Possible frequent multiple mitochondrial DNA copies in a single nucleoid in HeLa cells
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37031254
PubMed Central
PMC10082775
DOI
10.1038/s41598-023-33012-6
PII: 10.1038/s41598-023-33012-6
Knihovny.cz E-zdroje
- MeSH
- DNA vazebné proteiny * genetika metabolismus MeSH
- HeLa buňky MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- mitochondriální DNA * genetika metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny * MeSH
- mitochondriální DNA * MeSH
- mitochondriální proteiny MeSH
Previously, a number of ~ 1.4 of mitochondrial DNA (mtDNA) molecules in a single nucleoid was reported, which would reflect a minimum nucleoid division. We applied 3D-double-color direct stochastic optical reconstruction microscopy (dSTORM), i.e. nanoscopy with ~ 25-40 nm x,y-resolution, together with our novel method of Delaunay segmentation of 3D data to identify unbiased 3D-overlaps. Noncoding D-loops were recognized in HeLa cells by mtDNA fluorescence in situ hybridization (mtFISH) 7S-DNA 250-bp probe, containing biotin, visualized by anti-biotin/Cy3B-conjugated antibodies. Other mtFISH probes with biotin or Alexa Fluor 647 (A647) against ATP6-COX3 gene overlaps (1,100 bp) were also used. Nucleoids were imaged by anti-DNA/(A647-)-Cy3B-conjugated antibodies. Resulting histograms counting mtFISH-loci/nucleoid overlaps demonstrated that 45% to 70% of visualized nucleoids contained two or more D-loops or ATP6-COX3-loci, indicating two or more mtDNA molecules per nucleoid. With increasing number of mtDNA per nucleoid, diameters were larger and their distribution histograms peaked at ~ 300 nm. A wide nucleoid diameter distribution was obtained also using 2D-STED for their imaging by anti-DNA/A647. At unchanged mtDNA copy number in osteosarcoma 143B cells, TFAM expression increased nucleoid spatial density 1.67-fold, indicating expansion of existing mtDNA and its redistribution into more nucleoids upon the higher TFAM/mtDNA stoichiometry. Validation of nucleoid imaging was also done with two TFAM mutants unable to bend or dimerize, respectively, which reduced both copy number and nucleoid spatial density by 80%. We conclude that frequently more than one mtDNA molecule exists within a single nucleoid in HeLa cells and that mitochondrial nucleoids do exist in a non-uniform size range.
Zobrazit více v PubMed
Xian H, Liou YC. Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy. Cell Death Differ. 2020;28:827–842. doi: 10.1038/s41418-020-00657-z. PubMed DOI PMC
Fenton AR, Jongens TA, Holzbaur ELF. Mitochondrial dynamics: Shaping and remodeling an organelle network. Curr. Opin. Cell. Biol. 2020;68:28–36. doi: 10.1016/j.ceb.2020.08.014. PubMed DOI PMC
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell. Biol. 2020;21:204–224. doi: 10.1038/s41580-020-0210-7. PubMed DOI
Ježek P, Dlasková A. Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic β-cells. Mitochondrion. 2019;49:245–258. doi: 10.1016/j.mito.2019.06.007. PubMed DOI
Lewis SC, Uchiyama LF, Nunnari J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science. 2016;353:aaf5549. doi: 10.1126/science.aaf5549. PubMed DOI PMC
Chapman J, Ng YS, Nicholls TJ. The maintenance of mitochondrial DNA integrity and dynamics by mitochondrial membranes. Life (Basel) 2020;10:164. doi: 10.3390/life10090164. PubMed DOI PMC
SilvaRamos E, Motori E, Brüser C, Kühl I, Yeroslaviz A, Ruzzenente B, Kauppila JHK, Busch JD, Hultenby K, Habermann BH, Jakobs S, Larsson NG, Mourier A. Mitochondrial fusion is required for regulation of mitochondrial DNA replication. PLoS Genet. 2019;15:e1008085. doi: 10.1371/journal.pgen.1008085. PubMed DOI PMC
Holt IJ. The mitochondrial R-loop. Nucleic Acids Res. 2019;47:5480–5489. doi: 10.1093/nar/gkz277. PubMed DOI PMC
Farge G, Falkenberg M. Organization of DNA in mammalian mitochondria. Int. J. Mol. Sci. 2019;20:2770. doi: 10.3390/ijms20112770. PubMed DOI PMC
Yasukawa T, Kang D. An overview of mammalian mitochondrial DNA replication mechanisms. J. Biochem. 2018;164:183–193. doi: 10.1093/jb/mvy058. PubMed DOI PMC
Cluett TJ, Akman G, Reyes A, Kazak L, Mitchell A, Wood SR, Spinazzola A, Spelbrink JN, Holt IJ. Transcript availability dictates the balance between strand-asynchronous and strand-coupled mitochondrial DNA replication. Nucleic Acids Res. 2018;46:10771–10781. doi: 10.1093/nar/gky852. PubMed DOI PMC
Hillen HS, Morozov YI, Sarfallah A, Temiakov D, Cramer P. Structural basis of mitochondrial transcription initiation. Cell. 2017;171:1072–1081. doi: 10.1016/j.cell.2017.10.036. PubMed DOI PMC
Liao S, Chen L, Song Z, He H. The fate of damaged mitochondrial DNA in the cell. Biochim. Biophys. Acta. 2022;1869:119233. doi: 10.1016/j.bbamcr.2022.119233. PubMed DOI
Bonekamp NA, Peter B, Hillen HS, Felser A, Bergbrede T, Choidas A, Horn M, Unger A, Di Lucrezia R, Atanassov I, Li X, Koch U, Menninger S, Boros J, Habenberger P, Giavalisco P, Cramer P, Denzel MS, Nussbaumer P, Klebl B, Falkenberg M, Gustafsson CM, Larsson NG. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature. 2020;588:712–716. doi: 10.1038/s41586-020-03048. PubMed DOI
Filograna R, Mennuni M, Alsina D, Larsson NG. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 2021;595:976–1002. doi: 10.1002/1873-3468.14021. PubMed DOI PMC
Larsson NG, Wedell A. Mitochondria in human disease. J. Intern. Med. 2020;287:589–591. doi: 10.1111/joim.13088. PubMed DOI
Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, Simard ML, Wredenberg A, Freyer C, Stewart JB, Larsson NG. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Sci. Adv. 2019;5:eaav9824. doi: 10.1126/sciadv.aav9824. PubMed DOI PMC
Hensen F, Potter A, van Esveld SL, Tarrés-Solé A, Chakraborty A, Solà M, Spelbrink JN. Mitochondrial RNA granules are critically dependent on mtDNA replication factors Twinkle and mtSSB. Nucleic Acids Res. 2019;47:3680–3698. doi: 10.1093/nar/gkz047. PubMed DOI PMC
Gustafsson CM, Falkenberg M, Larsson N-G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 2016;85:133–160. doi: 10.1146/annurev-biochem-060815-014402. PubMed DOI
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol. 2021;11:210168. doi: 10.1098/rsob.210168. PubMed DOI PMC
Ngo HB, Kaiser JT, Chan DC. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat. Struct. Mol. Biol. 2011;18:1290–1296. doi: 10.1038/nsmb.2159. PubMed DOI PMC
Brüser C, Keller-Findeisen J, Jakobs S. The TFAM-to-mtDNA ratio defines inner-cellular nucleoid populations with distinct activity levels. Cell Rep. 2021;37:110000. doi: 10.1016/j.celrep.2021.110000. PubMed DOI
Long Q, Zhou Y, Wu H, Du S, Hu M, Qi J, Li W, Guo J, Wu Y, Yang L, et al. Phase separation drives the self-assembly of mitochondrial nucleoids for transcriptional modulation. Nat. Struct. Mol. Biol. 2021;28:900–908. doi: 10.1038/s41594-021-00671-w. PubMed DOI
Lyonnais S, Tarrés-Solé A, Rubio-Cosials A, Cuppari A, Brito R, Jaumot J, Gargallo R, Vilaseca M, Silva C, Granzhan A, Teulade-Fichou MP, Eritja R, Solà M. The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein. Sci. Rep. 2017;7:43992. doi: 10.1038/srep43992. PubMed DOI PMC
Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC, Jan Drexler D, Maiser A, Gaidt M, Leonhardt H, Hornung V, Hopfner KP. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature. 2017;549:394–398. doi: 10.1038/nature23890. PubMed DOI
Gilkerson RW, Schon EA, Hernandez E, Davidson MM. Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J. Cell. Biol. 2008;181:1117–1128. doi: 10.1083/jcb.200712101. PubMed DOI PMC
Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson N-G, Jakobs S. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc. Natl. Acad. Sci. USA. 2011;108:13534–13539. doi: 10.1073/pnas.1109263108. PubMed DOI PMC
Kukat C, Davies KM, Wurm CA, Spåhr H, Bonekamp NA, Kühl I, Joos F, Polosa PL, Park CB, Posse V, Falkenberg M, Jakobs S, Kühlbrandt W, Larsson N-G. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl. Acad. Sci. USA. 2015;112:11288–11293. doi: 10.1073/pnas.1512131112. PubMed DOI PMC
Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994;19:780–782. doi: 10.1364/ol.19.000780. PubMed DOI
Prole DL, Chinnery PF, Jones NS. Visualizing, quantifying and manipulating mitochondrial DNA in vivo. J. Biol. Chem. 2020;295:17588–17601. doi: 10.1074/jbc.REV120.015101. PubMed DOI PMC
Shen H, Yu M, Tsoli M, Chang C, Joshi S, Liu J, Ryall S, Chornenkyy Y, Siddaway R, Hawkins C, Ziegler DS. Targeting reduced mitochondrial DNA quantity as a therapeutic approach in pediatric high-grade gliomas. Neuro Oncol. 2020;22:139–151. doi: 10.1093/neuonc/noz140. PubMed DOI PMC
Sasaki T, Sato Y, Higashiyama T, Sasaki N. Live imaging reveals the dynamics and regulation of mitochondrial nucleoids during the cell cycle in Fucci2-HeLa cells. Sci. Rep. 2017;7:11257. doi: 10.1038/s41598-017-10843-8. PubMed DOI PMC
Sahl SJ, Hell SW, Jakobs J. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell. Biol. 2017;18:685–701. doi: 10.1038/s41598-017-10843-8. PubMed DOI
Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF, Clayton DA. Super-resolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol. Cell. Biol. 2011;31:4994–5010. doi: 10.1128/MCB.05694-11. PubMed DOI PMC
Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF. Correlative 3D super-resolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc. Natl. Acad. Sci. USA. 2012;109:6136–6141. doi: 10.1073/PNAS.1121558109. PubMed DOI PMC
Mlodzianoski MJ, Schreiner JM, Callahan SP, Smolková K, Dlasková A, Santorová J, Ježek P, Bewersdorf J. Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt. Express. 2011;19:15009–15019. doi: 10.1364/OE.19.015009. PubMed DOI
Dlasková A, Engstová H, Plecitá-Hlavatá L, Lessard M, Alán L, Reguera DP, Jabůrek M, Ježek P. Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy. J. Bioenergy Biomembr. 2015;47:255–263. doi: 10.1007/s10863-015-9610-3. PubMed DOI
Alán L, Špaček T, Ježek P. Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM. Eur. Biophys. J. 2016;45:443–461. doi: 10.1007/s00249-016-1114-5. PubMed DOI
Dlasková A, Engstová H, Špaček T, Kahancová A, Pavluch V, Smolková K, Špačková J, Bartoš M, Hlavatá LP, Ježek P. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. Biochim. Biophys. Acta Bioenergy. 2018;1859:829–844. doi: 10.1016/j.bbabio.2018.04.013. PubMed DOI
Špaček T, Pavluch V, Alán L, Capková N, Engstová H, Dlasková A, Berková Z, Saudek F, Ježek P. Nkx6.1 decline accompanies mitochondrial DNA reduction but subtle nucleoid size decrease in pancreatic islet β-cells of diabetic Goto Kakizaki rats. Sci. Rep. 2017;7:15674. doi: 10.1038/s41598-017-15958-6. PubMed DOI PMC
Zhang Y, Schroeder LK, Lessard MD, Kidd P, Chung J, Song Y, Benedetti L, Li Y, Ries J, Grimm JB, Lavis LD, De Camilli P, Rothman JE, Baddeley D, Bewersdorf J. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nat. Methods. 2020;17:225–231. doi: 10.1038/s41592-019-0676-4. PubMed DOI PMC
Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 2008;47:6172–6176. doi: 10.1002/anie.200802376. PubMed DOI
Tauber J, Dlasková A, Šantorová J, Smolková K, Alán L, Špaček T, Plecitá-Hlavatá L, Jabůrek M, Ježek P. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells. Int. J. Biochem. Cell. Biol. 2013;45:593–603. doi: 10.1016/j.biocel.2012.11.019. PubMed DOI
Jevtic V, Kindle P, Avilov SV. SYBR Gold dye enables preferential labelling of mitochondrial nucleoids and their time-lapse imaging by structured illumination microscopy. PLoS ONE. 2018;13:e0203956. doi: 10.1371/journal.pone.0203956. PubMed DOI PMC
Yaroslavsky AI, Smolina IV. Fluorescence imaging of single-copy DNA sequences within the human genome using PNA-directed padlock probe assembly. Chem. Biol. 2013;20:445–453. doi: 10.1016/j.chembiol.2013.02.012. PubMed DOI PMC
Dlasková A, Špaček T, Engstová H, Špačková J, Schröfel A, Holendová B, Smolková K, Plecitá-Hlavatá L, Ježek P. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Biophys. Acta. 2019;1860:659–678. doi: 10.1016/j.bbabio.2019.06.015. PubMed DOI
Smith MO, Ball J, Holloway BB, Erdelyi F, Szabo G, Stone E, Graham J, Lawrence JJ. Measuring aggregation of events about a mass using spatial point pattern methods. Spat. Stat. 2015;13:76–89. doi: 10.1016/j.spasta.2015.05.004. PubMed DOI PMC
Nicovich PR, Owen DM, Gaus K. Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nat. Protocols. 2017;12:453–461. doi: 10.1038/nprot.2016.166. PubMed DOI
Bates M, Dempsey GT, Chen KH, Zhuang X. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection. ChemPhysChem. 2012;13:99–107. doi: 10.1002/cphc.201100735. PubMed DOI PMC
Vutara SRX software package ver. 6.04.01, https://www.bruker.com/en/products-and-solutions/fluorescence-microscopy/super-resolution-microscopes/srx-software.html
ParaView software, version 4.3.1, 64 bit, https://www.paraview.org
Owen DM, Williamson DJ, Boelen L, Magenau A, Rossy J, Gaus K. Quantitative analysis of three-dimensional fluorescence localization microscopy data. Biophys. J. 2013;105:L05–L07. doi: 10.1016/j.bpj.2013.05.063. PubMed DOI PMC
Descloux A, Grußmayer KS, Radenovic A. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods. 2019;16:918–924. doi: 10.1038/s41592-019-0515-7. PubMed DOI