• Je něco špatně v tomto záznamu ?

Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD+ Ratio

L. Plecitá-Hlavatá, H. Engstová, B. Holendová, J. Tauber, T. Špaček, L. Petrásková, V. Křen, J. Špačková, K. Gotvaldová, J. Ježek, A. Dlasková, K. Smolková, P. Ježek

. 2020 ; 33 (12) : 789-815. [pub] 20200707

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21026481

Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic β cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic β cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic β cells.

000      
00000naa a2200000 a 4500
001      
bmc21026481
003      
CZ-PrNML
005      
20211026132855.0
007      
ta
008      
211013s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1089/ars.2019.7800 $2 doi
035    __
$a (PubMed)32517485
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Plecitá-Hlavatá, Lydie $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
245    10
$a Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD+ Ratio / $c L. Plecitá-Hlavatá, H. Engstová, B. Holendová, J. Tauber, T. Špaček, L. Petrásková, V. Křen, J. Špačková, K. Gotvaldová, J. Ježek, A. Dlasková, K. Smolková, P. Ježek
520    9_
$a Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic β cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic β cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic β cells.
650    _2
$a adenosintrifosfát $x metabolismus $7 D000255
650    _2
$a zvířata $7 D000818
650    _2
$a buněčné dýchání $7 D019069
650    _2
$a chromatografie kapalinová $7 D002853
650    _2
$a kyselina citronová $x metabolismus $7 D019343
650    _2
$a energetický metabolismus $7 D004734
650    _2
$a flavinadenindinukleotid $x metabolismus $7 D005182
650    _2
$a glukosa $x metabolismus $7 D005947
650    _2
$a peroxid vodíku $x metabolismus $7 D006861
650    12
$a sekrece inzulinu $7 D000078790
650    _2
$a beta-buňky $x metabolismus $7 D050417
650    _2
$a hmotnostní spektrometrie $7 D013058
650    _2
$a membránový potenciál mitochondrií $7 D053078
650    _2
$a metabolické sítě a dráhy $7 D053858
650    _2
$a metabolomika $x metody $7 D055432
650    _2
$a mitochondrie $x metabolismus $7 D008928
650    _2
$a NAD $x metabolismus $7 D009243
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a signální transdukce $7 D015398
650    _2
$a superoxidy $x metabolismus $7 D013481
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Engstová, Hana $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Holendová, Blanka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Tauber, Jan $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Špaček, Tomáš $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Petrásková, Lucie $u Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Křen, Vladimír $u Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Špačková, Jitka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Gotvaldová, Klára $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Ježek, Jan $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $u The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
700    1_
$a Dlasková, Andrea $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Smolková, Katarína $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Ježek, Petr $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
773    0_
$w MED00006026 $t Antioxidants & redox signaling $x 1557-7716 $g Roč. 33, č. 12 (2020), s. 789-815
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32517485 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026132901 $b ABA008
999    __
$a ok $b bmc $g 1715260 $s 1146988
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 33 $c 12 $d 789-815 $e 20200707 $i 1557-7716 $m Antioxidants & redox signaling $n Antioxid Redox Signal $x MED00006026
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...