Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy

. 2015 Jun ; 47 (3) : 255-63. [epub] 20150402

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25833036

Mitochondrial nucleoids are confined sites of mitochondrial DNA existing in complex clusters with the DNA-compacting mitochondrial (mt) transcription factor A (TFAM) and other accessory proteins and gene expression machinery proteins, such as a mt single-stranded-DNA-binding protein (mtSSB). To visualize nucleoid distribution within the mt reticular network, we have employed three-dimensional (3D) double-color 4Pi microscopy. The mt network was visualized in hepatocellular carcinoma HepG2 cells via mt-matrix-addressed GFP, while 3D immunocytochemistry of mtSSB was performed. Optimization of iso-surface computation threshold for nucleoid 4Pi images to 30 led to an average nucleoid diameter of 219 ± 110 and 224 ± 100 nm in glucose- and galactose-cultivated HepG2 cells (the latter with obligatory oxidative phosphorylation). We have positioned mtDNA nucleoids within the mt reticulum network and refined our model for nucleoid redistribution within the fragmented network--clustering of up to ten nucleoids in 2 μm diameter mitochondrial spheroids of a fragmented mt network, arising from an original 10 μm mt tubule of a 400 nm diameter. However, the theoretically fragmented bulk parts were observed most frequently as being reintegrated into the continuous mt network in 4Pi images. Since the predicted nucleoid counts within the bulk parts corresponded to the model, we conclude that fragmentation/reintegration cycles are not accompanied by mtDNA degradation or that mtDNA degradation is equally balanced by mtDNA replication.

Zobrazit více v PubMed

J Cell Biol. 2008 Jun 30;181(7):1117-28 PubMed

Opt Express. 2011 Aug 1;19(16):15009-19 PubMed

Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6136-41 PubMed

Int J Biochem Cell Biol. 2009 Oct;41(10):1790-804 PubMed

Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):834-46 PubMed

Nat Cell Biol. 2011 May;13(5):589-98 PubMed

PLoS Biol. 2008 Jan;6(1):e10 PubMed

Int J Biochem Cell Biol. 2013 Mar;45(3):593-603 PubMed

Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3370-5 PubMed

Am J Physiol Cell Physiol. 2010 Aug;299(2):C477-87 PubMed

Ultramicroscopy. 2001 Apr;87(3):155-64 PubMed

Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13534-9 PubMed

EMBO J. 2008 Jan 23;27(2):433-46 PubMed

Nat Genet. 2008 Feb;40(2):249-54 PubMed

J Biol Chem. 2008 Feb 8;283(6):3665-75 PubMed

IUBMB Life. 2010 Jan;62(1):19-32 PubMed

PLoS Genet. 2014 Oct 09;10(10):e1004670 PubMed

Mitochondrion. 2007 Sep;7(5):311-21 PubMed

Biophys J. 2004 Dec;87(6):4146-52 PubMed

J Biol Chem. 2006 Sep 1;281(35):25791-802 PubMed

Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1327-41 PubMed

Cancer Res. 2004 Feb 1;64(3):985-93 PubMed

Mol Cell Biol. 2011 Dec;31(24):4994-5010 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...