Sex-specific metabolic responses to high-fat diet in mice with NOX4 deficiency

. 2025 Sep ; 85 () : 103698. [epub] 20250606

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40517601

Grantová podpora
K01 AR073332 NIAMS NIH HHS - United States
R21 AG070404 NIA NIH HHS - United States
R56 AR083948 NIAMS NIH HHS - United States

Odkazy

PubMed 40517601
PubMed Central PMC12432532
DOI 10.1016/j.redox.2025.103698
PII: S2213-2317(25)00211-3
Knihovny.cz E-zdroje

Reactive oxygen species (ROS) are critical mediators of cellular signaling that regulate metabolic homeostasis, including lipid uptake, synthesis, and storage. NADPH oxidase 4 (NOX4), a significant enzymatic source of ROS, has been identified as a redox-sensitive regulator of glucose and lipid metabolism. However, its contribution to sex-specific metabolic regulation remains poorly defined. This study compared how NOX4 knock-out (NOX4 KO) shifted systemic and tissue-specific metabolic phenotypes between male and female mice fed with a high-fat diet (HFD) for 20-weeks. We observed that male NOX4 mice on HFD exhibited reduced adiposity, diminished liver lipid accumulation, and improved glucose and insulin tolerance compared to male WT mice on HFD. In contrast, female NOX4 KO mice developed increased adiposity and lipid accumulation in peripheral adipose depots, accompanied by impaired glucose tolerance. Gene expression profiling in skeletal muscle and liver revealed distinct, sex-specific patterns of changes in genes related to lipid uptake, synthesis, and storage, possibly implicating differential activation of PPAR signaling pathways supportive of in vivo data. These findings identify NOX4 as a central regulator of sexually dimorphic lipid metabolism, acting through redox-sensitive transcriptional networks to shape divergent metabolic responses to HFD.

Zobrazit více v PubMed

Gallero S., Persson K.W., Henríquez-Olguín C. Unresolved questions in the regulation of skeletal muscle insulin action by reactive oxygen species. FEBS (Fed. Eur. Biochem. Soc.) Lett. 2024;598:2145–2159. doi: 10.1002/1873-3468.14937. PubMed DOI

Shum M., Ngo J., Shirihai O.S., Liesa M. Mitochondrial oxidative function in NAFLD: friend or foe? Mol. Metabol. 2021;50 doi: 10.1016/j.molmet.2020.101134. PubMed DOI PMC

Li Y., Luo Z., Wu X., Zhu J., Yu K., Jin Y., Zhang Z., Zhao S., Zhou L. Proteomic analyses of cysteine redox in high-fat-fed and fasted mouse livers: implications for liver metabolic homeostasis. J. Proteome Res. 2018;17:129–140. doi: 10.1021/acs.jproteome.7b00431. PubMed DOI

Corkey B.E., Deeney J.T. The redox communication network as a regulator of metabolism. Front. Physiol. 2020;11 doi: 10.3389/fphys.2020.567796. PubMed DOI PMC

Ristow M., Zarse K., Oberbach A., Klöting N., Birringer M., Kiehntopf M., Stumvoll M., Kahn C.R., Blüher M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. U. S. A. 2009;106:8665–8670. doi: 10.1073/pnas.0903485106. PubMed DOI PMC

Specht K.S., Kant S., Addington A.K., McMillan R.P., Hulver M.W., Learnard H., Campbell M., Donnelly S.R., Caliz A.D., Pei Y., Reif M.M., Bond J.M., DeMarco A., Craige B., Keaney J.F., Craige S.M. Nox4 mediates skeletal muscle metabolic responses to exercise. Mol Metab. 2021;45 doi: 10.1016/j.molmet.2020.101160. PubMed DOI PMC

C.E. Xirouchaki, Y. Jia, M.J. McGrath, S. Greatorex, M. Tran, T.L. Merry, D. Hong, M.J. Eramo, S.C. Broome, J.S.T. Woodhead, R.F. D’souza, J. Gallagher, E. Salimova, C. Huang, R.B. Schittenhelm, J. Sadoshima, M.J. Watt, C.A. Mitchell, T. Tiganis, Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance, Sci. Adv. 7 (n.d.) eabl4988. 10.1126/sciadv.abl4988. PubMed DOI PMC

Rahman M., Mofarrahi M., Kristof A.S., Nkengfac B., Harel S., Hussain S.N.A. Reactive oxygen species regulation of autophagy in skeletal muscles. Antioxidants Redox Signal. 2014;20:443–459. doi: 10.1089/ars.2013.5410. PubMed DOI

Wang X., Zhang W., Chen H., Liao N., Wang Z., Zhang X., Hai C. High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol. Lett. 2014;224:16–23. doi: 10.1016/j.toxlet.2013.10.005. PubMed DOI

Takamura T. Hepatokine selenoprotein P-mediated reductive stress causes resistance to intracellular signal transduction. Antioxid Redox Signal. 2020;33:517–524. doi: 10.1089/ars.2020.8087. PubMed DOI PMC

Xu J., Kulkarni S.R., Donepudi A.C., More V.R., Slitt A.L. Enhanced Nrf2 activity worsens insulin resistance, impairs lipid accumulation in adipose tissue, and increases hepatic steatosis in leptin-deficient mice. Diabetes. 2012;61:3208–3218. doi: 10.2337/db11-1716. PubMed DOI PMC

He F., Antonucci L., Yamachika S., Zhang Z., Taniguchi K., Umemura A., Hatzivassiliou G., Roose-Girma M., Reina-Campos M., Duran A., Diaz-Meco M.T., Moscat J., Sun B., Karin M. NRF2 activates growth factor genes and downstream AKT signaling to induce mouse and human hepatomegaly. J. Hepatol. 2020;72:1182–1195. doi: 10.1016/j.jhep.2020.01.023. PubMed DOI PMC

Huang J., Tabbi-Anneni I., Gunda V., Wang L. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;299:G1211–G1221. doi: 10.1152/ajpgi.00322.2010. PubMed DOI PMC

Wang Y., Fu X., Zeng L., Hu Y., Gao R., Xian S., Liao S., Huang J., Yang Y., Liu J., Jin H., Klaunig J., Lu Y., Zhou S. Activation of Nrf2/HO-1 signaling pathway exacerbates cholestatic liver injury. Commun. Biol. 2024;7:1–17. doi: 10.1038/s42003-024-06243-0. PubMed DOI PMC

Li L., Fu J., Liu D., Sun J., Hou Y., Chen C., Shao J., Wang L., Wang X., Zhao R., Wang H., Andersen M.E., Zhang Q., Xu Y., Pi J. Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: involvement of reduced PPARγ expression. Redox Biol. 2020;30 doi: 10.1016/j.redox.2019.101412. PubMed DOI PMC

Hirode G., Wong R.J. Trends in the prevalence of metabolic syndrome in the United States, 2011-2016. JAMA. 2020;323:2526–2528. doi: 10.1001/jama.2020.4501. PubMed DOI PMC

Moore J.X. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, national health and nutrition examination survey, 1988–2012. Prev. Chronic Dis. 2017;14 doi: 10.5888/pcd14.160287. PubMed DOI PMC

He J., Votruba S., Venti C., Krakoff J. Higher incremental insulin area under the curve during oral glucose tolerance test predicts less food intake and weight gain. Int. J. Obes. 2011;35:1495–1501. doi: 10.1038/ijo.2011.13. PubMed DOI PMC

Hall K.D., Ayuketah A., Brychta R., Cai H., Cassimatis T., Chen K.Y., Chung S.T., Costa E., Courville A., Darcey V., Fletcher L.A., Forde C.G., Gharib A.M., Guo J., Howard R., Joseph P.V., McGehee S., Ouwerkerk R., Raisinger K., Rozga I., Stagliano M., Walter M., Walter P.J., Yang S., Zhou M. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019;30:67–77.e3. doi: 10.1016/j.cmet.2019.05.008. PubMed DOI PMC

Piaggi P., Vinales K.L., Basolo A., Santini F., Krakoff J. Energy expenditure in the etiology of human obesity: spendthrift and thrifty metabolic phenotypes and energy-sensing mechanisms. J. Endocrinol. Investig. 2018;41:83–89. doi: 10.1007/s40618-017-0732-9. PubMed DOI PMC

Basolo A., Votruba S.B., Heinitz S., Krakoff J., Piaggi P. Deviations in energy sensing predict long-term weight change in overweight Native Americans. Metab., Clin. Exp. 2018;82:65–71. doi: 10.1016/j.metabol.2017.12.013. PubMed DOI PMC

Grundy S.M. Overnutrition, ectopic lipid and the metabolic syndrome. J. Invest. Med. 2016;64:1082–1086. doi: 10.1136/jim-2016-000155. PubMed DOI

Alemany M. The metabolic syndrome, a human disease. Int. J. Mol. Sci. 2024;25:2251. doi: 10.3390/ijms25042251. PubMed DOI PMC

Peñuelas‐Haro I., Espinosa‐Sotelo R., Crosas‐Molist E., Herranz‐Itúrbide M., Caballero‐Díaz D., Alay A., Solé X., Ramos E., Serrano T., Martínez‐Chantar M.L., Knaus U.G., Cuezva J.M., Zorzano A., Bertran E., Fabregat I. The NADPH oxidase NOX4 regulates redox and metabolic homeostasis preventing HCC progression. Hepatology (Baltim., Md.) 2023;78:416–433. doi: 10.1002/hep.32702. PubMed DOI PMC

Greatorex S., Kaur S., Xirouchaki C.E., Goh P.K., Wiede F., Genders A.J., Tran M., Jia Y., Raajendiran A., Brown W.A., McLean C.A., Sadoshima J., Watt M.J., Tiganis T. Mitochondria- and NOX4-dependent antioxidant defense mitigates progression to nonalcoholic steatohepatitis in obesity. J. Clin. Investig. 2024;134 doi: 10.1172/JCI162533. PubMed DOI PMC

Plecitá-Hlavatá L., Jabůrek M., Holendová B., Tauber J., Pavluch V., Berková Z., Cahová M., Schröder K., Brandes R.P., Siemen D., Ježek P. Glucose-stimulated insulin secretion fundamentally requires H(2)O(2) signaling by NADPH oxidase 4. Diabetes. 2020;69:1341–1354. doi: 10.2337/db19-1130. PubMed DOI

Nabeebaccus A., Hafstad A., Eykyn T., Yin X., Brewer A., Zhang M., Mayr M., Shah A. Cardiac-targeted NADPH oxidase 4 in the adaptive cardiac remodelling of the murine heart. Lancet. 2015;385(Suppl 1):S73. doi: 10.1016/S0140-6736(15)60388-9. PubMed DOI

Nabeebaccus A.A., Zoccarato A., Hafstad A.D., Santos C.X., Aasum E., Brewer A.C., Zhang M., Beretta M., Yin X., West J.A., Schröder K., Griffin J.L., Eykyn T.R., Abel E.D., Mayr M., Shah A.M. Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation. JCI Insight. 2017;2 doi: 10.1172/jci.insight.96184. 96184. PubMed DOI PMC

Nabeebaccus A.A., Reumiller C.M., Shen J., Zoccarato A., Santos C.X.C., Shah A.M. The regulation of cardiac intermediary metabolism by NADPH oxidases. Cardiovasc. Res. 2022;118:3305–3319. doi: 10.1093/cvr/cvac030. PubMed DOI PMC

Hancock M., Hafstad A.D., Nabeebaccus A.A., Catibog N., Logan A., Smyrnias I., Hansen S.S., Lanner J., Schröder K., Murphy M.P., Shah A.M., Zhang M. Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. eLife. 2018;7 doi: 10.7554/eLife.41044. PubMed DOI PMC

Bettaieb A., Jiang J.X., Sasaki Y., Chao T.-I., Kiss Z., Chen X., Tian J., Katsuyama M., Yabe-Nishimura C., Xi Y., Szyndralewiez C., Schröder K., Shah A., Brandes R.P., Haj F.G., Török N.J. Hepatocyte nicotinamide adenine dinucleotide phosphate reduced oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice. Gastroenterology (New York, N. Y., 1943) 2015;149:468–480.e10. doi: 10.1053/j.gastro.2015.04.009. PubMed DOI PMC

Den Hartigh L.J., Omer M., Goodspeed L., Wang S., Wietecha T., O'Brien K.D., Han C.Y. Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arterioscler. Thromb. Vasc. Biol. 2017;37:466–475. doi: 10.1161/ATVBAHA.116.308749. PubMed DOI PMC

Ikeda N., Ishii M., Miyata H., Nishi Y., Suehiro F., Komabashiri N., Sakurai T., Nishimura M. Role of reactive oxygen species (ROS) in the regulation of adipogenic differentiation of human maxillary/mandibular bone marrow-derived mesenchymal stem cells. Mol. Biol. Rep. 2023;50:5733–5745. doi: 10.1007/s11033-023-08528-9. PubMed DOI

Hua H., Wu M., Wu T., Ji Y., Jin L., Du Y., Zhang Y., Huang S., Zhang A., Ding G., Liu Q., Jia Z. Reduction of NADPH oxidase 4 in adipocytes contributes to the anti-obesity effect of dihydroartemisinin. Heliyon. 2023;9 doi: 10.1016/j.heliyon.2023.e14028. PubMed DOI PMC

Yan J., Tie G., Wang S., Messina K.E., DiDato S., Guo S., Messina L.M. Type 2 diabetes restricts multipotency of mesenchymal stem cells and impairs their capacity to augment postischemic neovascularization in db/db mice. J. Am. Heart Assoc. 2012;1 doi: 10.1161/JAHA.112.002238. PubMed DOI PMC

Higuchi M., Dusting G.J., Peshavariya H., Jiang F., Hsiao S.T.-F., Chan E.C., Liu G.-S. Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cell. Dev. 2013;22:878–888. doi: 10.1089/scd.2012.0306. PubMed DOI PMC

Kanda Y., Hinata T., Kang S.W., Watanabe Y. Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci. 2011;89:250–258. doi: 10.1016/j.lfs.2011.06.007. PubMed DOI

Schröder K., Wandzioch K., Helmcke I., Brandes R.P. Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler. Thromb. Vasc. Biol. 2009;29:239–245. doi: 10.1161/ATVBAHA.108.174219. PubMed DOI

Kuroda J., Ago T., Matsushima S., Zhai P., Schneider M.D., Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc. Natl. Acad. Sci. U. S. A. 2010;107:15565–15570. doi: 10.1073/pnas.1002178107. PubMed DOI PMC

Anvari E., Wikström P., Walum E., Welsh N. The novel NADPH oxidase 4 inhibitor GLX351322 counteracts glucose intolerance in high-fat diet-treated C57BL/6 mice. Free Radic. Res. 2015;49:1308–1318. doi: 10.3109/10715762.2015.1067697. PubMed DOI

García J.G., Ansorena E., Milagro F.I., Zalba G., de Miguel C. Endothelial Nox5 expression modulates glucose uptake and lipid accumulation in mice fed a high-fat diet and 3T3-L1 adipocytes treated with glucose and palmitic acid. Int. J. Mol. Sci. 2021;22:2729. doi: 10.3390/ijms22052729. PubMed DOI PMC

Henriquez-Olguin C., Meneses-Valdes R., Raun S.H., Gallero S., Knudsen J.R., Li Z., Li J., Sylow L., Jaimovich E., Jensen T.E. NOX2 deficiency exacerbates diet-induced obesity and impairs molecular training adaptations in skeletal muscle. Redox Biol. 2023;65 doi: 10.1016/j.redox.2023.102842. PubMed DOI PMC

Wu S., Pan L., Liao H., Yao W., Shen N., Chen C., Liu D., Ge M. High-fat diet increased NADPH-oxidase-related oxidative stress and aggravated LPS-induced intestine injury. Life Sci. 2020;253 doi: 10.1016/j.lfs.2020.117539. PubMed DOI

Costford S.R., Castro-Alves J., Chan K.L., Bailey L.J., Woo M., Belsham D.D., Brumell J.H., Klip A. Mice lacking NOX2 are hyperphagic and store fat preferentially in the liver. Am. J. Physiol. Endocrinol. Metab. 2014;306:E1341–E1353. doi: 10.1152/ajpendo.00089.2014. PubMed DOI

Mopuri R., Kalyesubula M., Rosov A., Edery N., Moallem U., Dvir H. Improved Folch method for liver-fat quantification. Front. Vet. Sci. 2021;7:1185. doi: 10.3389/fvets.2020.594853. PubMed DOI PMC

Kopec A.M., Rivera P.D., Lacagnina M.J., Hanamsagar R., Bilbo S.D. Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. J. Neurosci. Methods. 2017;280:64–76. doi: 10.1016/j.jneumeth.2017.02.002. PubMed DOI PMC

Cluster Variables Platform Options, (n.d.). https://www.jmp.com/support/help/en/18.2/index.shtml#page/jmp/cluster-variables-platform-options.shtml (accessed April 5, 2025).

Li Y., Mouche S., Sajic T., Veyrat-Durebex C., Supale R., Pierroz D., Ferrari S., Negro F., Hasler U., Feraille E., Moll S., Meda P., Deffert C., Montet X., Krause K.-H., Szanto I. Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. Int. J. Obes. 2012;36:1503–1513. doi: 10.1038/ijo.2011.279. PubMed DOI

Hulett N.A., Scalzo R.L., Reusch J.E.B. Glucose uptake by skeletal muscle within the contexts of type 2 diabetes and exercise: an integrated approach. Nutrients. 2022;14:647. doi: 10.3390/nu14030647. PubMed DOI PMC

Qiu Y., Yang X., Ma X., Xiong Y., Tian Z., Fan Q., Wang L., Jiang Z. CIDE gene expression in adipose tissue, liver, and skeletal muscle from obese and lean pigs. J. Zhejiang Univ., Sci. B. 2017;18:492–500. doi: 10.1631/jzus.B1600294. PubMed DOI PMC

Puri V., Ranjit S., Konda S., Nicoloro S.M.C., Straubhaar J., Chawla A., Chouinard M., Lin C., Burkart A., Corvera S., Perugini R.A., Czech M.P. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc. Natl. Acad. Sci. 2008;105:7833–7838. doi: 10.1073/pnas.0802063105. PubMed DOI PMC

Slayton M., Balakrishnan B., Gupta A., Jobe S., Puri I., Neely S., Tamori Y., Russ D.W., Yildirim G., Yakar S., Sharma V.M., Puri V. Fsp27 plays a crucial role in muscle performance. Am. J. Physiol. Endocrinol. Metab. 2022;322:E331–E343. doi: 10.1152/ajpendo.00255.2021. PubMed DOI PMC

Wang Z., Yu Y., Zhang X., Floyd E., Cefalu W. Human adenovirus 36 decreases fatty acid oxidation and increases de novo lipogenesis in primary cultured human skeletal muscle cells by promoting Cidec/FSP27 expression. Int. J. Obes. 2010;34:1355–1364. doi: 10.1038/ijo.2010.77. PubMed DOI PMC

Koutnikova H., Cock T.A., Watanabe M., Houten S.M., Champy M.F., Dierich A., Auwerx J. Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice. Proc. Natl. Acad. Sci. U. S. A. 2003;100:14457–14462. doi: 10.1073/pnas.2336090100. PubMed DOI PMC

Gavrilova O., Haluzik M., Matsusue K., Cutson J.J., Johnson L., Dietz K.R., Nicol C.J., Vinson C., Gonzalez F.J., Reitman M.L. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 2003;278:34268–34276. doi: 10.1074/jbc.M300043200. PubMed DOI

Goudriaan J.R., Dahlmans V.E.H., Teusink B., Ouwens D.M., Febbraio M., Maassen J.A., Romijn J.A., Havekes L.M., Voshol P.J. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J. Lipid Res. 2003;44:2270–2277. doi: 10.1194/jlr.M300143-JLR200. PubMed DOI

Choi C.S., Befroy D.E., Codella R., Kim S., Reznick R.M., Hwang Y.-J., Liu Z.-X., Lee H.-Y., Distefano A., Samuel V.T., Zhang D., Cline G.W., Handschin C., Lin J., Petersen K.F., Spiegelman B.M., Shulman G.I. Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc. Natl. Acad. Sci. U. S. A. 2008;105:19926–19931. doi: 10.1073/pnas.0810339105. PubMed DOI PMC

Liang H., Balas B., Tantiwong P., Dube J., Goodpaster B.H., O'Doherty R.M., DeFronzo R.A., Richardson A., Musi N., Ward W.F. Whole body overexpression of PGC-1alpha has opposite effects on hepatic and muscle insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 2009;296:E945–E954. doi: 10.1152/ajpendo.90292.2008. PubMed DOI PMC

Schnyder S., Svensson K., Cardel B., Handschin C. Muscle PGC-1α is required for long-term systemic and local adaptations to a ketogenic diet in mice. Am. J. Physiol. Endocrinol. Metab. 2017;312:E437–E446. doi: 10.1152/ajpendo.00361.2016. PubMed DOI PMC

Héron-Milhavet L., Haluzik M., Yakar S., Gavrilova O., Pack S., Jou W.C., Ibrahimi A., Kim H., Hunt D., Yau D., Asghar Z., Joseph J., Wheeler M.B., Abumrad N.A., LeRoith D. Muscle-specific overexpression of CD36 reverses the insulin resistance and diabetes of MKR mice. Endocrinology. 2004;145:4667–4676. doi: 10.1210/en.2003-1543. PubMed DOI

Montagner A., Polizzi A., Fouché E., Ducheix S., Lippi Y., Lasserre F., Barquissau V., Régnier M., Lukowicz C., Benhamed F., Iroz A., Bertrand-Michel J., Al Saati T., Cano P., Mselli-Lakhal L., Mithieux G., Rajas F., Lagarrigue S., Pineau T., Loiseau N., Postic C., Langin D., Wahli W., Guillou H. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut. 2016;65:1202–1214. doi: 10.1136/gutjnl-2015-310798. PubMed DOI PMC

Rakhshandehroo M., Knoch B., Müller M., Kersten S. PPAR Research 2010; 2010. Peroxisome Proliferator-Activated Receptor Alpha Target Genes. PubMed DOI PMC

Patsouris D., Reddy J.K., Müller M., Kersten S. Peroxisome proliferator-activated receptor α mediates the effects of high-fat diet on hepatic gene expression. Endocrinology. 2006;147:1508–1516. doi: 10.1210/en.2005-1132. PubMed DOI

Kadowaki T., Hara K., Kubota N., Tobe K., Terauchi Y., Yamauchi T., Eto K., Kadowaki H., Noda M., Hagura R., Akanuma Y. The role of PPARγ in high-fat diet-induced obesity and insulin resistance. J. Diabetes Complicat. 2002;16:41–45. doi: 10.1016/S1056-8727(01)00206-9. PubMed DOI

Schiffrin M., Winkler C., Quignodon L., Naldi A., Trötzmüller M., Köfeler H., Henry H., Parini P., Desvergne B., Gilardi F. Sex dimorphism of nonalcoholic fatty liver disease (NAFLD) in pparg-null mice. Int. J. Mol. Sci. 2021;22:9969. doi: 10.3390/ijms22189969. PubMed DOI PMC

Berthier A., Johanns M., Zummo F.P., Lefebvre P., Staels B. PPARs in liver physiology. Biochim. Biophys. Acta Mol. Basis Dis. 2021;1867 doi: 10.1016/j.bbadis.2021.166097. PubMed DOI

Jiranugrom P., Yoo I.D., Park M.W., Ryu J.H., Moon J.-S., Yi S.S. NOX4 deficiency exacerbates the impairment of cystatin C-dependent hippocampal neurogenesis by a chronic high fat diet. Genes. 2020;11 doi: 10.3390/genes11050567. PubMed DOI PMC

Lang P., Hasselwander S., Li H., Xia N. Effects of different diets used in diet-induced obesity models on insulin resistance and vascular dysfunction in C57BL/6 mice. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-55987-x. PubMed DOI PMC

Warden C.H., Fisler J.S. Comparisons of diets used in animal models of high-fat feeding. Cell Metab. 2008;7:277. doi: 10.1016/j.cmet.2008.03.014. PubMed DOI PMC

An J., Wang Q., Yi S., Liu X., Jin H., Xu J., Wen G., Zhu J., Tuo B. The source of the fat significantly affects the results of high-fat diet intervention. Sci. Rep. 2022;12:4315. doi: 10.1038/s41598-022-08249-2. PubMed DOI PMC

Altenhöfer S., Kleikers P.W.M., Radermacher K.A., Scheurer P., Rob Hermans J.J., Schiffers P., Ho H., Wingler K., Schmidt H.H.H.W. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell. Mol. Life Sci. 2012;69:2327–2343. doi: 10.1007/s00018-012-1010-9. PubMed DOI PMC

Lumish H.S., O'Reilly M., Reilly M.P. Sex differences in genomic drivers of adipose distribution and related cardiometabolic disorders. Arterioscler. Thromb. Vasc. Biol. 2020;40:45–60. doi: 10.1161/ATVBAHA.119.313154. PubMed DOI

Stranahan A.M., Guo D.-H., Yamamoto M., Hernandez C.M., Khodadadi H., Baban B., Zhi W., Lei Y., Lu X., Ding K., Isales C.M. Sex differences in adipose tissue distribution determine susceptibility to neuroinflammation in mice with dietary obesity. Diabetes. 2022;72:245–260. doi: 10.2337/db22-0192. PubMed DOI PMC

Wang F., Mullican S.E., DiSpirito J.R., Peed L.C., Lazar M.A. Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ. Proc. Natl. Acad. Sci. 2013;110:18656–18661. doi: 10.1073/pnas.1314863110. PubMed DOI PMC

Rendon C.J., Sempere L., Lauver A., Watts S.W., Contreras G.A. Anatomical location, sex, and age modulate adipocyte progenitor populations in perivascular adipose tissues. Front. Physiol. 2024;15 doi: 10.3389/fphys.2024.1411218. PubMed DOI PMC

Wu Y., Lee M.-J., Ido Y., Fried S.K. High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C57BL/6J mice. Am. J. Physiol. Endocrinol. Metab. 2017;312:E58–E71. doi: 10.1152/ajpendo.00128.2016. PubMed DOI PMC

Tchoukalova Y.D., Koutsari C., Votruba S.B., Tchkonia T., Giorgadze N., Thomou T., Kirkland J.L., Jensen M.D. Sex- and depot-dependent differences in adipogenesis in normal-weight humans. Obesity (Silver Spring, Md.) 2010;18:1875–1880. doi: 10.1038/oby.2010.56. PubMed DOI PMC

Scheidl T.B., Wager J.L., Thompson J.A. Diet-induced hyperplastic expansion in subcutaneous adipose tissue and protection against adipose progenitor exhaustion in female mice are lost with ovariectomy. 2024. 2024.09.05.611480. DOI

Bilal M., Nawaz A., Kado T., Aslam M.R., Igarashi Y., Nishimura A., Watanabe Y., Kuwano T., Liu J., Miwa H., Era T., Ikuta K., Imura J., Yagi K., Nakagawa T., Fujisaka S., Tobe K. Fate of adipocyte progenitors during adipogenesis in mice fed a high-fat diet. Mol. Metabol. 2021;54 doi: 10.1016/j.molmet.2021.101328. PubMed DOI PMC

Joe A.W.B., Yi L., Even Y., Vogl A.W., Rossi F.M.V. Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cell. 2009;27:2563–2570. doi: 10.1002/stem.190. PubMed DOI

DiGirolamo M., Fine J.B., Tagra K., Rossmanith R. Qualitative regional differences in adipose tissue growth and cellularity in male Wistar rats fed ad libitum. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998;274:R1460–R1467. doi: 10.1152/ajpregu.1998.274.5.R1460. PubMed DOI

Varghese M., Griffin C., McKernan K., Eter L., Abrishami S., Singer K. Female adipose tissue has improved adaptability and metabolic health compared to males in aged obesity. Aging. 2020;12:1725–1746. doi: 10.18632/aging.102709. PubMed DOI PMC

Medrikova D., Jilkova Z.M., Bardova K., Janovska P., Rossmeisl M., Kopecky J. Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int. J. Obes. 2012;36:262–272. doi: 10.1038/ijo.2011.87. PubMed DOI

Nickelson K.J., Stromsdorfer K.L., Pickering R.T., Liu T.-W., Ortinau L.C., Keating A.F., Perfield J.W., II A comparison of inflammatory and oxidative stress markers in adipose tissue from weight-matched obese male and female mice. J. Diabetes Res. 2012;2012 doi: 10.1155/2012/859395. PubMed DOI PMC

Shan B., Barker C.S., Shao M., Zhang Q., Gupta R.K., Wu Y. Multilayered omics reveal sex- and depot-dependent adipose progenitor cell heterogeneity. Cell Metab. 2022;34:783–799.e7. doi: 10.1016/j.cmet.2022.03.012. PubMed DOI PMC

Keuper M., Berti L., Raedle B., Sachs S., Böhm A., Fritsche L., Fritsche A., Häring H.-U., Hrabě de Angelis M., Jastroch M., Hofmann S.M., Staiger H. Preadipocytes of obese humans display gender-specific bioenergetic responses to glucose and insulin. Mol Metab. 2019;20:28–37. doi: 10.1016/j.molmet.2018.11.006. PubMed DOI PMC

Uhrbom M., Muhl L., Genové G., Liu J., Palmgren H., Alexandersson I., Karlsson F., Zhou A.-X., Lunnerdal S., Gustafsson S., Buyandelger B., Petkevicius K., Ahlstedt I., Karlsson D., Aasehaug L., He L., Jeansson M., Betsholtz C., Peng X.-R. Adipose stem cells are sexually dimorphic cells with dual roles as preadipocytes and resident fibroblasts. Nat. Commun. 2024;15:7643. doi: 10.1038/s41467-024-51867-9. PubMed DOI PMC

Permana P.A., Nair S., Lee Y.-H., Luczy-Bachman G., Vozarova de Courten B., Tataranni P.A. Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity. Am. J. Physiol. Endocrinol. Metab. 2004;286:E958–E962. doi: 10.1152/ajpendo.00544.2003. PubMed DOI

Bouabout G., Ayme-Dietrich E., Jacob H., Champy M.-F., Birling M.-C., Pavlovic G., Madeira L., Fertak L.E., Petit-Demoulière B., Sorg T., Herault Y., Mudgett J., Monassier L. Nox4 genetic inhibition in experimental hypertension and metabolic syndrome. Archives of Cardiovascular Diseases. 2018;111:41–52. doi: 10.1016/j.acvd.2017.03.011. PubMed DOI

Brocker C.N., Patel D.P., Velenosi T.J., Kim D., Yan T., Yue J., Li G., Krausz K.W., Gonzalez F.J. Extrahepatic PPARα modulates fatty acid oxidation and attenuates fasting-induced hepatosteatosis in mice. J. Lipid Res. 2018;59:2140–2152. doi: 10.1194/jlr.M088419. PubMed DOI PMC

Harano Y., Yasui K., Toyama T., Nakajima T., Mitsuyoshi H., Mimani M., Hirasawa T., Itoh Y., Okanoue T. Fenofibrate, a peroxisome proliferator-activated receptor α agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver. Liver Int. 2006;26:613–620. doi: 10.1111/j.1478-3231.2006.01265.x. PubMed DOI

Gao Y., Shen W., Lu B., Zhang Q., Hu Y., Chen Y. Upregulation of hepatic VLDLR via PPARα is required for the triglyceride-lowering effect of fenofibrate. J. Lipid Res. 2014;55:1622–1633. doi: 10.1194/jlr.M041988. PubMed DOI PMC

Beaudry K.M., Devries M.C. Sex-based differences in hepatic and skeletal muscle triglyceride storage and metabolism. Appl. Physiol. Nutr. Metabol. 2019;44:805–813. doi: 10.1139/apnm-2018-0635. PubMed DOI

Santosa S., Jensen M.D. The sexual dimorphism of lipid kinetics in humans. Front. Endocrinol. 2015;6 doi: 10.3389/fendo.2015.00103. PubMed DOI PMC

Martini T., Gobet C., Salati A., Blanc J., Mookhoek A., Reinehr M., Knott G., Sordet-Dessimoz J., Naef F. A sexually dimorphic hepatic cycle of periportal VLDL generation and subsequent pericentral VLDLR-mediated re-uptake. Nat. Commun. 2024;15:8422. doi: 10.1038/s41467-024-52751-2. PubMed DOI PMC

Høeg L., Roepstorff C., Thiele M., Richter E.A., Wojtaszewski J.F.P., Kiens B. Higher intramuscular triacylglycerol in women does not impair insulin sensitivity and proximal insulin signaling. J. Appl. Physiol. 2009;107:824–831. doi: 10.1152/japplphysiol.91382.2008. PubMed DOI

Bergman B.C., Perreault L., Strauss A., Bacon S., Kerege A., Harrison K., Brozinick J.T., Hunerdosse D.M., Playdon M.C., Holmes W., Bui H.H., Sanders P., Siddall P., Wei T., Thomas M.K., Kuo M.S., Eckel R.H. Intramuscular triglyceride synthesis: importance in muscle lipid partitioning in humans. Am. J. Physiol. Endocrinol. Metab. 2018;314:E152–E164. doi: 10.1152/ajpendo.00142.2017. PubMed DOI PMC

Goodpaster B.H., He J., Watkins S., Kelley D.E. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J. Clin. Endocrinol. Metab. 2001;86:5755–5761. doi: 10.1210/jcem.86.12.8075. PubMed DOI

Kerns M.L., Hakim J.M.C., Zieman A., Lu R.G., Coulombe P.A. Sexual dimorphism in response to an NRF2 inducer in a model for pachyonychia congenita. J. Invest. Dermatol. 2018;138:1094–1100. doi: 10.1016/j.jid.2017.09.054. PubMed DOI PMC

Yin Y., Corry K.A., Loughran J.P., Li J. Moderate Nrf2 activation by genetic disruption of Keap1 has sex-specific effects on bone mass in mice. Sci. Rep. 2020;10:348. doi: 10.1038/s41598-019-57185-1. PubMed DOI PMC

Sehsah R., Wu W., Ichihara S., Hashimoto N., Zong C., Yamazaki K., Sato H., Itoh K., Yamamoto M., Elsayed A.A., El-Bestar S., Kamel E., Ichihara G. Protective role of Nrf2 in zinc oxide nanoparticles-induced lung inflammation in female mice and sexual dimorphism in susceptibility. Toxicol. Lett. 2022;370:24–34. doi: 10.1016/j.toxlet.2022.09.004. PubMed DOI

McCallum R.T., Thériault R.-K., Manduca J.D., Russell I.S.B., Culmer A.M., Doost J.S., Martino T.A., Perreault M.L. Nrf2 activation rescues stress-induced depression-like behaviour and inflammatory responses in male but not female rats. Biol. Sex Differ. 2024;15:16. doi: 10.1186/s13293-024-00589-0. PubMed DOI PMC

Helgueta S., Heurtaux T., Sciortino A., Gui Y., Ohnmacht J., Mencke P., Boussaad I., Halder R., Garcia P., Krüger R., Mittelbronn M., Buttini M., Sauter T., Sinkkonen L. Park7 deletion leads to sex-specific transcriptome changes involving NRF2-CYP1B1 axis in mouse midbrain astrocytes. npj Parkinson's Dis. 2025;11:1–18. doi: 10.1038/s41531-024-00851-7. PubMed DOI PMC

Rooney J., Oshida K., Vasani N., Vallanat B., Ryan N., Chorley B.N., Wang X., Bell D.A., Wu K.C., Aleksunes L.M., Klaassen C.D., Kensler T.W., Corton J.C. Activation of Nrf2 in the liver is associated with stress resistance mediated by suppression of the growth hormone-regulated STAT5b transcription factor. PLoS One. 2018;13 doi: 10.1371/journal.pone.0200004. PubMed DOI PMC

Kratschmar D.V., Calabrese D., Walsh J., Lister A., Birk J., Appenzeller-Herzog C., Moulin P., Goldring C.E., Odermatt A. Suppression of the nrf2-dependent antioxidant response by glucocorticoids and 11β-HSD1-mediated glucocorticoid activation in hepatic cells. PLoS One. 2012;7 doi: 10.1371/journal.pone.0036774. PubMed DOI PMC

Ijomone O.M., Iroegbu J.D., Morcillo P., Ayodele A.J., Ijomone O.K., Bornhorst J., Schwerdtle T., Aschner M. Sex-dependent metal accumulation and immunoexpression of Hsp70 and Nrf2 in rats' brain following manganese exposure. Environ. Toxicol. 2022;37:2167–2177. doi: 10.1002/tox.23583. PubMed DOI PMC

Pellegrini G.G., Cregor M., McAndrews K., Morales C.C., McCabe L.D., McCabe G.P., Peacock M., Burr D., Weaver C., Bellido T. Nrf2 regulates mass accrual and the antioxidant endogenous response in bone differently depending on the sex and age. PLoS One. 2017;12 doi: 10.1371/journal.pone.0171161. PubMed DOI PMC

Di Veroli B., Bentanachs R., Roglans N., Alegret M., Giona L., Profumo E., Berry A., Saso L., Laguna J.C., Buttari B. Sex differences affect the NRF2 signaling pathway in the early phase of liver steatosis: a high-fat-diet-fed rat model supplemented with liquid fructose. Cells. 2024;13:1247. doi: 10.3390/cells13151247. PubMed DOI PMC

Scholtes C., Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat. Rev. Mol. Cell Biol. 2022;23:750–770. doi: 10.1038/s41580-022-00486-7. PubMed DOI

Rando G., Wahli W. Sex differences in nuclear receptor-regulated liver metabolic pathways. Biochim. Biophys. Acta Mol. Basis Dis. 2011;1812:964–973. doi: 10.1016/j.bbadis.2010.12.023. PubMed DOI

Shen M., Shi H. Sex hormones and their receptors regulate liver energy homeostasis. International Journal of Endocrinology. 2015;2015 doi: 10.1155/2015/294278. PubMed DOI PMC

Tiberi J., Cesarini V., Stefanelli R., Canterini S., Fiorenza M.T., La Rosa P. Sex differences in antioxidant defence and the regulation of redox homeostasis in physiology and pathology. Mech. Ageing Dev. 2023;211 doi: 10.1016/j.mad.2023.111802. PubMed DOI

Ronis M.J., Blackburn M.L., Shankar K., Ferguson M., Cleves M.A., Badger T.M. Estradiol and NADPH oxidase crosstalk regulates responses to high fat feeding in female mice. Exp. Biol. Med. 2019;244:834–845. doi: 10.1177/1535370219853563. PubMed DOI PMC

Antonopoulos A.S., Margaritis M., Verheule S., Recalde A., Sanna F., Herdman L., Psarros C., Nasrallah H., Coutinho P., Akoumianakis I., Brewer A.C., Sayeed R., Krasopoulos G., Petrou M., Tarun A., Tousoulis D., Shah A.M., Casadei B., Channon K.M., Antoniades C. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-γ/adiponectin signalling. Circ. Res. 2016;118:842–855. doi: 10.1161/CIRCRESAHA.115.307856. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...