Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I

L. Plecitá-Hlavatá, J. Ježek, P. Ježek

. 2009 ; 41 (8-9) : 1697-1707.

Jazyk angličtina Země Nizozemsko

Perzistentní odkaz   https://www.medvik.cz/link/bmc11009379

Grantová podpora
NR7917 MZ0 CEP - Centrální evidence projektů

Digitální knihovna NLK
Plný text - Článek
Zdroj

E-zdroje

NLK ScienceDirect (archiv) od 1995-01-01 do 2009-12-31

Oxidative stress of mitochondrial origin, i.e. elevated mitochondrial superoxide production, belongs to major factors determining aging and oxidative-stress-related diseases. Antioxidants, such as the mitochondria-targeted coenzyme Q, MitoQ(10), may prevent or cure these pathological conditions. To elucidate pro- and anti-oxidant action of MitoQ(10), we studied its effects on HepG2 cell respiration, mitochondrial network morphology, and rates of superoxide release (above that neutralized by superoxide dismutase) to the mitochondrial matrix (J(m)). MitoSOX Red fluorescence confocal microscopy monitoring of J(m) rates showed pro-oxidant effects of 3.5-fold increased J(m) with MitoQ(10). MitoQ(10) induced fission of the mitochondrial network which was recovered after 24h. In rotenone-inhibited HepG2 cells (i.e., already under oxidative stress) MitoQ(10) sharply decreased rotenone-induced J(m), but not together with the Complex II inhibitor thenoyltrifluoroacetone. Respiration of HepG2 cells and isolated rat liver mitochondria with MitoQ(10) increased independently of rotenone. The increase was prevented by thenoyltrifluoroacetone. These results suggest that MitoQ(10) accepts electrons prior to the rotenone-bound Q-site, and the Complex II reverse mode oxidizes MitoQ(10)H(2) to regenerate MitoQ(10). Consequently, MitoQ(10) has a pro-oxidant role in intact cells, whereas it serves as an antioxidant when Complex I-derived superoxide generation is already elevated due to electron flow retardation. Moreover, unlike mitochondrial uncoupling, MitoQ(10) exerted its antioxidant role when Complex I proton pumping was retarded by a hydrophobic amiloride, 5-(N-ethyl-N-isopropyl) amiloride. Consequently, MitoQ(10) may be useful in the treatment of diseases originating from impairment of respiratory chain Complex I due to oxidatively damaged mitochondrial DNA, when its targeted delivery to pathogenic tissues is ensured.

000      
04167naa 2200517 a 4500
001      
bmc11009379
003      
CZ-PrNML
005      
20140321095419.0
008      
110510s2009 ne e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Hlavatá, Lydie $7 xx0117679
245    10
$a Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I / $c L. Plecitá-Hlavatá, J. Ježek, P. Ježek
314    __
$a Department No 75, Institute of Physiology, Academy of Sciences, Videnska 1083, Prague, Czech Republic. plecita@biomed.cas.cz
520    9_
$a Oxidative stress of mitochondrial origin, i.e. elevated mitochondrial superoxide production, belongs to major factors determining aging and oxidative-stress-related diseases. Antioxidants, such as the mitochondria-targeted coenzyme Q, MitoQ(10), may prevent or cure these pathological conditions. To elucidate pro- and anti-oxidant action of MitoQ(10), we studied its effects on HepG2 cell respiration, mitochondrial network morphology, and rates of superoxide release (above that neutralized by superoxide dismutase) to the mitochondrial matrix (J(m)). MitoSOX Red fluorescence confocal microscopy monitoring of J(m) rates showed pro-oxidant effects of 3.5-fold increased J(m) with MitoQ(10). MitoQ(10) induced fission of the mitochondrial network which was recovered after 24h. In rotenone-inhibited HepG2 cells (i.e., already under oxidative stress) MitoQ(10) sharply decreased rotenone-induced J(m), but not together with the Complex II inhibitor thenoyltrifluoroacetone. Respiration of HepG2 cells and isolated rat liver mitochondria with MitoQ(10) increased independently of rotenone. The increase was prevented by thenoyltrifluoroacetone. These results suggest that MitoQ(10) accepts electrons prior to the rotenone-bound Q-site, and the Complex II reverse mode oxidizes MitoQ(10)H(2) to regenerate MitoQ(10). Consequently, MitoQ(10) has a pro-oxidant role in intact cells, whereas it serves as an antioxidant when Complex I-derived superoxide generation is already elevated due to electron flow retardation. Moreover, unlike mitochondrial uncoupling, MitoQ(10) exerted its antioxidant role when Complex I proton pumping was retarded by a hydrophobic amiloride, 5-(N-ethyl-N-isopropyl) amiloride. Consequently, MitoQ(10) may be useful in the treatment of diseases originating from impairment of respiratory chain Complex I due to oxidatively damaged mitochondrial DNA, when its targeted delivery to pathogenic tissues is ensured.
590    __
$a bohemika - dle Pubmed
650    _2
$a zvířata $7 D000818
650    _2
$a antioxidancia $x metabolismus $7 D000975
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a buněčné dýchání $x účinky léků $7 D019069
650    _2
$a transport elektronů $x účinky léků $7 D004579
650    _2
$a respirační komplex I $x metabolismus $7 D042967
650    _2
$a respirační komplex II $x metabolismus $7 D042963
650    _2
$a respirační komplex III $x metabolismus $7 D014450
650    _2
$a glukosa $x farmakologie $7 D005947
650    _2
$a lidé $7 D006801
650    _2
$a peroxid vodíku $x metabolismus $7 D006861
650    _2
$a mitochondrie $x metabolismus $x účinky léků $7 D008928
650    _2
$a jaterní mitochondrie $x metabolismus $x účinky záření $7 D008930
650    _2
$a oxidativní fosforylace $x účinky léků $7 D010085
650    _2
$a spotřeba kyslíku $x účinky léků $7 D010101
650    _2
$a protonové pumpy $x metabolismus $7 D017494
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a reaktivní formy kyslíku $x metabolismus $7 D017382
650    _2
$a rotenon $x farmakologie $7 D012402
650    _2
$a superoxidy $x metabolismus $7 D013481
650    _2
$a ubichinon $x analogy a deriváty $x metabolismus $7 D014451
650    _2
$a financování organizované $7 D005381
700    1_
$a Ježek, Jan $7 xx0070876
700    1_
$a Ježek, Petr, $d 1945- $7 xx0030581
773    0_
$t International Journal of Biochemistry & Cell Biology $w MED00006475 $g Roč. 41, č. 8-9 (2009), s. 1697-1707
910    __
$a ABA008 $b x $y 2 $z 0
990    __
$a 20110513104747 $b ABA008
991    __
$a 20140321095447 $b ABA008
999    __
$a ok $b bmc $g 838963 $s 702764
BAS    __
$a 3
BMC    __
$a 2009 $b 41 $c 8-9 $d 1697-1707 $m International journal of biochemistry and cell biology $n Int J Biochem Cell Biol $x MED00006475
GRA    __
$a NR7917 $p MZ0
LZP    __
$a 2011-2B09/jvme

Najít záznam