Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia

. 2009 Oct ; 41 (10) : 1790-804. [epub] 20090303

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid19703650
Odkazy

PubMed 19703650
DOI 10.1016/j.biocel.2009.02.014
PII: S1357-2725(09)00086-7
Knihovny.cz E-zdroje

A single mitochondrial network in the cell undergoes constant fission and fusion primarily depending on the local GTP gradients and the mitochondrial energetics. Here we overview the main properties and regulation of pro-fusion and pro-fission mitodynamins, i.e. dynamins-related GTPases responsible for mitochondrial shape-forming, such as pro-fusion mitofusins MFN1, MFN2, and the inner membrane-residing long OPA1 isoforms, and pro-fission mitodynamins FIS1, MFF, and DRP1 multimers required for scission. Notably, the OPA1 cleavage into non-functional short isoforms at a diminished ATP level (collapsed membrane potential) and the DRP1 recruitment upon phosphorylation by various kinases are overviewed. Possible responses of mitodynamins to the oxidative stress, hypoxia, and concomitant mtDNA mutations are also discussed. We hypothesize that the increased GTP formation within the Krebs cycle followed by the GTP export via the ADP/ATP carrier shift the balance between fission and fusion towards fusion by activating the GTPase domain of OPA1 located in the peripheral intermembrane space (PIMS). Since the protein milieu of PIMS is kept at the prevailing oxidized redox potential by the TOM, MIA40 and ALR/Erv1 import-redox trapping system, redox regulations shift the protein environment of PIMS to a more reduced state due to the higher substrate load and increased respiration. A higher cytochrome c turnover rate may prevent electron transfer from ALR/Erv1 to cytochrome c. Nevertheless, the putative links between the mitodynamin responses, mitochondrial morphology and the changes in the mitochondrial bioenergetics, superoxide production, and hypoxia are yet to be elucidated, including the precise basis for signaling by the mitochondrion-derived vesicles.

Erratum v

Int J Biochem Cell Biol. 2010 May;42(5):771 PubMed

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mitochondrial Physiology of Cellular Redox Regulations

. 2024 Aug 30 ; 73 (S1) : S217-S242. [epub] 20240422

Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology

. 2023 Oct ; 39 (10-12) : 635-683. [epub] 20230411

Pitfalls of Mitochondrial Redox Signaling Research

. 2023 Aug 31 ; 12 (9) : . [epub] 20230831

Antioxidant Role and Cardiolipin Remodeling by Redox-Activated Mitochondrial Ca2+-Independent Phospholipase A2γ in the Brain

. 2022 Jan 20 ; 11 (2) : . [epub] 20220120

Antioxidant Synergy of Mitochondrial Phospholipase PNPLA8/iPLA2γ with Fatty Acid-Conducting SLC25 Gene Family Transporters

. 2021 Apr 26 ; 10 (5) : . [epub] 20210426

Redox Signaling from Mitochondria: Signal Propagation and Its Targets

. 2020 Jan 06 ; 10 (1) : . [epub] 20200106

Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling

. 2018 Sep 01 ; 29 (7) : 667-714. [epub] 20180314

Nkx6.1 decline accompanies mitochondrial DNA reduction but subtle nucleoid size decrease in pancreatic islet β-cells of diabetic Goto Kakizaki rats

. 2017 Nov 15 ; 7 (1) : 15674. [epub] 20171115

Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy

. 2015 Jun ; 47 (3) : 255-63. [epub] 20150402

Redox homeostasis in pancreatic β cells

. 2012 ; 2012 () : 932838. [epub] 20121213

The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells

. 2012 ; 2012 () : 273947. [epub] 20120520

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...