciano C.E., Wood T.M., Melendez J.A., Rodriguez A.M., Schumacker P.T. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1a. J. Biol. Chem. 2000;275:25130–25138. doi: 10.1074/jbc.M001914200. PubMed DOI

Lee P., Chandel N.S., Simon M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 2020;21:268–283. doi: 10.1038/s41580-020-0227-y. PubMed DOI PMC

Kirova D.G., Judasova K., Vorhauser J., Zerjatke T., Leung J.K., Glauche I., Mansfeld J. A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Dev. Cell. 2022;57:1712–1727. doi: 10.1016/j.devcel.2022.06.008. PubMed DOI PMC

Chakrabarty R.P., Chandel N.S. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem. Cell. 2021;28:394–408. doi: 10.1016/j.stem.2021.02.011. PubMed DOI PMC

Chouchani E.T., Pell V.R., Gaude E., Aksentijević D., Sundier S.Y., Robb E.L., Logan A., Nadtochiy S.M., Ord E.N.J., Smith A.C., et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–435. doi: 10.1038/nature13909. PubMed DOI PMC

Mills E.L., Pierce K.A., Jedrychowski M.P., Garrity R., Winther S., Vidoni S., Yoneshiro T., Spinelli J.B., Lu G.Z., Kazak L., et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature. 2018;560:102–106. doi: 10.1038/s41586-018-0353-2. PubMed DOI PMC

Mills E.L., Kelly B., Logan A., Costa A.S.H., Varma M., Bryant C.E., Tourlomousis P., Däbritz J.H.M., Gottlieb E., Latorre I., et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell. 2016;167:457–470. doi: 10.1016/j.cell.2016.08.064. PubMed DOI PMC

Ježek P., Jabůrek M., Holendová B., Plecitá-Hlavatá L. Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules. 2018;23:1483. doi: 10.3390/molecules23061483. PubMed DOI PMC

Ježek P., Holendová B., Jabůrek M., Tauber J., Dlasková A., Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants. 2021;10:197. doi: 10.3390/antiox10020197. PubMed DOI PMC

Ježek P., Holendová B., Jabůrek M., Dlasková A., Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid. Redox Signal. 2022;36:920–952. doi: 10.1089/ars.2021.0113. PubMed DOI PMC

Rorsman P., Ashcroft F.M. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol. Rev. 2018;98:117–214. doi: 10.1152/physrev.00008.2017. PubMed DOI PMC

Merrins M.J., Corkey B.E., Kibbey R.G., Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metab. 2022;34:947–968. doi: 10.1016/j.cmet.2022.06.003. PubMed DOI PMC

Yosida M., Dezaki K., Uchida K., Kodera S., Lam N.V., Ito K., Rita R.S., Yamada H., Shimomura K., Ishikawa S.E., et al. Involvement of cAMP/EPAC/TRPM2 activation in glucose- and incretin-induced insulin secretion. Diabetes. 2014;63:3394–3403. doi: 10.2337/db13-1868. PubMed DOI

Plecitá-Hlavatá L., Jabůrek M., Holendová B., Tauber J., Pavluch V., Berková Z., Cahová M., Schröder K., Brandes R.P., Siemen D., et al. Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4. Diabetes. 2020;69:1341–1354. doi: 10.2337/db19-1130. PubMed DOI

Plecitá-Hlavatá L., Engstová H., Holendová B., Tauber J., Špaček T., Petrásková L., Křen V., Špačková J., Gotvaldová K., Ježek J., et al. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD+ Ratio. Antioxid. Redox Signal. 2020;33:789–815. doi: 10.1089/ars.2019.7800. PubMed DOI PMC

Pavluch V., Engstová H., Špačková J., Ježek P. Deficiency of transcription factor Nkx6.1 does not prevent insulin secretion in INS-1E cells. Sci. Rep. 2023;13:683. doi: 10.1038/s41598-023-27985-7. PubMed DOI PMC

Leguina-Ruzzi A., Vodičková A., Holendová B., Pavluch V., Tauber J., Engstová H., Dlasková A., Ježek P. Glucose-Induced Expression of DAPIT in Pancreatic β-Cells. Biomolecules. 2020;10:1026. doi: 10.3390/biom10071026. PubMed DOI PMC

Ježek J., Dlasková A., Zelenka J., Jabůrek M., Ježek P. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein-Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells. Antioxid. Redox Signal. 2015;23:958–972. doi: 10.1089/ars.2014.6195. PubMed DOI PMC

Deglasse J.-P., Roma L.P., Pastor-Flores D., Gilon P., Dick T.P., Jonas J.-C. Glucose acutely reduces cytosolic and mitochondrial H2O2 in rat pancreatic beta cells. Antioxid. Redox Signal. 2019;30:297–313. doi: 10.1089/ars.2017.7287. PubMed DOI

Spégel P., Sharoyko V.V., Goehring I., Danielsson A.P., Malmgren S., Nagorny C.L., Andersson L.E., Koeck T., Sharp G.W., Straub S.G., et al. Time resolved metabolomics analysis of b-cells implicates the pentose phosphate pathway in the control of insulin release. BioChem. J. 2013;450:595–605. doi: 10.1042/BJ20121349. PubMed DOI

Ježek P. 2-Hydroxyglutarate in Cancer Cells. Antioxid. Redox Signal. 2020;33:903–926. doi: 10.1089/ars.2019.7902. PubMed DOI PMC

Rhee S.G., Kil I.S. Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm. Free Radic. Biol. Med. 2016;100:73–80. doi: 10.1016/j.freeradbiomed.2016.10.011. PubMed DOI

Ježek P., Holendová B., Garlid K.D., Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid. Redox Signal. 2018;29:667–714. doi: 10.1089/ars.2017.7225. PubMed DOI PMC

Plecitá-Hlavatá L., Lessard M., Šantorová J., Bewersdorf J., Ježek P. Mitochondrial oxidative phosphorylation and energetic status are reflected by morphology of mitochondrial network in INS-1E and HEP-G2 cells viewed by 4Pi microscopy. Biochim. Biophys. Acta. 2008;1777:834–846. doi: 10.1016/j.bbabio.2008.04.002. PubMed DOI

Dlasková A., Špaček T., Šantorová J., Plecitá-Hlavatá L., Berková Z., Saudek F., Lessard M., Bewersdorf J., Ježek P. 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an experimental model of type-2 diabetes. Biochim. Biophys. Acta. 2010;1797:1327–1341. doi: 10.1016/j.bbabio.2010.02.003. PubMed DOI

Dlasková A., Engstová H., Plecitá-Hlavatá L., Lessard M., Alán L., Reguera D.P., Jabůrek M., Ježek P. Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy. J. Bioenerg. Biomembr. 2015;47:255–263. doi: 10.1007/s10863-015-9610-3. PubMed DOI

Ježek P., Jabůrek M., Holendová B., Engstová H., Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid. Redox Signal. 2023, ahead of print. PubMed DOI PMC

Kawano I., Bazila B., Ježek P., Dlasková A. Mitochondrial dynamics and cristae shape changes during metabolic reprogramming. Antioxid. Redox Signal. 2023. ahead of print . PubMed DOI

Dlasková A., Špaček T., Engstová H., Špačková J., Schröfel A., Holendová B., Smolková K., Plecitá-Hlavatá L., Ježek P. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Biophys. Acta. 2019;1860:659–678. doi: 10.1016/j.bbabio.2019.06.015. PubMed DOI

Nesterov S., Chesnokov Y., Kamyshinsky R., Panteleeva A., Lyamzaev K., Vasilov R., Yaguzhinsky L. Ordered Clusters of the Complete Oxidative Phosphorylation System in Cardiac Mitochondria. Int. J. Mol. Sci. 2021;22:1462. doi: 10.3390/ijms22031462. PubMed DOI PMC

Plecitá-Hlavatá L., Engstová H., Alán L., Špaček T., Dlasková A., Smolková K., Špačková J., Tauber J., Strádalová V., Malínský J., et al. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering. FASEB J. 2016;30:1941–1957. doi: 10.1096/fj.201500176. PubMed DOI

Dlasková A., Engstová H., Špaček T., Kahancová A., Pavluch V., Smolková K., Špačková J., Bartoš M., Hlavatá L., Ježek P. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. Biochim. Biophys. Acta. 2018;1859:829–844. doi: 10.1016/j.bbabio.2018.04.013. PubMed DOI

Brand M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol. Med. 2016;100:14–31. doi: 10.1016/j.freeradbiomed.2016.04.001. PubMed DOI

Wong H.S., Dighe P.A., Mezera V., Monternier P.A., Brand M.D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 2017;292:16804–16809. doi: 10.1074/jbc.R117.789271. PubMed DOI PMC

Brand M.D. Riding the tiger—Physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit. Rev. BioChem. Mol. Biol. 2020;55:592–661. doi: 10.1080/10409238.2020.1828258. PubMed DOI

Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012;287:27255–27264. doi: 10.1074/jbc.M112.374629. PubMed DOI PMC

Mukhopadhyay S., Encarnación-Rosado J., Lin E.Y., Sohn A.S.W., Zhang H., Mancias J.D., Kimmelman A.C. Autophagy supports mitochondrial metabolism through the regulation of iron homeostasis in pancreatic cancer. Sci. Adv. 2023;9:eadf9284. doi: 10.1126/sciadv.adf9284. PubMed DOI PMC

Ježek P., Plecitá-Hlavatá L. Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia. Int. J. BioChem. Cell Biol. 2009;41:1790–1804. doi: 10.1016/j.biocel.2009.02.014. PubMed DOI

Dickson-Murray E., Nedara K., Modjtahedi N., Tokatlidis K. The Mia40/CHCHD4 Oxidative Folding System: Redox Regulation and Signaling in the Mitochondrial Intermembrane Space. Antioxidants. 2021;10:592. doi: 10.3390/antiox10040592. PubMed DOI PMC

Bolduc J., Koruza K., Luo T., Malo Pueyo J., Vo T.N., Ezeriņa D., Messens J. Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities. Redox Biol. 2021;42:101959. doi: 10.1016/j.redox.2021.101959. PubMed DOI PMC

Rhee S.G., Kang S.W., Chang T.S., Jeong W., Kim K. Peroxiredoxin, a novel family of peroxidases. IUBMB Life. 2001;52:35–41. doi: 10.1080/15216540252774748. PubMed DOI

Rhee S.G. Overview on Peroxiredoxin. Mol. Cells. 2016;39:1–5. PubMed PMC

Villar S.F., Ferrer-Sueta G., Denicola A. The multifaceted nature of peroxiredoxins in chemical biology. Curr. Opin. Chem. Biol. 2023;76:102355. doi: 10.1016/j.cbpa.2023.102355. PubMed DOI

Rhee S.G., Woo H.A. Multiple functions of 2-Cys peroxiredoxins, I and II, and their regulations via post-translational modifications. Free Radic. Biol. Med. 2020;152:107–115. doi: 10.1016/j.freeradbiomed.2020.02.028. PubMed DOI

Thapa P., Jiang H., Ding N., Hao Y., Alshahrani A., Wei Q. The Role of Peroxiredoxins in Cancer Development. Biology. 2023;12:666. doi: 10.3390/biology12050666. PubMed DOI PMC

Liu Y., Wang P., Hu W., Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed. Pharmacother. 2023;164:114896. doi: 10.1016/j.biopha.2023.114896. PubMed DOI

Jeong S.J., Park J.G., Oh G.T. Peroxiredoxins as Potential Targets for Cardiovascular Disease. Antioxidants. 2021;10:1244. doi: 10.3390/antiox10081244. PubMed DOI PMC

Szeliga M. Peroxiredoxins in Neurodegenerative Diseases. Antioxidants. 2020;9:1203. doi: 10.3390/antiox9121203. PubMed DOI PMC

Stancill J.S., Corbett J.A. The Role of Thioredoxin/Peroxiredoxin in the β-Cell Defense Against Oxidative Damage. Front. Endocrinol. 2021;12:718235. doi: 10.3389/fendo.2021.718235. PubMed DOI PMC

Heo S., Kim S., Kang D. The Role of Hydrogen Peroxide and Peroxiredoxins throughout the Cell Cycle. Antioxidants. 2020;9:280. doi: 10.3390/antiox9040280. PubMed DOI PMC

Stocker S., Van Laer K., Mijuskovic A., Dick T.P. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs. Antioxid. Redox Signal. 2018;28:558–573. doi: 10.1089/ars.2017.7162. PubMed DOI

Rhee S.G., Woo H.A., Kang D. The Role of Peroxiredoxins in the Transduction of H2O2 Signals. Antioxid. Redox Signal. 2018;28:537–557. doi: 10.1089/ars.2017.7167. PubMed DOI

Sobotta M.C., Liou W., Stocker S., Talwar D., Oehler M., Ruppert T., Scharf A.N., Dick T.P. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 2015;11:64–70. doi: 10.1038/nchembio.1695. PubMed DOI

Jarvis R.M., Hughes S.M., Ledgerwood E.C. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 2012;53:1522–1530. doi: 10.1016/j.freeradbiomed.2012.08.001. PubMed DOI

Woo H.A., Yim S.H., Shin D.H., Kang D., Yu D.Y., Rhee S.G. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell. 2010;140:517–528. doi: 10.1016/j.cell.2010.01.009. PubMed DOI

Reczek C.R., Chandel N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 2015;33:8–13. doi: 10.1016/j.ceb.2014.09.010. PubMed DOI PMC

Mishra M., Jiang H., Wu L., Chawsheen H.A., Wei Q. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett. 2015;366:150–159. doi: 10.1016/j.canlet.2015.07.002. PubMed DOI PMC

Del Olmo M., Kramer A., Herzel H. A Robust Model for Circadian Redox Oscillations. Int. J. Mol. Sci. 2019;20:2368. doi: 10.3390/ijms20092368. PubMed DOI PMC

Lee J., Liu R., de Jesus D., Kim B.S., Ma K., Moulik M., Yechoor V. Circadian control of β-cell function and stress responses. Diabetes Obes. Metab. 2015;17((Suppl. 1)):123–133. doi: 10.1111/dom.12524. PubMed DOI PMC

Knoops B., Goemaere J., Van der Eecken V., Declercq J.P. Peroxiredoxin 5: Structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid. Redox Signal. 2011;15:817–829. doi: 10.1089/ars.2010.3584. PubMed DOI

Sabharwal S.S., Waypa G.B., Marks J.D., Schumacker P.T. Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling. BioChem. J. 2013;456:337–346. doi: 10.1042/BJ20130740. PubMed DOI PMC

Sabharwal S.S., Dudley V.J., Landwerlin C., Schumacker P.T. H2O2 transit through the mitochondrial intermembrane space promotes tumor cell growth in vitro and in vivo. J. Biol. Chem. 2023;299:104624. doi: 10.1016/j.jbc.2023.104624. PubMed DOI PMC

Ma S., Zhang X., Zheng L., Li Z., Zhao X., Lai W., Shen H., Lv J., Yang G., Wang Q., et al. Peroxiredoxin 6 Is a Crucial Factor in the Initial Step of Mitochondrial Clearance and Is Upstream of the PINK1-Parkin Pathway. Antioxid. Redox Signal. 2016;24:486–501. doi: 10.1089/ars.2015.6336. PubMed DOI

López-Grueso M.J., Lagal D.J., García-Jiménez Á.F., Tarradas R.M., Carmona-Hidalgo B., Peinado J., Requejo-Aguilar R., Bárcena J.A., Padilla C.A. Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells. Redox Biol. 2020;37:101737. doi: 10.1016/j.redox.2020.101737. PubMed DOI PMC

Pacifici F., Della-Morte D., Capuani B., Coppola A., Scioli M.G., Donadel G., Andreadi A., Ciccosanti F., Fimia G.M., Bellia A., et al. Peroxiredoxin 6 Modulates Insulin Secretion and Beta Cell Death via a Mitochondrial Dynamic Network. Front. Endocrinol. 2022;13:842575. doi: 10.3389/fendo.2022.842575. PubMed DOI PMC

Brigelius-Flohe R., Maiorino M. Glutathione peroxidases. Biochim. Biophys. Acta. 2013;1830:3289–3303. doi: 10.1016/j.bbagen.2012.11.020. PubMed DOI

Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018;54:287–293. doi: 10.1016/j.ajme.2017.09.001. DOI

Herbette S., Roeckel-Drevet P., Drevet J.R. Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers. FEBS J. 2007;274:2163–2180. doi: 10.1111/j.1742-4658.2007.05774.x. PubMed DOI

Cheng X., Zhang J., Xiao Y., Wang Z., He J., Ke M., Liu S., Wang Q., Zhang L. Mitochondrial Regulation of Ferroptosis in Cancer Therapy. Int. J. Mol. Sci. 2023;24:10037. doi: 10.3390/ijms241210037. PubMed DOI PMC

Valentine J.S., Doucette P.A., Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev. Biochem. 2005;74:563–593. doi: 10.1146/annurev.biochem.72.121801.161647. PubMed DOI

Fujiki Y., Okumoto K., Honsho M., Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. Biochim. Biophys. Acta. 2022;1869:119330. doi: 10.1016/j.bbamcr.2022.119330. PubMed DOI

Ozden O., Park S.H., Kim H.S., Jiang H., Coleman M.C., Spitz D.R., Gius D. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging. 2011;3:102–107. doi: 10.18632/aging.100291. PubMed DOI PMC

Tao R., Vassilopoulos A., Parisiadou L., Yan Y., Gius D. Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid. Redox Signal. 2014;20:1646–1654. doi: 10.1089/ars.2013.5482. PubMed DOI PMC

Salvatori I., Valle C., Ferri A., Carrì M.T. SIRT3 and mitochondrial metabolism in neurodegenerative diseases. NeuroChem. Int. 2017;109:184–192. doi: 10.1016/j.neuint.2017.04.012. PubMed DOI

Gao E., Sun X., Thorne R.F., Zhang X.D., Li J., Shao F., Ma J., Wu M. NIPSNAP1 directs dual mechanisms to restrain senescence in cancer cells. J. Transl. Med. 2023;21:401. doi: 10.1186/s12967-023-04232-1. PubMed DOI PMC

Anamika Roy A., Trigun S.K. Hippocampus mitochondrial MnSOD activation by a SIRT3 activator, honokiol, correlates with its deacetylation and upregulation of FoxO3a and PGC1α in a rat model of ammonia neurotoxicity. J. Cell. Biochem. 2023;124:606–618. doi: 10.1002/jcb.30393. PubMed DOI

Mohan M.S., Aswani S.S., Aparna N.S., Boban P.T., Sudhakaran P.R., Saja K. Effect of acute cold exposure on cardiac mitochondrial function: Role of sirtuins. Mol. Cell Biochem. 2023. ahead of print . PubMed DOI

Liu X., Xie X., Li D., Liu Z., Zhang B., Zang Y., Yuan H., Shen C. Sirt3-dependent regulation of mitochondrial oxidative stress and apoptosis contributes to the dysfunction of pancreatic islets after severe burns. Free Radic. Biol. Med. 2023;198:59–67. doi: 10.1016/j.freeradbiomed.2023.01.027. PubMed DOI

Ma C., Sun Y., Pi C., Wang H., Sun H., Yu X., Shi Y., He X. Sirt3 Attenuates Oxidative Stress Damage and Rescues Cellular Senescence in Rat Bone Marrow Mesenchymal Stem Cells by Targeting Superoxide Dismutase 2. Front. Cell Dev. Biol. 2020;8:599376. doi: 10.3389/fcell.2020.599376. PubMed DOI PMC

Elumalai S., Karunakaran U., Moon J.S., Won K.C. High glucose-induced PRDX3 acetylation contributes to glucotoxicity in pancreatic β-cells: Prevention by Teneligliptin. Free Radic. Biol. Med. 2020;160:618–629. doi: 10.1016/j.freeradbiomed.2020.07.030. PubMed DOI

de Cubas L., Pak V.V., Belousov V.V., Ayté J., Hidalgo E. The Mitochondria-to-Cytosol H2O2 Gradient Is Caused by Peroxiredoxin-Dependent Cytosolic Scavenging. Antioxidants. 2021;10:731. doi: 10.3390/antiox10050731. PubMed DOI PMC

Hoehne M.N., Jacobs L.J.H.C., Lapacz K.J., Calabrese G., Murschall L.M., Marker T., Kaul H., Trifunovic A., Morgan B., Fricker M., et al. Spatial and temporal control of mitochondrial H2O2 release in intact human cells. EMBO J. 2022;41:e109169. doi: 10.15252/embj.2021109169. PubMed DOI PMC

Pak V.V., Ezeriņa D., Lyublinskaya O.G., Pedre B., Tyurin-Kuzmin P.A., Mishina N.M., Thauvin M., Young D., Wahni K., Martínez Gache S.A., et al. Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metab. 2020;31:642–653. doi: 10.1016/j.cmet.2020.02.003. PubMed DOI PMC

Alshaabi H., Shannon N., Gravelle R., Milczarek S., Messier T., Cunniff B. Miro1-mediated mitochondrial positioning supports subcellular redox status. Redox Biol. 2021;38:101818. doi: 10.1016/j.redox.2020.101818. PubMed DOI PMC

Berry B.J., Wojtovich A.P. Mitochondrial light switches: Optogenetic approaches to control metabolism. FEBS J. 2020;287:4544–4556. doi: 10.1111/febs.15424. PubMed DOI PMC

Onukwufor J.O., Farooqi M.A., Vodičková A., Koren S.A., Baldzizhar A., Berry B.J., Beutner G., Porter G.A., Jr., Belousov V., Grossfield A., et al. A reversible mitochondrial complex I thiol switch mediates hypoxic avoidance behavior in C. elegans. Nat. Commun. 2022;13:2403. doi: 10.1038/s41467-022-30169-y. PubMed DOI PMC

den Toom W.T.F., van Soest D.M.K., Polderman P.E., van Triest M.H., Bruurs L.J.M., De Henau S., Burgering B.M.T., Dansen T.B. Oxygen-consumption based quantification of chemogenetic H2O2 production in live human cells. Free Radic. Biol. Med. 2023;206:134–142. doi: 10.1016/j.freeradbiomed.2023.06.030. PubMed DOI

Fang J., Zhang Y., Gerencser A.A., Brand M.D. Effects of sugars, fatty acids and amino acids on cytosolic and mitochondrial hydrogen peroxide release from liver cells. Free Radic. Biol. Med. 2022;188:92–102. doi: 10.1016/j.freeradbiomed.2022.06.225. PubMed DOI PMC

Fang J., Wong H.S., Brand M.D. Production of superoxide and hydrogen peroxide in the mitochondrial matrix is dominated by site IQ of complex I in diverse cell lines. Redox Biol. 2020;37:101722. doi: 10.1016/j.redox.2020.101722. PubMed DOI PMC

Goncalves R.L.S., Watson M.A., Wong H.S., Orr A.L., Brand M.D. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Redox Biol. 2020;28:101341. doi: 10.1016/j.redox.2019.101341. PubMed DOI PMC

Wong H.S., Benoit B., Brand M.D. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radic. Biol. Med. 2019;130:140–150. doi: 10.1016/j.freeradbiomed.2018.10.448. PubMed DOI

Dlasková A., Hlavatá L., Jezek P. Oxidative stress caused by blocking of mitochondrial complex I H(+) pumping as a link in aging/disease vicious cycle. Int. J. BioChem. Cell Biol. 2008;40:1792–1805. doi: 10.1016/j.biocel.2008.01.012. PubMed DOI

Plecitá-Hlavatá L., Ježek J., Ježek P. Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells. J. Bioenerg. Biomembr. 2015;47:467–476. doi: 10.1007/s10863-015-9628-6. PubMed DOI

Murphy M.P., Bayir H., Belousov V., Chang C.J., Davies K.J.A., Davies M.J., Dick T.P., Finkel T., Forman H.J., Janssen-Heininger Y., et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 2022;4:651–662. doi: 10.1038/s42255-022-00591-z. PubMed DOI PMC

Smolyarova D.D., Podgorny O.V., Bilan D.S., Belousov V.V. A guide to genetically encoded tools for the study of H2O2. FEBS J. 2022;289:5382–5395. doi: 10.1111/febs.16088. PubMed DOI

Kostyuk A.I., Panova A.S., Kokova A.D., Kotova D.A., Maltsev D.I., Podgorny O.V., Belousov V.V., Bilan D.S. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int. J. Mol. Sci. 2020;21:8164. doi: 10.3390/ijms21218164. PubMed DOI PMC

Bilan D.S., Belousov V.V. In Vivo Imaging of Hydrogen Peroxide with HyPer Probes. Antioxid. Redox Signal. 2018;29:569–584. doi: 10.1089/ars.2018.7540. PubMed DOI

Bilan D.S., Belousov V.V. Genetically encoded probes for NAD+/NADH monitoring. Free Radic. Biol. Med. 2016;100:32–42. doi: 10.1016/j.freeradbiomed.2016.06.018. PubMed DOI

Besson E., Gastaldi S., Bloch E., Zielonka J., Zielonka M., Kalyanaraman B., Aslan S., Karoui H., Rockenbauer A., Ouari O., et al. Embedding cyclic nitrone in mesoporous silica particles for EPR spin trapping of superoxide and other radicals. Analyst. 2019;144:4194–4203. doi: 10.1039/C9AN00468H. PubMed DOI

Hardy M., Zielonka J., Karoui H., Sikora A., Michalski R., Podsiadły R., Lopez M., Vasquez-Vivar J., Kalyanaraman B., Ouari O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid. Redox Signal. 2018;28:1416–1432. doi: 10.1089/ars.2017.7398. PubMed DOI PMC

Davies M.J. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods. 2016;109:21–30. doi: 10.1016/j.ymeth.2016.05.013. PubMed DOI

Zielonka J., Vasquez-Vivar J., Kalyanaraman B. Detection of 2-hydroxyethidium in cellular systems: A unique marker product of superoxide and hydroethidine. Nat. Protoc. 2008;3:8–21. doi: 10.1038/nprot.2007.473. PubMed DOI

Shchepinova M.M., Cairns A.G., Prime T.A., Logan A., James A.M., Hall A.R., Vidoni S., Arndt S., Caldwell S.T., Prag H.A., et al. MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chem. Biol. 2017;24:1285–1298. doi: 10.1016/j.chembiol.2017.08.003. PubMed DOI PMC

Lippert A.R., Van de Bittner G.C., Chang C.J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 2011;44:793–804. doi: 10.1021/ar200126t. PubMed DOI PMC

Winterbourn C.C. Biological production, detection, and fate of hydrogen peroxide. Antioxid. Redox Signal. 2018;29:541–551. doi: 10.1089/ars.2017.7425. PubMed DOI

Gatin-Fraudet B., Ottenwelter R., Le Saux T., Norsikian S., Pucher M., Lombès T., Baron A., Durand P., Doisneau G., Bourdreux Y., et al. Evaluation of borinic acids as new, fast hydrogen peroxide-responsive triggers. Proc. Natl. Acad. Sci. USA. 2021;118:e2107503118. doi: 10.1073/pnas.2107503118. PubMed DOI PMC

Zielonka J., Sikora A., Hardy M., Joseph J., Dranka B.P., Kalyanaraman B. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides. Chem. Res. Toxicol. 2012;25:1793–1799. doi: 10.1021/tx300164j. PubMed DOI PMC

Cocheme’ H.M., Logan A., Prime T.A., Abakumova I., Quin C., McQuaker S.J., Patel J.V., Fearnley I.M., James A.M., Porteous C.M., et al. Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nat. Protoc. 2012;7:946–958. doi: 10.1038/nprot.2012.035. PubMed DOI

Morgan B., Van Laer K., Owusu T.N., Ezeriņa D., Pastor-Flores D., Amponsah P.S., Tursch A., Dick T.P. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 2016;12:437–443. doi: 10.1038/nchembio.2067. PubMed DOI

Kritsiligkou P., Shen T.K., Dick T.P. A comparison of Prx- and OxyR-based H2O2 probes expressed in S. cerevisiae. J. Biol. Chem. 2021;297:100866. doi: 10.1016/j.jbc.2021.100866. PubMed DOI PMC

Carmona M., de Cubas L., Bautista E., Moral-Blanch M., Medraño-Fernández I., Sitia R., Boronat S., Ayté J., Hidalgo E. Monitoring cytosolic H2O2 fluctuations arising from altered plasma membrane gradients or from mitochondrial activity. Nat. Commun. 2019;10:4526. doi: 10.1038/s41467-019-12475-0. PubMed DOI PMC

Castejon-Vega B., Cordero M.D., Sanz A. How the Disruption of Mitochondrial Redox Signalling Contributes to Ageing. Antioxidants. 2023;12:831. doi: 10.3390/antiox12040831. PubMed DOI PMC

Vicente-Gutierrez C., Bonora N., Bobo-Jimenez V., Jimenez-Blasco D., Lopez-Fabuel I., Fernandez E., Josephine C., Bonvento G., Enriquez J.A., Almeida A., et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat. Metab. 2019;1:201–211. doi: 10.1038/s42255-018-0031-6. PubMed DOI

Dumont A., Lee M., Barouillet T., Murphy A., Yvan-Charvet L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol. Aspects. Med. 2021;77:100922. doi: 10.1016/j.mam.2020.100922. PubMed DOI

Guzy R.D., Sharma B., Bell E., Chandel N.S., Schumacker P.T. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell. Biol. 2008;28:718–731. doi: 10.1128/MCB.01338-07. PubMed DOI PMC

Bastin J., Sroussi M., Nemazanyy I., Laurent-Puig P., Mouillet-Richard S., Djouadi F. Downregulation of mitochondrial complex I induces ROS production in colorectal cancer subtypes that differently controls migration. J. Transl. Med. 2023;21:522. doi: 10.1186/s12967-023-04341-x. PubMed DOI PMC

Wen Y.A., Xiong X., Scott T., Li A.T., Wang C., Weiss H.L., Tan L., Bradford E., Fan T.W.M., Chandel N.S., et al. The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer. Cell Death Differ. 2019;26:1955–1969. doi: 10.1038/s41418-018-0265-6. PubMed DOI PMC

Comito G., Calvani M., Giannoni E., Bianchini F., Calorini L., Torre E., Migliore C., Giordano S., Chiarugi P. HIF1alpha stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic. Biol. Med. 2011;51:893–904. doi: 10.1016/j.freeradbiomed.2011.05.042. PubMed DOI

Capeloa T., Van de Velde J.A., d’Hose D., Lipari S.G., Derouane F., Hamelin L., Bedin M., Vazeille T., Duhoux F.P., Murphy M.P., et al. Inhibition of Mitochondrial Redox Signaling with MitoQ Prevents Metastasis of Human Pancreatic Cancer in Mice. Cancers. 2022;14:4918. doi: 10.3390/cancers14194918. PubMed DOI PMC

Swisa A., Glaser B., Dor Y. Metabolic stress and compromised identity of pancreatic beta cells. Front. Genet. 2017;8:21. doi: 10.3389/fgene.2017.00021. PubMed DOI PMC

Apostolova N., Vezza T., Muntane J., Rocha M., Víctor V.M. Mitochondrial Dysfunction and Mitophagy in Type 2 Diabetes: Pathophysiology and Therapeutic Targets. Antioxid. Redox Signal. 2023;39:278–320. doi: 10.1089/ars.2022.0016. PubMed DOI

Ayer A., Fazakerley D.J., James D.E., Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic. Biol. Med. 2022;179:339–362. doi: 10.1016/j.freeradbiomed.2021.11.007. PubMed DOI

Aon M.A., Cortassa S., Marban E., O’Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J. Biol. Chem. 2003;278:44735–44744. doi: 10.1074/jbc.M302673200. PubMed DOI

Nanadikar M.S., Vergel Leon A.M., Guo J., van Belle G.J., Jatho A., Philip E.S., Brandner A.F., Böckmann R.A., Shi R., Zieseniss A., et al. IDH3γ functions as a redox switch regulating mitochondrial energy metabolism and contractility in the heart. Nat. Commun. 2023;14:2123. doi: 10.1038/s41467-023-37744-x. PubMed DOI PMC

Rukavina-Mikusic I.A., Rey M., Adán Areán J.S., Vanasco V., Alvarez S., Valdez L.B. Mitochondrial H2O2 metabolism as central event of heart complex I syndrome in early diabetes. Free Radic. Biol. Med. 2023;201:66–75. doi: 10.1016/j.freeradbiomed.2023.03.011. PubMed DOI

Guzy R.D., Hoyos B., Robin E., Chen H., Liu L., Mansfield K.D., Simon M.C., Hammerling U., Schumacker P.T. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401–408. doi: 10.1016/j.cmet.2005.05.001. PubMed DOI

Waypa G.B., Marks J.D., Guzy R., Mungai P.T., Schriewer J., Dokic D., Schumacker P.T. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ. Res. 2010;106:526–535. doi: 10.1161/CIRCRESAHA.109.206334. PubMed DOI PMC

Nazarewicz R.R., Dikalova A.E., Bikineyeva A., Dikalov S.I. Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. Am. J. Physiol. 2013;305:H1131–H1140. doi: 10.1152/ajpheart.00063.2013. PubMed DOI PMC

Salazar G., Huang J., Feresin R.G., Zhao Y., Griendling K.K. Zinc regulates Nox1 expression through a NF-kappaB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic. Biol. Med. 2017;108:225–235. doi: 10.1016/j.freeradbiomed.2017.03.032. PubMed DOI

Daiber A., Di Lisa F., Oelze M., Kroller-Schon S., Steven S., Schulz E., Munzel T. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br. J. Pharmacol. 2017;174:1670–1689. doi: 10.1111/bph.13403. PubMed DOI PMC

Reyes-García J., Carbajal-García A., Di Mise A., Zheng Y.M., Wang X., Wang Y.X. Important Functions and Molecular Mechanisms of Mitochondrial Redox Signaling in Pulmonary Hypertension. Antioxidants. 2022;11:473. doi: 10.3390/antiox11030473. PubMed DOI PMC

Moon J.S., Lee S., Park M.A., Siempos I.I., Haslip M., Lee P.J., Yun M., Kim C.K., Howrylak J., Ryter S.W., et al. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J. Clin. Investig. 2015;125:665–680. doi: 10.1172/JCI78253. PubMed DOI PMC

Horn A., Van der Meulen J.H., Defour A., Hogarth M., Sreetama S.C., Reed A., Scheffer L., Chandel N.S., Jaiswal J.K. Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci. Signal. 2017;10:eaaj1978. doi: 10.1126/scisignal.aaj1978. PubMed DOI PMC

Garcia S., Nissanka N., Mareco E.A., Rossi S., Peralta S., Diaz F., Rotundo R.L., Carvalho R.F., Moraes C.T. Overexpression of PGC-1alpha in aging muscle enhances a subset of young-like molecular patterns. Aging Cell. 2018;17:e12707. doi: 10.1111/acel.12707. PubMed DOI PMC

Zhou R., Yazdi A.S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–225. doi: 10.1038/nature09663. PubMed DOI

Zhong Z., Liang S., Sanchez-Lopez E., He F., Shalapour S., Lin X.J., Wong J., Ding S., Seki E., Schnabl B., et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018;560:198–203. doi: 10.1038/s41586-018-0372-z. PubMed DOI PMC

Moon J.S., Nakahira K., Chung K.P., DeNicola G.M., Koo M.J., Pabon M.A., Rooney K.T., Yoon J.H., Ryter S.W., Stout-Delgado H., et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat. Med. 2016;22:1002–1012. doi: 10.1038/nm.4153. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mitochondrial Physiology of Cellular Redox Regulations

. 2024 Aug 30 ; 73 (S1) : S217-S242. [epub] 20240422

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace