Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4

. 2020 Jul ; 69 (7) : 1341-1354. [epub] 20200403

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32245800

NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islets (PIs) of β-cells through an as yet unknown mechanism. We found NADPH oxidase isoform 4 (NOX4) to be the main producer of cytosolic H2O2, which is essential for GSIS; an increase in ATP alone was insufficient for GSIS. The fast GSIS phase was absent from PIs from NOX4-null, β-cell-specific knockout mice (NOX4βKO) (though not from NOX2 knockout mice) and from NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations, and the patch-clamped KATP channel opened more frequently when glucose was high. Mitochondrial H2O2, decreasing upon GSIS, provided alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxides through electron-transfer flavoprotein:Q-oxidoreductase. Unlike GSIS, such insulin secretion was blocked with mitochondrial antioxidant SkQ1. Both NOX4 knockout and NOX4βKO mice exhibited impaired glucose tolerance and peripheral insulin resistance. Thus, the redox signaling previously suggested to cause β-cells to self-check hypothetically induces insulin resistance when it is absent. In conclusion, increases in ATP and H2O2 constitute an essential signal that switches on insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (it does so partially for fatty acids). Redox signaling could be impaired by cytosolic antioxidants; hence, those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.

Zobrazit více v PubMed

Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18121-6 PubMed

Antioxid Redox Signal. 2019 Oct 1;31(10):722-751 PubMed

Cell Metab. 2005 Jun;1(6):401-8 PubMed

Nat Protoc. 2009;4(11):1649-52 PubMed

Diabetes Obes Metab. 2010 Oct;12 Suppl 2:149-58 PubMed

J Endocrinol. 2007 Sep;194(3):551-5 PubMed

Biochem J. 2007 Aug 15;406(1):105-14 PubMed

Adv Exp Med Biol. 2010;654:115-63 PubMed

Cell Metab. 2013 Aug 6;18(2):162-85 PubMed

Biochem J. 2015 Mar 1;466(2):203-18 PubMed

Diabetes. 2007 Jul;56(7):1783-91 PubMed

J Biol Chem. 2006 Nov 24;281(47):35624-32 PubMed

J Biol Chem. 1997 Jul 25;272(30):18572-9 PubMed

Diabetes. 2009 Mar;58(3):673-81 PubMed

PLoS One. 2012;7(1):e30200 PubMed

IUBMB Life. 2012 May;64(5):362-9 PubMed

J Med Invest. 2012;59(1-2):36-44 PubMed

Endocrinology. 2008 Nov;149(11):5391-400 PubMed

Endocrinology. 2004 Feb;145(2):667-78 PubMed

Endocrinology. 2009 May;150(5):2197-201 PubMed

Diabetologia. 2009 Dec;52(12):2489-98 PubMed

Circ Res. 2012 Apr 27;110(9):1217-25 PubMed

J Biol Chem. 2011 Nov 25;286(47):40857-66 PubMed

PLoS One. 2015 Jun 05;10(6):e0129238 PubMed

Islets. 2011 Sep-Oct;3(5):213-23 PubMed

J Biol Chem. 2006 Oct 13;281(41):30593-602 PubMed

Front Genet. 2017 Feb 21;8:21 PubMed

Rev Endocr Metab Disord. 2010 Sep;11(3):157-63 PubMed

Neurochem Int. 2012 Jul;61(2):146-55 PubMed

Diabetes. 2004 Dec;53 Suppl 3:S104-12 PubMed

Physiol Rev. 2007 Jan;87(1):245-313 PubMed

J Cell Physiol. 2011 Apr;226(4):1110-7 PubMed

J Biol Chem. 2006 Feb 3;281(5):2649-53 PubMed

Biomolecules. 2020 Jan 06;10(1): PubMed

Mol Cell Endocrinol. 2013 Oct 15;379(1-2):12-8 PubMed

J Biol Chem. 2015 May 8;290(19):12435-42 PubMed

J Biol Chem. 2010 May 28;285(22):16530-7 PubMed

Cell. 2012 Mar 16;148(6):1160-71 PubMed

Am J Physiol Regul Integr Comp Physiol. 2011 Mar;300(3):R756-62 PubMed

Diabetologia. 2011 Oct;54(10):2584-94 PubMed

Antioxid Redox Signal. 2015 Oct 20;23(12):958-72 PubMed

Free Radic Biol Med. 2016 Nov;100:14-31 PubMed

Br J Pharmacol. 2010 Feb 1;159(3):669-77 PubMed

Cell Calcium. 2010 Jul;48(1):1-9 PubMed

Diabetologia. 2010 Jun;53(6):1019-32 PubMed

J Diabetes Res. 2015;2015:385395 PubMed

Am J Physiol Endocrinol Metab. 2011 Dec;301(6):E1065-9 PubMed

PLoS One. 2009 Aug 05;4(8):e6500 PubMed

Nat Methods. 2006 Apr;3(4):281-6 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mitochondria to plasma membrane redox signaling is essential for fatty acid β-oxidation-driven insulin secretion

. 2024 Sep ; 75 () : 103283. [epub] 20240723

Mitochondrial Physiology of Cellular Redox Regulations

. 2024 Aug 30 ; 73 (S1) : S217-S242. [epub] 20240422

Redox Status as a Key Driver of Healthy Pancreatic Beta-Cells

. 2024 Aug 30 ; 73 (S1) : S139-S152. [epub] 20240422

Pitfalls of Mitochondrial Redox Signaling Research

. 2023 Aug 31 ; 12 (9) : . [epub] 20230831

Cysteine residues in signal transduction and its relevance in pancreatic beta cells

. 2023 ; 14 () : 1221520. [epub] 20230629

Deficiency of transcription factor Nkx6.1 does not prevent insulin secretion in INS-1E cells

. 2023 Jan 13 ; 13 (1) : 683. [epub] 20230113

Contribution of Mitochondria to Insulin Secretion by Various Secretagogues

. 2022 May ; 36 (13-15) : 920-952. [epub] 20210824

Redox Homeostasis in Pancreatic β-Cells: From Development to Failure

. 2021 Mar 27 ; 10 (4) : . [epub] 20210327

The Pancreatic β-Cell: The Perfect Redox System

. 2021 Jan 29 ; 10 (2) : . [epub] 20210129

Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD+ Ratio

. 2020 Oct 20 ; 33 (12) : 789-815. [epub] 20200707

Glucose-Induced Expression of DAPIT in Pancreatic β-Cells

. 2020 Jul 10 ; 10 (7) : . [epub] 20200710

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...