Delta Cell Hyperplasia in Adult Goto-Kakizaki (GK/MolTac) Diabetic Rats
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26236746
PubMed Central
PMC4506919
DOI
10.1155/2015/385395
Knihovny.cz E-zdroje
- MeSH
- antagonisté inzulinu farmakologie MeSH
- beta-buňky účinky léků metabolismus patologie MeSH
- buňky vylučující somatostatin účinky léků metabolismus patologie MeSH
- diabetes mellitus 2. typu krev metabolismus patologie MeSH
- hyperplazie MeSH
- imunohistochemie MeSH
- inbrední kmeny potkanů MeSH
- inzulin metabolismus MeSH
- inzulinová rezistence * MeSH
- messenger RNA metabolismus MeSH
- nádorové buněčné linie MeSH
- oktreotid farmakologie MeSH
- pankreatický polypeptid antagonisté a inhibitory genetika metabolismus MeSH
- potkani Wistar MeSH
- proliferace buněk účinky léků MeSH
- sekrece inzulinu MeSH
- somatostatin antagonisté a inhibitory genetika metabolismus MeSH
- stárnutí * MeSH
- viabilita buněk účinky léků MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antagonisté inzulinu MeSH
- inzulin MeSH
- messenger RNA MeSH
- oktreotid MeSH
- pankreatický polypeptid MeSH
- somatostatin MeSH
Reduced beta cell mass in pancreatic islets (PI) of Goto-Kakizaki (GK) rats is frequently observed in this diabetic model, but knowledge on delta cells is scarce. Aiming to compare delta cell physiology/pathology of GK to Wistar rats, we found that delta cell number increased over time as did somatostatin mRNA and delta cells distribution in PI is different in GK rats. Subtle changes in 6-week-old GK rats were found. With maturation and aging of GK rats, disturbed cytoarchitecture occurred with irregular beta cells accompanied by delta cell hyperplasia and loss of pancreatic polypeptide (PPY) positivity. Unlike the constant glucose-stimulation index for insulin PI release in Wistar rats, this index declined with GK age, whereas for somatostatin it increased with age. A decrease of GK rat PPY serum levels was found. GK rat body weight decreased with increasing hyperglycemia. Somatostatin analog octreotide completely blocked insulin secretion, impaired proliferation at low autocrine insulin, and decreased PPY secretion and mitochondrial DNA in INS-1E cells. In conclusion, in GK rats PI, significant local delta cell hyperplasia and suspected paracrine effect of somatostatin diminish beta cell viability and contribute to the deterioration of beta cell mass. Altered PPY-secreting cells distribution amends another component of GK PI's pathophysiology.
Department No 75 Institute of Physiology Academy of Sciences 14220 Prague Czech Republic
Institute of Clinical and Experimental Medicine 14021 Prague Czech Republic
Teaching Thomayer Hospital and 3rd Medical School Charles University 14059 Prague Czech Republic
Zobrazit více v PubMed
Nolan C. J., Damm P., Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. The Lancet. 2011;378(9786):169–181. doi: 10.1016/s0140-6736(11)60614-4. PubMed DOI
Prentki M., Nolan C. J. Islet β cell failure in type 2 diabetes. The Journal of Clinical Investigation. 2006;116(7):1802–1812. doi: 10.1172/jci29103. PubMed DOI PMC
Ashcroft F. M., Rorsman P. Diabetes mellitus and the β cell: the last ten years. Cell. 2012;148(6):1160–1171. doi: 10.1016/j.cell.2012.02.010. PubMed DOI PMC
Collombat P., Xu X., Heimberg H., Mansouri A. Pancreatic beta-cells: from generation to regeneration. Seminars in Cell and Developmental Biology. 2010;21(8):838–844. doi: 10.1016/j.semcdb.2010.07.007. PubMed DOI PMC
Ježek P., Dlasková A., Plecitá-Hlavatá L. Redox homeostasis in pancreatic β cells. Oxidative Medicine and Cellular Longevity. 2012;2012:16. doi: 10.1155/2012/932838.932838 PubMed DOI PMC
Kierszenbaum A. L. Histology and Cell Biology: An Introduction to Pathology. Philadelphia, Pa, USA: Mosby Elsevier; 2007.
Ipp E., Dobbs R. E., Arimura A., Vale W., Harris V., Unger R. H. Release of immunoreactive somatostatin from the pancreas in response to glucose, amino acids, pancreozymin-cholecystokinin, and tolbutamide. The Journal of Clinical Investigation. 1977;60(3):760–765. doi: 10.1172/jci108829. PubMed DOI PMC
Adrian T. E. Pancreatic polypeptide. Journal of Clinical Pathology. Supplement. 1978;8:43–50. PubMed PMC
Kahleova H., Mari A., Nofrate V., et al. Improvement in β-cell function after diet-induced weight loss is associated with decrease in pancreatic polypeptide in subjects with type 2 diabetes. Journal of Diabetes and Its Complications. 2012;26(5):442–449. doi: 10.1016/j.jdiacomp.2012.05.003. PubMed DOI
Dor Y., Glaser B. Beta-cell dedifferentiation and type 2 diabetes. The New England Journal of Medicine. 2013;368(6):572–573. doi: 10.1056/nejmcibr1214034. PubMed DOI
Talchai C., Xuan S., Lin H. V., Sussel L., Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012;150(6):1223–1234. doi: 10.1016/j.cell.2012.07.029. PubMed DOI PMC
Schaffer A. E., Taylor B. L., Benthuysen J. R., et al. Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic beta cell identity. PLoS Genetics. 2013;9(1) doi: 10.1371/journal.pgen.1003274.e1003274 PubMed DOI PMC
Taylor B., Liu F.-F., Sander M. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Reports. 2013;4(6):1262–1275. doi: 10.1016/j.celrep.2013.08.010. PubMed DOI PMC
Zhang J., McKenna L. B., Bogue C. W., Kaestner K. H. The diabetes gene Hhex maintains δ-cell differentiation and islet function. Genes and Development. 2014;28(8):829–834. doi: 10.1101/gad.235499.113. PubMed DOI PMC
Portha B., Lacraz G., Kergoat M., et al. The GK rat beta-cell: a prototype for the diseased human beta-cell in type 2 diabetes? Molecular and Cellular Endocrinology. 2009;297(1-2):73–85. doi: 10.1016/j.mce.2008.06.013. PubMed DOI
Portha B., Lacraz G., Chavey A., et al. Islet structure and function in the GK rat. Advances in Experimental Medicine and Biology. 2010;654:479–500. doi: 10.1007/978-90-481-3271-3_21. PubMed DOI
Portha B., Giroix M.-H., Tourrel-Cuzin C., Le-Stunff H., Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. Methods in Molecular Biology. 2012;933:125–159. doi: 10.1007/978-1-62703-068-7-9. PubMed DOI
Movassat J., Calderari S., Fernández E., et al. Type 2 diabetes—a matter of failing β-cell neogenesis? Clues from the GK rat model. Diabetes, Obesity and Metabolism. 2007;9(2):187–195. doi: 10.1111/j.1463-1326.2007.00786.x. PubMed DOI
Portha B., Giroix M.-H., Serradas P. P., et al. β-cell function and viability in the spontaneously diabetic GK rat. Information from the GK/Par colony. Diabetes. 2001;50:89–93. doi: 10.2337/diabetes.50.2007.s89. PubMed DOI
Momose K., Nunomiya S., Nakata M., Yada T., Kikuchi M., Yashiro T. Immunohistochemical and electron-microscopic observation of beta-cells in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. Medical Molecular Morphology. 2006;39(3):146–153. doi: 10.1007/s00795-006-0324-9. PubMed DOI
Koyama M., Wada R.-I., Sakuraba H., Mizukami H., Yagihashi S. Accelerated loss of islet β cells in sucrose-fed Goto-Kakizaki rats, a genetic model of non-insulin-dependent diabetes mellitus. The American Journal of Pathology. 1998;153(2):537–545. PubMed PMC
Kimura K., Toyota T., Kakizaki M., Kudo M., Takebe K., Goto Y. Impaired insulin secretion in the spontaneous diabetes rats. Tohoku Journal of Experimental Medicine. 1982;137(4):453–459. doi: 10.1620/tjem.137.453. PubMed DOI
Abdel-Halim S. M., Guenifi A., Efendić S., Ostenson C.-G. Both somatostatin and insulin responses to glucose are impaired in the perfused pancreas of the spontaneously noninsulin-dependent diabetic GK (Goto-Kakizaki) rats. Acta Physiologica Scandinavica. 1993;148(2):219–226. doi: 10.1111/j.1748-1716.1993.tb09551.x. PubMed DOI
Hughes S. J., Faehling M., Thorneley C. W., Proks P., Ashcroft F. M., Smith P. A. Electrophysiological and metabolic characterization of single β-cells and islets from diabetic GK rats. Diabetes. 1998;47(1):73–81. doi: 10.2337/diab.47.1.73. PubMed DOI
Serradas P., Giroix M.-H., Saulnier C., et al. Mitochondrial deoxyribonucleic acid content is specifically decreased in adult, but not fetal, pancreatic islets of the Goto-Kakizaki rat, a genetic model of noninsulin-dependent diabetes. Endocrinology. 1995;136(12):5623–5631. PubMed
Alán L., Špaček T., Zelenka J., et al. Assessment of mitochondrial DNA as an indicator of islet quality: an example in Goto Kakizaki rats. Transplantation Proceedings. 2011;43(9):3281–3284. doi: 10.1016/j.transproceed.2011.09.055. PubMed DOI
Dlasková A., Špaček T., Šantorová J., et al. 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an experimental model of type-2 diabetes. Biochimica et Biophysica Acta—Bioenergetics. 2010;1797(6-7):1327–1341. doi: 10.1016/j.bbabio.2010.02.003. PubMed DOI
Esguerra J. L. S., Bolmeson C., Cilio C. M., Eliasson L. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS ONE. 2011;6(4) doi: 10.1371/journal.pone.0018613.e18613 PubMed DOI PMC
Li W., Nakanishi M., Zumsteg A., et al. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. eLife. 2014;3 doi: 10.7554/eLife.01846.e01846 PubMed DOI PMC
Cahová M., Vavrinková H., Tutterova M., Meschisvilli E., Kazdova L. Captopril enhanced insulin-stimulated glycogen synthesis in skeletal muscle but not fatty acid synthesis in adipose tissue of hereditary hypertriglyceridemic rats. Metabolism: Clinical and Experimental. 2003;52(11):1406–1412. doi: 10.1016/S0026-0495(03)00319-6. PubMed DOI
Okada T., Chong W. L., Hu J., et al. Insulin receptors in β-cells are critical for islet compensatory growth response to insulin resistance. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(21):8977–8982. doi: 10.1073/pnas.0608703104. PubMed DOI PMC
Grozinsky-Glasberg S., Franchi G., Teng M., et al. Octreotide and the mTOR inhibitor RAD001 (everolimus) block proliferation and interact with the Akt-mTOR-p70S6K pathway in a neuro-endocrine tumour cell line. Neuroendocrinology. 2008;87(3):168–181. doi: 10.1159/000111501. PubMed DOI
Kelly C., Flatt P. R., McClenaghan N. H. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells. Biochemical and Biophysical Research Communications. 2010;399(2):162–166. doi: 10.1016/j.bbrc.2010.07.036. PubMed DOI
Hauge-Evans A. C., Anderson R. L., Persaud S. J., Jones P. M. Delta cell secretory responses to insulin secretagogues are not mediated indirectly by insulin. Diabetologia. 2012;55(7):1995–2004. doi: 10.1007/s00125-012-2546-9. PubMed DOI
Wang X., Zielinski M. C., Misawa R., et al. Quantitative analysis of pancreatic polypeptide cell distribution in the human pancreas. PLoS ONE. 2013;8(1) doi: 10.1371/journal.pone.0055501.e55501 PubMed DOI PMC
Annibale B., Fave G. D., Barbetti F., et al. Dose-response effect of Somatostatin-14 on human basal pancreatic hormones. Pancreas. 1987;2(5):551–556. doi: 10.1097/00006676-198709000-00010. PubMed DOI
Kleinman R. M., Gingerich R., Ohning G., et al. Intraislet regulation of pancreatic polypeptide secretion in the isolated perfused rat pancreas. Pancreas. 1997;15(4):384–391. doi: 10.1097/00006676-199711000-00009. PubMed DOI
Brunicardi F. C., Druck P., Sun Y. S., Elahi D., Gingerich R. L., Andersen D. K. Regulation of pancreatic polypeptide secretion in the isolated perfused human pancreas. The American Journal of Surgery. 1988;155(1):63–69. doi: 10.1016/S0002-9610(88)80259-9. PubMed DOI
Avolio F., Pfeifer A., Courtney M., et al. From pancreas morphogenesis to β-cell regeneration. Current Topics in Developmental Biology. 2013;106:217–238. doi: 10.1016/b978-0-12-416021-7.00006-7. PubMed DOI
Okuno M., Minami K., Okumachi A., et al. Generation of insulin-secreting cells from pancreatic acinar cells of animal models of type 1 diabetes. The American Journal of Physiology—Endocrinology and Metabolism. 2007;292(1):E158–E165. doi: 10.1152/ajpendo.00180.2006. PubMed DOI
Minami K., Seino S. Pancreatic acinar-to-beta cell transdifferentiation in vitro. Frontiers in Bioscience. 2008;13(15):5824–5837. doi: 10.2741/3119. PubMed DOI
Minami K., Seino S. Current status of regeneration of pancreatic β-cells. Journal of Diabetes Investigation. 2013;4(2):131–141. doi: 10.1111/jdi.12062. PubMed DOI PMC
Orci L., Baetens D., Rufener C., et al. Hypertrophy and hyperplasia of somatostatin containing D cells in diabetes. Proceedings of the National Academy of Sciences of the United States of America. 1976;73(4):1338–1342. doi: 10.1073/pnas.73.4.1338. PubMed DOI PMC
Leiter E. H., Gapp D. A., Eppig J. J., Coleman D. L. Ultrastructural and morphometric studies of delta cells in pancreatic islets from C57BL/Ks diabetes mice. Diabetologia. 1979;17(5):297–309. doi: 10.1007/BF01235886. PubMed DOI
Zhang Y., Zhang Y., Bone R. N., et al. Regeneration of pancreatic non-β endocrine cells in adult mice following a single diabetes-inducing dose of streptozotocin. PLoS ONE. 2012;7(5) doi: 10.1371/journal.pone.0036675.e36675 PubMed DOI PMC
Nesi G., Marcucci T., Rubio C. A., Brandi M. L., Tonelli F. Somatostatinoma: clinico-pathological features of three cases and literature reviewed. Journal of Gastroenterology and Hepatology. 2008;23(4):521–526. doi: 10.1111/j.1440-1746.2007.05053.x. PubMed DOI
Resmini E., Minuto F., Colao A., Ferone D. Secondary diabetes associated with principal endocrinopathies: the impact of new treatment modalities. Acta Diabetologica. 2009;46(2):85–95. doi: 10.1007/s00592-009-0112-9. PubMed DOI
Kilimnik G., Zhao B., Jo J., et al. Altered islet composition and disproportionate loss of large islets in patients with type 2 diabetes. PLoS ONE. 2011;6(11) doi: 10.1371/journal.pone.0027445.e27445 PubMed DOI PMC
Deficiency of transcription factor Nkx6.1 does not prevent insulin secretion in INS-1E cells
Glucose-Induced Expression of DAPIT in Pancreatic β-Cells
Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4
Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes