-
Je něco špatně v tomto záznamu ?
Integration of superoxide formation and cristae morphology for mitochondrial redox signaling
L. Plecitá-Hlavatá, P. Ježek,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
- MeSH
- adenosintrifosfát biosyntéza MeSH
- lidé MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondrie metabolismus MeSH
- signální transdukce * MeSH
- superoxidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The mitochondrial network provides the central cell's energetic and regulatory unit, which besides ATP and metabolite production participates in cellular signaling through regulated reactive oxygen species (ROS) production and various protein/ion fluxes. The inner membrane forms extensive folds, called cristae, i.e. cavities enfolded from and situated perpendicularly to its inner boundary membrane portion, which encompasses an inner cylinder within the outer membrane tubule. Mitochondrial cristae ultramorphology reflects various metabolic, physiological or pathological states. Since the mitochondrion is typically a predominant superoxide source and generated ROS also serve for the creation of information redox signals, we review known relationships between ROS generation within the respiratory chain complexes of cristae and cristae morphology. Notably, it is emphasized that cristae shape is governed by ATP-synthase dimers, MICOS complexes, OPA1 isoforms and the umbrella of their regulation, and also dependent on local protonmotive force (electrical potential component) in cristae. Cristae are also affected by redox-sensitive kinases/phosphatases or p66SHC. ATP-synthase dimers decrease in the inflated intracristal space, diminishing pH and hypothetically having minimal superoxide formation. Matrix-released signaling superoxide/H2O2 is predominantly integrated along mitochondrial tubules, whereas the diffusion of intracristal signaling ROS species is controlled by crista junctions, the widening of which enables specific retrograde redox signaling such as during hypoxic cell adaptation. Other physiological cases of H2O2 release from the mitochondrion include the modulation of insulin release in pancreatic β-cells, enhancement of insulin signaling in peripheral tissues, signaling by T-cell receptors, retrograde signaling during the cell cycle and cell differentiation, specifically that of adipocytes.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016950
- 003
- CZ-PrNML
- 005
- 20180523093113.0
- 007
- ta
- 008
- 180515s2016 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.biocel.2016.09.010 $2 doi
- 035 __
- $a (PubMed)27640755
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Plecitá-Hlavatá, Lydie $u Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 245 10
- $a Integration of superoxide formation and cristae morphology for mitochondrial redox signaling / $c L. Plecitá-Hlavatá, P. Ježek,
- 520 9_
- $a The mitochondrial network provides the central cell's energetic and regulatory unit, which besides ATP and metabolite production participates in cellular signaling through regulated reactive oxygen species (ROS) production and various protein/ion fluxes. The inner membrane forms extensive folds, called cristae, i.e. cavities enfolded from and situated perpendicularly to its inner boundary membrane portion, which encompasses an inner cylinder within the outer membrane tubule. Mitochondrial cristae ultramorphology reflects various metabolic, physiological or pathological states. Since the mitochondrion is typically a predominant superoxide source and generated ROS also serve for the creation of information redox signals, we review known relationships between ROS generation within the respiratory chain complexes of cristae and cristae morphology. Notably, it is emphasized that cristae shape is governed by ATP-synthase dimers, MICOS complexes, OPA1 isoforms and the umbrella of their regulation, and also dependent on local protonmotive force (electrical potential component) in cristae. Cristae are also affected by redox-sensitive kinases/phosphatases or p66SHC. ATP-synthase dimers decrease in the inflated intracristal space, diminishing pH and hypothetically having minimal superoxide formation. Matrix-released signaling superoxide/H2O2 is predominantly integrated along mitochondrial tubules, whereas the diffusion of intracristal signaling ROS species is controlled by crista junctions, the widening of which enables specific retrograde redox signaling such as during hypoxic cell adaptation. Other physiological cases of H2O2 release from the mitochondrion include the modulation of insulin release in pancreatic β-cells, enhancement of insulin signaling in peripheral tissues, signaling by T-cell receptors, retrograde signaling during the cell cycle and cell differentiation, specifically that of adipocytes.
- 650 _2
- $a adenosintrifosfát $x biosyntéza $7 D000255
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mitochondrie $x metabolismus $7 D008928
- 650 _2
- $a mitochondriální membrány $x metabolismus $7 D051336
- 650 12
- $a signální transdukce $7 D015398
- 650 _2
- $a superoxidy $x metabolismus $7 D013481
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Ježek, Petr $u Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. Electronic address: jezek@biomed.cas.cz.
- 773 0_
- $w MED00006475 $t The international journal of biochemistry & cell biology $x 1878-5875 $g Roč. 80, č. - (2016), s. 31-50
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27640755 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180523093257 $b ABA008
- 999 __
- $a ok $b bmc $g 1300574 $s 1013790
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 80 $c - $d 31-50 $e 20160915 $i 1878-5875 $m International journal of biochemistry and cell biology $n Int J Biochem Cell Biol $x MED00006475
- LZP __
- $a Pubmed-20180515