-
Je něco špatně v tomto záznamu ?
Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD+ Ratio
L. Plecitá-Hlavatá, H. Engstová, B. Holendová, J. Tauber, T. Špaček, L. Petrásková, V. Křen, J. Špačková, K. Gotvaldová, J. Ježek, A. Dlasková, K. Smolková, P. Ježek
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32517485
DOI
10.1089/ars.2019.7800
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- beta-buňky metabolismus MeSH
- buněčné dýchání MeSH
- chromatografie kapalinová MeSH
- energetický metabolismus MeSH
- flavinadenindinukleotid metabolismus MeSH
- glukosa metabolismus MeSH
- hmotnostní spektrometrie MeSH
- krysa rodu rattus MeSH
- kyselina citronová metabolismus MeSH
- membránový potenciál mitochondrií MeSH
- metabolické sítě a dráhy MeSH
- metabolomika metody MeSH
- mitochondrie metabolismus MeSH
- NAD metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- sekrece inzulinu * MeSH
- signální transdukce MeSH
- superoxidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic β cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic β cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic β cells.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026481
- 003
- CZ-PrNML
- 005
- 20211026132855.0
- 007
- ta
- 008
- 211013s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1089/ars.2019.7800 $2 doi
- 035 __
- $a (PubMed)32517485
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Plecitá-Hlavatá, Lydie $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- 245 10
- $a Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD+ Ratio / $c L. Plecitá-Hlavatá, H. Engstová, B. Holendová, J. Tauber, T. Špaček, L. Petrásková, V. Křen, J. Špačková, K. Gotvaldová, J. Ježek, A. Dlasková, K. Smolková, P. Ježek
- 520 9_
- $a Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic β cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic β cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic β cells.
- 650 _2
- $a adenosintrifosfát $x metabolismus $7 D000255
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a buněčné dýchání $7 D019069
- 650 _2
- $a chromatografie kapalinová $7 D002853
- 650 _2
- $a kyselina citronová $x metabolismus $7 D019343
- 650 _2
- $a energetický metabolismus $7 D004734
- 650 _2
- $a flavinadenindinukleotid $x metabolismus $7 D005182
- 650 _2
- $a glukosa $x metabolismus $7 D005947
- 650 _2
- $a peroxid vodíku $x metabolismus $7 D006861
- 650 12
- $a sekrece inzulinu $7 D000078790
- 650 _2
- $a beta-buňky $x metabolismus $7 D050417
- 650 _2
- $a hmotnostní spektrometrie $7 D013058
- 650 _2
- $a membránový potenciál mitochondrií $7 D053078
- 650 _2
- $a metabolické sítě a dráhy $7 D053858
- 650 _2
- $a metabolomika $x metody $7 D055432
- 650 _2
- $a mitochondrie $x metabolismus $7 D008928
- 650 _2
- $a NAD $x metabolismus $7 D009243
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a signální transdukce $7 D015398
- 650 _2
- $a superoxidy $x metabolismus $7 D013481
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Engstová, Hana $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Holendová, Blanka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Tauber, Jan $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Špaček, Tomáš $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Petrásková, Lucie $u Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Křen, Vladimír $u Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Špačková, Jitka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Gotvaldová, Klára $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Ježek, Jan $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $u The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- 700 1_
- $a Dlasková, Andrea $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Smolková, Katarína $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Ježek, Petr $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- 773 0_
- $w MED00006026 $t Antioxidants & redox signaling $x 1557-7716 $g Roč. 33, č. 12 (2020), s. 789-815
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32517485 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026132901 $b ABA008
- 999 __
- $a ok $b bmc $g 1715260 $s 1146988
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 33 $c 12 $d 789-815 $e 20200707 $i 1557-7716 $m Antioxidants & redox signaling $n Antioxid Redox Signal $x MED00006026
- LZP __
- $a Pubmed-20211013