matrix H2O2 release
Dotaz
Zobrazit nápovědu
Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic β cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic β cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic β cells.
- MeSH
- adenosintrifosfát metabolismus MeSH
- beta-buňky metabolismus MeSH
- buněčné dýchání MeSH
- chromatografie kapalinová MeSH
- energetický metabolismus MeSH
- flavinadenindinukleotid metabolismus MeSH
- glukosa metabolismus MeSH
- hmotnostní spektrometrie MeSH
- krysa rodu rattus MeSH
- kyselina citronová metabolismus MeSH
- membránový potenciál mitochondrií MeSH
- metabolické sítě a dráhy MeSH
- metabolomika metody MeSH
- mitochondrie metabolismus MeSH
- NAD metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- sekrece inzulinu * MeSH
- signální transdukce MeSH
- superoxidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Oxidative stress of mitochondrial origin, i.e. elevated mitochondrial superoxide production, belongs to major factors determining aging and oxidative-stress-related diseases. Antioxidants, such as the mitochondria-targeted coenzyme Q, MitoQ(10), may prevent or cure these pathological conditions. To elucidate pro- and anti-oxidant action of MitoQ(10), we studied its effects on HepG2 cell respiration, mitochondrial network morphology, and rates of superoxide release (above that neutralized by superoxide dismutase) to the mitochondrial matrix (J(m)). MitoSOX Red fluorescence confocal microscopy monitoring of J(m) rates showed pro-oxidant effects of 3.5-fold increased J(m) with MitoQ(10). MitoQ(10) induced fission of the mitochondrial network which was recovered after 24h. In rotenone-inhibited HepG2 cells (i.e., already under oxidative stress) MitoQ(10) sharply decreased rotenone-induced J(m), but not together with the Complex II inhibitor thenoyltrifluoroacetone. Respiration of HepG2 cells and isolated rat liver mitochondria with MitoQ(10) increased independently of rotenone. The increase was prevented by thenoyltrifluoroacetone. These results suggest that MitoQ(10) accepts electrons prior to the rotenone-bound Q-site, and the Complex II reverse mode oxidizes MitoQ(10)H(2) to regenerate MitoQ(10). Consequently, MitoQ(10) has a pro-oxidant role in intact cells, whereas it serves as an antioxidant when Complex I-derived superoxide generation is already elevated due to electron flow retardation. Moreover, unlike mitochondrial uncoupling, MitoQ(10) exerted its antioxidant role when Complex I proton pumping was retarded by a hydrophobic amiloride, 5-(N-ethyl-N-isopropyl) amiloride. Consequently, MitoQ(10) may be useful in the treatment of diseases originating from impairment of respiratory chain Complex I due to oxidatively damaged mitochondrial DNA, when its targeted delivery to pathogenic tissues is ensured.
- MeSH
- antioxidancia metabolismus MeSH
- buněčné dýchání účinky léků MeSH
- financování organizované MeSH
- glukosa farmakologie MeSH
- jaterní mitochondrie metabolismus účinky záření MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- mitochondrie metabolismus účinky léků MeSH
- nádorové buněčné linie MeSH
- oxidativní fosforylace účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- protonové pumpy metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- respirační komplex I metabolismus MeSH
- respirační komplex II metabolismus MeSH
- respirační komplex III metabolismus MeSH
- rotenon farmakologie MeSH
- spotřeba kyslíku účinky léků MeSH
- superoxidy metabolismus MeSH
- transport elektronů účinky léků MeSH
- ubichinon analogy a deriváty metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
AIMS: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)-mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. RESULTS: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein-coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). INNOVATION AND CONCLUSION: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity.
- MeSH
- antioxidancia farmakologie MeSH
- beta-buňky účinky léků MeSH
- fosfolipasy A2, skupina II metabolismus MeSH
- inzulin sekrece MeSH
- iontové kanály metabolismus MeSH
- krysa rodu rattus MeSH
- lipidy toxicita MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie účinky léků MeSH
- nádorové buněčné linie MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- receptory spřažené s G-proteiny metabolismus MeSH
- signální transdukce účinky léků MeSH
- superoxidy metabolismus MeSH
- terc-butylhydroperoxid farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Redox signaling from mitochondria (mt) to the cytosol and plasma membrane (PM) has been scarcely reported, such as in the case of hypoxic cell adaptation or (2-oxo-) 2-keto-isocaproate (KIC) β-like-oxidation stimulating insulin secretion in pancreatic β-cells. Mutual redox state influence between mitochondrial major compartments, the matrix and the intracristal space, and the cytosol is therefore derived theoretically in this article to predict possible conditions, when mt-to-cytosol and mt-to-PM signals may occur, as well as conditions in which the cytosolic redox signaling is not overwhelmed by the mitochondrial antioxidant capacity. Possible peroxiredoxin 3 participation in mt-to-cytosol redox signaling is discussed, as well as another specific case, whereby mitochondrial superoxide release is diminished, whereas the matrix MnSOD is activated. As a result, the enhanced conversion to H2O2 allows H2O2 diffusion into the cytosol, where it could be a predominant component of the H2O2 release. In both of these ways, mt-to-cytosol and mt-to-PM signals may be realized. Finally, the use of redox-sensitive probes is discussed, which disturb redox equilibria, and hence add a surplus redox-buffering to the compartment, where they are localized. Specifically, when attempts to quantify net H2O2 fluxes are to be made, this should be taken into account.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A method for the immobilization of antibodies to inert matrix represents an important factor that affects results of immunoaffinity chromatography. Binding antibodies to immobilized metal ions is an example of oriented immobilization that avoids a random coupling of a protein. Preparation of a stable immunoaffinity sorbent using immobilized metal ions was described. Antibodies were bound to chelated Co3+ ions that were prepared by oxidation of Co2+-iminodiacetic acid agarose using hydrogen peroxide. The formation of a stable complex of the antibody with immobilized Co3+ ions was proved. Antibodies bound by this way were not released with solutions of 50 mM EDTA, 6 M urea, 3 M NaCl, 20% v/v dioxane, 0.1 M imidazole and buffers of pH 2.5 and pH 11.0. If needed, antibody could be released from the carrier by the reduction of Co3+ ions with a reducing agent (e.g. dithiotreitol or 2-mercaptoethanol). Antibody released from the carrier could be then replaced by another antibody. The method described in this paper was used for the immobilization of polyclonal rabbit anti-ovalbumin antibody or egg yolk antibody (IgY) produced in chicken. In a model experiment, immobilized polyclonal rabbit antibodies were used for the separation of ovalbumin from egg white and conditions of chromatography were described.
- MeSH
- chromatografie afinitní metody MeSH
- financování organizované MeSH
- imunoglobulin G chemie metabolismus MeSH
- imunoglobuliny chemie metabolismus MeSH
- kobalt chemie MeSH
- králíci MeSH
- kur domácí MeSH
- oxidancia chemie MeSH
- peroxid vodíku chemie MeSH
- protilátky chemie metabolismus MeSH
- sefarosa chemie MeSH
- vaječné proteiny chemie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- hodnotící studie MeSH
The mitochondrial network provides the central cell's energetic and regulatory unit, which besides ATP and metabolite production participates in cellular signaling through regulated reactive oxygen species (ROS) production and various protein/ion fluxes. The inner membrane forms extensive folds, called cristae, i.e. cavities enfolded from and situated perpendicularly to its inner boundary membrane portion, which encompasses an inner cylinder within the outer membrane tubule. Mitochondrial cristae ultramorphology reflects various metabolic, physiological or pathological states. Since the mitochondrion is typically a predominant superoxide source and generated ROS also serve for the creation of information redox signals, we review known relationships between ROS generation within the respiratory chain complexes of cristae and cristae morphology. Notably, it is emphasized that cristae shape is governed by ATP-synthase dimers, MICOS complexes, OPA1 isoforms and the umbrella of their regulation, and also dependent on local protonmotive force (electrical potential component) in cristae. Cristae are also affected by redox-sensitive kinases/phosphatases or p66SHC. ATP-synthase dimers decrease in the inflated intracristal space, diminishing pH and hypothetically having minimal superoxide formation. Matrix-released signaling superoxide/H2O2 is predominantly integrated along mitochondrial tubules, whereas the diffusion of intracristal signaling ROS species is controlled by crista junctions, the widening of which enables specific retrograde redox signaling such as during hypoxic cell adaptation. Other physiological cases of H2O2 release from the mitochondrion include the modulation of insulin release in pancreatic β-cells, enhancement of insulin signaling in peripheral tissues, signaling by T-cell receptors, retrograde signaling during the cell cycle and cell differentiation, specifically that of adipocytes.
- MeSH
- adenosintrifosfát biosyntéza MeSH
- lidé MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondrie metabolismus MeSH
- signální transdukce * MeSH
- superoxidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Patatin-like phospholipase domain-containing protein PNPLA8, also termed Ca2+-independent phospholipase A2γ (iPLA2γ), is addressed to the mitochondrial matrix (or peroxisomes), where it may manifest its unique activity to cleave phospholipid side-chains from both sn-1 and sn-2 positions, consequently releasing either saturated or unsaturated fatty acids (FAs), including oxidized FAs. Moreover, iPLA2γ is directly stimulated by H2O2 and, hence, is activated by redox signaling or oxidative stress. This redox activation permits the antioxidant synergy with mitochondrial uncoupling proteins (UCPs) or other SLC25 mitochondrial carrier family members by FA-mediated protonophoretic activity, termed mild uncoupling, that leads to diminishing of mitochondrial superoxide formation. This mechanism allows for the maintenance of the steady-state redox status of the cell. Besides the antioxidant role, we review the relations of iPLA2γ to lipid peroxidation since iPLA2γ is alternatively activated by cardiolipin hydroperoxides and hypothetically by structural alterations of lipid bilayer due to lipid peroxidation. Other iPLA2γ roles include the remodeling of mitochondrial (or peroxisomal) membranes and the generation of specific lipid second messengers. Thus, for example, during FA β-oxidation in pancreatic β-cells, H2O2-activated iPLA2γ supplies the GPR40 metabotropic FA receptor to amplify FA-stimulated insulin secretion. Cytoprotective roles of iPLA2γ in the heart and brain are also discussed.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
RATIONALE: Ventricular arrhythmias remain the leading cause of death in patients suffering myocardial ischemia. Myeloperoxidase, a heme enzyme released by polymorphonuclear neutrophils, accumulates within ischemic myocardium and has been linked to adverse left ventricular remodeling. OBJECTIVE: To reveal the role of myeloperoxidase for the development of ventricular arrhythmias. METHODS AND RESULTS: In different murine models of myocardial ischemia, myeloperoxidase deficiency profoundly decreased vulnerability for ventricular tachycardia on programmed right ventricular and burst stimulation and spontaneously as assessed by ECG telemetry after isoproterenol injection. Experiments using CD11b/CD18 integrin-deficient (CD11b(-/-)) mice and intravenous myeloperoxidase infusion revealed that neutrophil infiltration is a prerequisite for myocardial myeloperoxidase accumulation. Ventricles from myeloperoxidase-deficient (Mpo(-/-)) mice showed less pronounced slowing and decreased heterogeneity of electric conduction in the peri-infarct zone than wild-type mice. Expression of the redox-sensitive gap junctional protein Cx43 (Connexin 43) was reduced in the peri-infarct area of wild-type compared with Mpo(-/-) mice. In isolated wild-type cardiomyocytes, Cx43 protein content decreased on myeloperoxidase/H2O2 incubation. Mapping of induced pluripotent stem cell-derived cardiomyocyte networks and in vivo investigations linked Cx43 breakdown to myeloperoxidase-dependent activation of matrix metalloproteinase 7. Moreover, Mpo(-/-) mice showed decreased ventricular postischemic fibrosis reflecting reduced accumulation of myofibroblasts. Ex vivo, myeloperoxidase was demonstrated to induce fibroblast-to-myofibroblast transdifferentiation by activation of p38 mitogen-activated protein kinases resulting in upregulated collagen generation. In support of our experimental findings, baseline myeloperoxidase plasma levels were independently associated with a history of ventricular arrhythmias, sudden cardiac death, or implantable cardioverter-defibrillator implantation in a cohort of 2622 stable patients with an ejection fraction >35% undergoing elective diagnostic cardiac evaluation. CONCLUSIONS: Myeloperoxidase emerges as a crucial mediator of postischemic myocardial remodeling and may evolve as a novel pharmacological target for secondary disease prevention after myocardial ischemia.
- MeSH
- ischemická choroba srdeční metabolismus patologie MeSH
- kardiomyocyty metabolismus patologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- orgánové kultury - kultivační techniky MeSH
- peroxidasa nedostatek MeSH
- remodelace komor fyziologie MeSH
- srdeční arytmie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH