Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26449597
DOI
10.1007/s10863-015-9628-6
PII: 10.1007/s10863-015-9628-6
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer mitochondria, Glutaminolysis, HepG2 cells, Hypoxia-inducible factor, Non-canonical response to hypoxia,
- MeSH
- buněčné kultury MeSH
- buňky Hep G2 MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus MeSH
- hypoxie buňky MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- oxidativní fosforylace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
Cancer cell bioenergetics, maintaining mixed aerobic glycolysis (Warburg phenotype) and oxidative phosphorylation (OXPHOS), is not fully elucidated. Hypoxia-dependent OXPHOS suppression determines aerobic glycolysis. To elucidate further details, we studied hypoxic adaptation (up to 72 h at 5 % oxygen) of hepatocellular carcinoma HepG2 cells. The key regulatory component, hypoxia-inducible factor (HIF)-1α (HIF-1α) was stabilized at 5 h in 5 % oxygen for all three studied regimens, i.e. in glycolytic cells at 5 mM or 25 mM glucose, or in aglycemic (OXPHOS) cells when glucose was replaced by galactose. However, the conventional HIF-mediated suppression of respiration was prevented at aglycemia, which correlated with a high proportion of unphosphorylated pyruvate dehydrogenase (PDH) at 5 % oxygen. Such a modified HIF response in OXPHOS cells, termed as a non-canonical one, contrasted to conventional respiration suppression down to 45 % or 43 %, observed in hypoxia-adapted glycolytic cells at 5 mM or 25 mM glucose, respectively. These hypoxic glycolytic cells had normally highly phosphorylated PDH and most likely utilized pyruvate by aminotransferase reaction of glutaminolysis to feed at least suppressed respiration. Also, glycolytic cells were rather resistant towards the staurosporine-induced apoptosis, whereas aglycemic (OXPHOS) HepG2 cells exhibited much higher susceptibility. We conclude that aglycemia modulates the hypoxic HIF signaling toward a non-canonical response that is unable to carry out complete PDH phosphorylation, allowing a high pyruvate input for OXPHOS from the elevated glycolysis, which together with ongoing glutaminolysis maintain a virtually unchanged respiration. Similar OXPHOS revival may explain distinct tumor sensitivity to chemotherapy and other pharmacological interventions.
Zobrazit více v PubMed
Science. 2010 Sep 17;329(5998):1492-9 PubMed
Mol Cancer Ther. 2015 Aug;14(8):1928-38 PubMed
Biochim Biophys Acta. 2011 Jul;1813(7):1263-8 PubMed
Cell Cycle. 2008 Jul 15;7(14):2083-9 PubMed
Cell Metab. 2005 Jun;1(6):393-9 PubMed
J Biol Chem. 2004 Feb 20;279(8):6753-60 PubMed
Int J Biochem Cell Biol. 2010 May;42(5):604-22 PubMed
Cell Metab. 2014 Feb 4;19(2):285-92 PubMed
J Cell Biol. 2007 Jul 2;178(1):93-105 PubMed
J Biol Chem. 1980 May 10;255(9):3844-8 PubMed
Antioxid Redox Signal. 2007 Aug;9(8):1221-35 PubMed
Cell Metab. 2005 Jun;1(6):401-8 PubMed
Nature. 2013 Apr 4;496(7443):38-40 PubMed
Cell. 2012 Feb 3;148(3):399-408 PubMed
Biochem Biophys Res Commun. 2014 Aug 22;451(2):288-94 PubMed
Cell Metab. 2006 Mar;3(3):177-85 PubMed
Am J Physiol Cell Physiol. 2007 Jan;292(1):C125-36 PubMed
Int J Biochem Cell Biol. 2013 Jul;45(7):1356-65 PubMed
World J Gastroenterol. 2012 Aug 7;18(29):3775-81 PubMed
Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11715-20 PubMed
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7 PubMed
Int J Biochem Cell Biol. 2015 Aug;65:125-33 PubMed
Trends Pharmacol Sci. 2012 Apr;33(4):207-14 PubMed
Nature. 2008 Mar 13;452(7184):230-3 PubMed
Cell Mol Life Sci. 2013 Jun;70(11):2015-29 PubMed
Cell. 2013 May 9;153(4):840-54 PubMed
Cancer Biol Ther. 2013 Feb;14(2):81-9 PubMed
J Biol Chem. 2013 Jul 19;288(29):20768-75 PubMed
Cell Biochem Funct. 2013 Aug;31(6):451-9 PubMed
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1553-8 PubMed
Am J Physiol. 1996 Oct;271(4 Pt 1):C1172-80 PubMed
Free Radic Biol Med. 2007 Apr 1;42(7):1062-74 PubMed
Biochem J. 2008 Jan 1;409(1):19-26 PubMed
PLoS One. 2013;8(3):e56628 PubMed
Cell Rep. 2015 Feb 12;:null PubMed
Int J Biochem Cell Biol. 2013 Jan;45(1):123-9 PubMed
EMBO J. 2012 May 30;31(11):2448-60 PubMed
Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9116-21 PubMed
Mol Pharmacol. 2014 May;85(5):651-7 PubMed
Int J Biochem Cell Biol. 2011 Jul;43(7):950-68 PubMed
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21660-5 PubMed
J Pathol. 2013 Apr;229(5):755-64 PubMed
Mol Cell. 2011 Dec 23;44(6):864-77 PubMed
Nature. 2008 Mar 13;452(7184):181-6 PubMed
Science. 2009 May 22;324(5930):1076-80 PubMed
PLoS One. 2013 Apr 30;8(4):e62758 PubMed
Nat Rev Cancer. 2008 Sep;8(9):705-13 PubMed
Respir Physiol Neurobiol. 2010 Dec 31;174(3):175-81 PubMed
Science. 2009 Aug 14;325(5942):834-40 PubMed
Fed Proc. 1984 Jan;43(1):121-5 PubMed
J Cell Sci. 2013 Mar 15;126(Pt 6):1454-63 PubMed
Mol Genet Metab. 2014 Aug;112(4):275-9 PubMed
Antioxid Redox Signal. 2012 Feb 1;16(3):203-16 PubMed
Cell. 2007 Apr 6;129(1):111-22 PubMed
Essays Biochem. 2012;52:23-35 PubMed
Oncogene. 2011 Jun 30;30(26):2986-96 PubMed
J Clin Invest. 2013 Sep;123(9):3664-71 PubMed
Sci Signal. 2009 Nov 17;2(97):ra73 PubMed
Nature. 2011 Nov 20;481(7381):380-4 PubMed
J Cell Biol. 2007 Jun 18;177(6):1029-36 PubMed
Br J Cancer. 2008 Jun 17;98 (12 ):1975-84 PubMed
Cancer Res. 2004 Feb 1;64(3):985-93 PubMed
Biochem J. 2007 Jul 1;405(1):1-9 PubMed
Mol Cell Biol. 2001 May;21(10):3436-44 PubMed
Biochim Biophys Acta. 2013 Oct;1830(10):4743-51 PubMed
Mitochondrial Physiology of Cellular Redox Regulations
Pitfalls of Mitochondrial Redox Signaling Research
Redox Signaling from Mitochondria: Signal Propagation and Its Targets
Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling