Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32245800
DOI
10.2337/db19-1130
PII: db19-1130
Knihovny.cz E-zdroje
- MeSH
- draslíkové kanály fyziologie MeSH
- glukosa farmakologie MeSH
- inzulinová rezistence MeSH
- kultivované buňky MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- NADPH-oxidasa 4 fyziologie MeSH
- peroxid vodíku metabolismus MeSH
- sekrece inzulinu * MeSH
- signální transdukce fyziologie MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- draslíkové kanály MeSH
- glukosa MeSH
- mitochondrial K(ATP) channel MeSH Prohlížeč
- NADPH-oxidasa 4 MeSH
- Nox4 protein, mouse MeSH Prohlížeč
- peroxid vodíku MeSH
- vápník MeSH
NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islets (PIs) of β-cells through an as yet unknown mechanism. We found NADPH oxidase isoform 4 (NOX4) to be the main producer of cytosolic H2O2, which is essential for GSIS; an increase in ATP alone was insufficient for GSIS. The fast GSIS phase was absent from PIs from NOX4-null, β-cell-specific knockout mice (NOX4βKO) (though not from NOX2 knockout mice) and from NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations, and the patch-clamped KATP channel opened more frequently when glucose was high. Mitochondrial H2O2, decreasing upon GSIS, provided alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxides through electron-transfer flavoprotein:Q-oxidoreductase. Unlike GSIS, such insulin secretion was blocked with mitochondrial antioxidant SkQ1. Both NOX4 knockout and NOX4βKO mice exhibited impaired glucose tolerance and peripheral insulin resistance. Thus, the redox signaling previously suggested to cause β-cells to self-check hypothetically induces insulin resistance when it is absent. In conclusion, increases in ATP and H2O2 constitute an essential signal that switches on insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (it does so partially for fatty acids). Redox signaling could be impaired by cytosolic antioxidants; hence, those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.
Institut für Kardiovaskuläre Physiologie Goethe Universität Frankfurt Germany
Institute of Clinical and Experimental Medicine Prague Czech Republic
Klinik für Neurologie Universität Magdeburg Magdeburg Germany
Zobrazit více v PubMed
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18121-6 PubMed
Antioxid Redox Signal. 2019 Oct 1;31(10):722-751 PubMed
Cell Metab. 2005 Jun;1(6):401-8 PubMed
Nat Protoc. 2009;4(11):1649-52 PubMed
Diabetes Obes Metab. 2010 Oct;12 Suppl 2:149-58 PubMed
J Endocrinol. 2007 Sep;194(3):551-5 PubMed
Biochem J. 2007 Aug 15;406(1):105-14 PubMed
Adv Exp Med Biol. 2010;654:115-63 PubMed
Cell Metab. 2013 Aug 6;18(2):162-85 PubMed
Biochem J. 2015 Mar 1;466(2):203-18 PubMed
Diabetes. 2007 Jul;56(7):1783-91 PubMed
J Biol Chem. 2006 Nov 24;281(47):35624-32 PubMed
J Biol Chem. 1997 Jul 25;272(30):18572-9 PubMed
Diabetes. 2009 Mar;58(3):673-81 PubMed
PLoS One. 2012;7(1):e30200 PubMed
IUBMB Life. 2012 May;64(5):362-9 PubMed
J Med Invest. 2012;59(1-2):36-44 PubMed
Endocrinology. 2008 Nov;149(11):5391-400 PubMed
Endocrinology. 2004 Feb;145(2):667-78 PubMed
Endocrinology. 2009 May;150(5):2197-201 PubMed
Diabetologia. 2009 Dec;52(12):2489-98 PubMed
Circ Res. 2012 Apr 27;110(9):1217-25 PubMed
J Biol Chem. 2011 Nov 25;286(47):40857-66 PubMed
PLoS One. 2015 Jun 05;10(6):e0129238 PubMed
Islets. 2011 Sep-Oct;3(5):213-23 PubMed
J Biol Chem. 2006 Oct 13;281(41):30593-602 PubMed
Front Genet. 2017 Feb 21;8:21 PubMed
Rev Endocr Metab Disord. 2010 Sep;11(3):157-63 PubMed
Neurochem Int. 2012 Jul;61(2):146-55 PubMed
Diabetes. 2004 Dec;53 Suppl 3:S104-12 PubMed
Physiol Rev. 2007 Jan;87(1):245-313 PubMed
J Cell Physiol. 2011 Apr;226(4):1110-7 PubMed
J Biol Chem. 2006 Feb 3;281(5):2649-53 PubMed
Biomolecules. 2020 Jan 06;10(1): PubMed
Mol Cell Endocrinol. 2013 Oct 15;379(1-2):12-8 PubMed
J Biol Chem. 2015 May 8;290(19):12435-42 PubMed
J Biol Chem. 2010 May 28;285(22):16530-7 PubMed
Cell. 2012 Mar 16;148(6):1160-71 PubMed
Am J Physiol Regul Integr Comp Physiol. 2011 Mar;300(3):R756-62 PubMed
Diabetologia. 2011 Oct;54(10):2584-94 PubMed
Antioxid Redox Signal. 2015 Oct 20;23(12):958-72 PubMed
Free Radic Biol Med. 2016 Nov;100:14-31 PubMed
Br J Pharmacol. 2010 Feb 1;159(3):669-77 PubMed
Cell Calcium. 2010 Jul;48(1):1-9 PubMed
Diabetologia. 2010 Jun;53(6):1019-32 PubMed
J Diabetes Res. 2015;2015:385395 PubMed
Am J Physiol Endocrinol Metab. 2011 Dec;301(6):E1065-9 PubMed
PLoS One. 2009 Aug 05;4(8):e6500 PubMed
Nat Methods. 2006 Apr;3(4):281-6 PubMed
Mitochondrial Physiology of Cellular Redox Regulations
Redox Status as a Key Driver of Healthy Pancreatic Beta-Cells
Pitfalls of Mitochondrial Redox Signaling Research
Cysteine residues in signal transduction and its relevance in pancreatic beta cells
Deficiency of transcription factor Nkx6.1 does not prevent insulin secretion in INS-1E cells
Contribution of Mitochondria to Insulin Secretion by Various Secretagogues
Redox Homeostasis in Pancreatic β-Cells: From Development to Failure
The Pancreatic β-Cell: The Perfect Redox System